高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.1习题课 pdf版含解析
高中数学(人教版A版必修一)配套课件:第三章函数的应用习题课
代入 y=a+bx,得2415..18==aa++1204..40bb,, 用计算器可得a≈2.4,b≈1.8.
这样,我们得到一个函数模型:y=2.4+1.8x.作出函数图象如图乙,可
以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好
地反应积雪深度与灌溉面积的关系.
解析答案
(3)根据所建立的函数模型,若今年最大积雪深度为25 cm,可以灌溉土 地多少公顷? 解 由y=2.4+1.8×25,求得y=47.4, 即当积雪深度为25 cm时,可以灌溉土地47.4公顷.
D.430元
答案
5.一个高为H,盛水量为V0的水瓶的轴截面如图所示, 现以均匀速度往水瓶中灌水,直到罐满为止,如果水深 h时水的体积为V,则函数V=f(h)的图象大致是( D )
1 23 45
答案
1.函数模型的应用实例主要包括三个方面 (1)利用给定的函数模型解决实际问题; (2)建立确定的函数模型解决问题; (3)建立拟合函数模型解决实际问题. 2.函数拟合与预测的一般步骤 (1)能够根据原始数据、表格,绘出散点图.
6
23.4
45.0
7
13.5
29.2
8
16.7
34.1
9
24.0
45.8
10
19.1
36.9
(1)描点画出灌溉面积随积雪深度变化的图象; 解 利用计算机几何画板软件, 描点如图甲.
解析答案
(2)建立一个能基本反应灌溉面积变化的函数模型,并画出图象; 解 从图甲中可以看到,数据点大致落在一条直线附近,由此,我们 假设灌溉面积y和最大积雪深度x满足线性函数模型y=a+bx. 取其中的两组数据(10.4,21.1),(24.0,45.8),
2020高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.1.2 Word版含解析
3.1.2 用二分法求方程的近似解一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是( )A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是( )3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2007)<0,f(2008)<0,f(2009)>0,则下列叙述正确的是( )A.函数f(x)在(2007,2008)内不存在零点B.函数f(x)在(2008,2009)内不存在零点C.函数f(x)在(2008,2009)内存在零点,并且仅有一个D.函数f(x)在(2007,2008)内可能存在零点4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不能确定5.利用计算器,列出自变量和函数值的对应关系如下表:A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)6.已知x0是函数f(x)=2x+11-x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0二、填空题7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)①(-∞,1] ②[1,2] ③[2,3] ④[3,4]⑤[4,5] ⑥[5,6] ⑦[6,+∞)8.x0=2.5,那么下一个有根的区间是________.9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.6875)<0,即可得出方程的一个近似解为____________(精确度为0.1).三、解答题10.确定函数f(x)=log x+x-4的零点所在的区间.1211.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)能力提升12.下列是关于函数y=f(x),x∈[a,b]的命题:①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.那么以上叙述中,正确的个数为( )A.0B.1C.3D.413.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?3.1.2 用二分法求方程的近似解知识梳理1.f(a)·f(b)<0 一分为二逐步逼近零点方程的近似解2.(1)f(a)·f(b)<0 (2)c(3)①c就是函数的零点②(a,c)③(c,b)作业设计1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]2.A [由选项A中的图象可知,不存在一个区间(a,b),使f(a)·f(b)<0,即A 选项中的零点不是变号零点,不符合二分法的定义.]3.D4.B [∵f(1)·f(1.5)<0,x1=1+1.52=1.25.又∵f(1.25)<0,∴f(1.25)·f(1.5)<0,则方程的根落在区间(1.25,1.5)内.]5.C [设f(x)=2x-x2,根据列表有f(0.2)=1.149-0.04>0,f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]6.B [∵f(x)=2x-1x-1,f(x)由两部分组成,2x在(1,+∞)上单调递增,-1x-1在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1<x0,∴f(x1)<f(x0)=0,又∵x2>x0,∴f(x2)>f(x0)=0.]7.③④⑤8.[2,2.5)解析令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,f(2.5)=15.625-10=5.625>0.∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).9.0.75或0.6875解析因为|0.75-0.6875|=0.0625<0.1,所以0.75或0.6875都可作为方程的近似解.10.解(答案不唯一)设y1=12log x,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象,如图.由图知,y1与y2在区间(0,1)内有一个交点,当x=4时,y1=-2,y2=0,f(4)<0,当x=8时,y1=-3,y2=-4,f(8)=1>0,∴在(4,8)内两曲线又有一个交点.故函数f(x)的两零点所在的区间为(0,1),(4,8).11.证明设函数f(x)=2x+3x-6,∵f(1)=-1<0,f(2)=4>0,又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,则方程6-3x=2x在区间[1,2]内有唯一一个实数解.设该解为x0,则x0∈[1,2],取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5),取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x∈(1,1.25),取x3=1.125,f(1.125)≈-0.444<0,f(1.125)·f(1.25)<0,∴x∈(1.125,1.25),取x4=1.1875,f(1.1875)≈-0.16<0,f(1.1875)·f(1.25)<0,∴x0∈(1.1875,1.25).∵|1.25-1.1875|=0.0625<0.1,∴1.1875可作为这个方程的实数解.12.A [∵①中x0∈[a,b]且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]13.解第一次各13枚称重,选出较轻一端的13枚,继续称;第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;第三次两端各3枚,选出较轻的3枚继续称;第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.∴最多称四次.。
高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.2.2
3.2.2函数模型的应用实例课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.1.几种常见的函数模型(1)一次函数:y=______________________(2)二次函数:y=______________________(3)指数函数:y=______________________(4)对数函数:y=______________________(5)幂函数:y=________________________(6)指数型函数:y=pq x+r(7)分段函数2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________________;(3)________________;(4)________________;(5)______;(6)__________________________.一、选择题1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)012 3细菌数30060012002400A.75B.100C.150D.2002.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A.310元B.300元C.290元D.280元3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A.减少7.84%B.增加7.84%C.减少9.5%D.不增不减4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()5.把长为12cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A.332cm2B.4cm2C.32cm2D.23cm26.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14题号12345 6答案二、填空题7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=a log2(x+1)给出,则2000年年底它们的数量约为________头.9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.三、解答题10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10kg)与上市时间t(单位:天)的数据情况如下表:(1)Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a log b t;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.能力提升12.某工厂生产一种电脑元件,每月的生产数据如表:y=ax+b或y=a x+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.13.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?1.函数模型的应用实例主要包括三个方面: (1)利用给定的函数模型解决实际问题; (2)建立确定性的函数模型解决问题; (3)建立拟合函数模型解决实际问题. 2.函数拟合与预测的一般步骤:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.3.2.2 函数模型的应用实例知识梳理1.(1)kx +b (k ≠0) (2)ax 2+bx +c (a ≠0) (3)a x (a >0且a ≠1)(4)log a x (a >0且a ≠1) (5)x α(α∈R ) 2.(1)收集数据 (2)画散点图 (3)选择函数模型(4)求函数模型 (5)检验 (6)用函数模型解释实际问题 作业设计1.A [由表中数据观察可得细菌数y 与时间x 的关系式为 y =300·2x (x ∈Z ).当x =-2时,y =300×2-2=3004=75.]2.B[由题意可知,收入y是销售量x的一次函数,设y=ax+b,将(1,800),(2,1300)代入得a=500,b=300.当销售量为x=0时,y=300.]3.A[设某商品价格为a,依题意得:a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,所以四年后的价格与原来价格比较(0.921 6-1)a=-0.078 4a,即减少7.84%.]4.A[由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.]5.D[设一段长为x cm,则另一段长为(12-x)cm.∴S=34(x3)2+34(4-x3)2=318(x-6)2+23≥2 3.]6.A[由三角形相似得24-y24-8=x20,得x=54(24-y),∴S=xy=-54(y-12)2+180.∴当y=12时,S有最大值,此时x=15.]7.2250解析设每台彩电的原价为x元,则x(1+40%)×0.8-x=270,解得x=2250(元).8.400解析由题意,x=1时y=100,代入求得a=100,2000年年底时,x=15,代入得y=400.9.2ln21024解析当t=0.5时,y=2,∴2=12k e,∴k=2ln2,∴y=e2t ln2,当t=5时,∴y=e10ln2=210=1024.10.解设每床每夜租金为10+2n(n∈N),则租出的床位为100-10n(n∈N且n<10)租金f (n )=(10+2n )(100-10n ) =20[-(n -52)2+2254], 其中n ∈N 且n <10.所以,当n =2或n =3时,租金最多, 若n =2,则租出床位100-20=80(张); 若n =3,则租出床位100-30=70(张); 综合考虑,n 应当取3,即每床每夜租金选择10+2×3=16(元).11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常值函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,可得:⎩⎨⎧150=2500a +50b +c ,108=12100a +110b +c ,150=62500a +250b +c ,解得a =1200,b =-32,c =4252.所以,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +4252.(2)当t =--322×1200=150(天)时,芦荟种植成本最低为 Q =1200×1502-32×150+4252=100(元/10kg). 12.解 将(1,50)、(2,52)分别代入两解析式得: ⎩⎨⎧ 50=a +b 52=2a +b 或⎩⎨⎧50=a +b ,52=a 2+b .(a >0) 解得⎩⎨⎧a =2b =48(两方程组的解相同).∴两函数分别为y =2x +48或y =2x +48.当x =3时,对于y =2x +48有y =54; 当x =3时,对于y =2x +48有y =56. 由于56与53.9的误差较大, ∴选y =ax +b 较好.13.解 (1)设每年砍伐面积的百分比为x (0<x <1),则 a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭.(2)设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,即11021122m ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 31021122n ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.1.1 Word版含解析
第三章函数的应用§3.1函数与方程3.1.1方程的根与函数的零点课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系2.对于函数y=f(x),我们把________________叫做函数y=f(x)的零点.3.方程、函数、图象之间的关系方程f(x)=0__________⇔函数y=f(x)的图象______________⇔函数y=f(x)__________.4.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是________的一条曲线,并且有____________,那么,函数y=f(x)在区间(a,b)内________,即存在c∈(a,b),使得__________,这个c也就是方程f(x)=0的根.一、选择题1.二次函数y =ax 2+bx +c 中,a·c<0,则函数的零点个数是( ) A .0个B .1个 C .2个D .无法确定2.若函数y =f(x)在区间[a ,b]上的图象为一条连续不断的曲线,则下列说法正确的是( )A .若f(a)f(b)>0,不存在实数c ∈(a ,b)使得f(c)=0B .若f(a)f(b)<0,存在且只存在一个实数c ∈(a ,b)使得f(c)=0C .若f(a)f(b)>0,有可能存在实数c ∈(a ,b)使得f(c)=0D .若f(a)f(b)<0,有可能不存在实数c ∈(a ,b)使得f(c)=03.若函数f(x)=ax +b(a ≠0)有一个零点为2,那么函数g(x)=bx 2-ax 的零点是( )A .0,-12B .0,12C .0,2D .2,-124.函数f(x)=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)5.函数f(x)=⎩⎨⎧x 2+2x -3, x ≤0,-2+ln x ,x>0零点的个数为( )A .0B .1C .2D .36.已知函数y =ax 3+bx 2+cx +d 的图象如图所示,则实数b 的取值范围是( )A .(-∞,0)B .(0,1)C .(1,2)D.(2,+∞)二、填空题7.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.8.函数f(x)=ln x-x+2的零点个数为________.9.根据表格中的数据,可以判定方程e x-x-2=0的一个实根所在的区间为(k,k+1)(k∈N),则k的值为________.三、解答题10.证明:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围.能力提升12.设函数f (x )=⎩⎨⎧x 2+bx +c ,x ≤0,2,x >0,若f (-4)=f (0),f (-2)=-2,则方程f (x )=x 的解的个数是( ) A .1B .2 C .3D .413.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围.第三章函数的应用§3.1函数与方程3.1.1方程的根与函数的零点知识梳理1.21021 2.使f(x)=0的实数x 3.有实数根与x轴有交点有零点 4.连续不断f(a)·f(b)<0有零点f(c)=0作业设计1.C[方程ax2+bx+c=0中,∵ac<0,∴a≠0,∴Δ=b2-4ac>0,即方程ax2+bx+c=0有2个不同实数根,则对应函数的零点个数为2个.]2.C[对于选项A,可能存在根;对于选项B,必存在但不一定唯一;选项D显然不成立.]3.A[∵a≠0,2a+b=0,∴b≠0,ab=-12.令bx2-ax=0,得x=0或x=ab=-1 2.]4.C[∵f(x)=e x+x-2,f(0)=e0-2=-1<0,f(1)=e1+1-2=e-1>0,∴f(0)·f(1)<0,∴f(x)在区间(0,1)上存在零点.]5.C[x≤0时,令x2+2x-3=0,解得x=-3. x>0时,f(x)=ln x-2在(0,+∞)上递增,f(1)=-2<0,f(e3)=1>0,∵f(1)f(e3)<0∴f(x)在(0,+∞)上有且只有一个零点.总之,f(x)在R上有2个零点.]6.A [设f (x )=ax 3+bx 2+cx +d ,则由f (0)=0可得d =0,f (x )=x (ax 2+bx +c )=ax (x -1)(x -2)⇒b =-3a ,又由x ∈(0,1)时f (x )>0,可得a >0,∴b <0.] 7.3 0解析 ∵f (x )是R 上的奇函数,∴f (0)=0,又∵f (x )在(0,+∞)上是增函数,由奇函数的对称性可知,f (x )在(-∞,0)上也单调递增,由f (2)=-f (-2)=0.因此在(0,+∞)上只有一个零点,综上f (x )在R 上共有3个零点,其和为-2+0+2=0. 8.2解析 该函数零点的个数就是函数y =ln x 与y =x -2图象的交点个数.在同一坐标系中作出y =ln x 与y =x -2的图象如下图:由图象可知,两个函数图象有2个交点,即函数f (x )=ln x -x +2有2个零点. 9.1解析 设f (x )=e 2-(x +2),由题意知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,所以方程的一个实根在区间(1,2)内,即k =1.10.证明 设f (x )=x 4-4x -2,其图象是连续曲线. 因为f (-1)=3>0,f (0)=-2<0,f (2)=6>0. 所以在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解. 11.解 令f (x )=mx 2+2(m +3)x +2m +14. 依题意得⎩⎨⎧ m >0f (4)<0或⎩⎨⎧m <0f (4)>0,即⎩⎨⎧ m >026m +38<0或⎩⎨⎧m <026m +38>0,解得-1913<m <0. 12.C [由已知⎩⎨⎧ 16-4b +c =c ,4-2b +c =-2,得⎩⎨⎧b =4,c =2.∴f (x )=⎩⎨⎧x 2+4x +2,x ≤0,2,x >0.当x ≤0时,方程为x 2+4x +2=x , 即x 2+3x +2=0, ∴x =-1或x =-2; 当x >0时,方程为x =2, ∴方程f (x )=x 有3个解.]13.解 设f (x )=x 2+(k -2)x +2k -1.∵方程f (x )=0的两根中,一根在(0,1)内,一根在(1,2)内,∴⎩⎨⎧f (0)>0f (1)<0f (2)>0,即⎩⎨⎧2k -1>01+k -2+2k -1<04+2k -4+2k -1>0∴12<k <23.。
2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册
3.1.1 函数的概念必备知识基础练1.下列四个图形中,不是以x为自变量的函数的图象是( )2.已知函数f(x)=+,则f(3)=( )A.1 B.2C.3 D.43.已知函数f(x)=x,则下列函数与f(x)表示同一函数的是( )A.y=B.y=C.y=()2D.y=4.函数y=f(x)与y轴的交点个数为( )A.至少1个 B.至多一个C.有且只有一个 D.与f(x)有关,不能确定5.[2022·广东深圳高一期末]函数f(x)=的定义域为( )A.[1,2)∪(2,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.[2022·山东青岛高一期末](多选)下面选项中,变量y是变量x的函数的是( ) A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP (国内生产总值)C.x表示某地区的学生某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税7.函数f(x)=的定义域是________.8.已知函数f(x)=-1,且f(a)=3,则a=________.关键能力综合练1.[2022·安徽歙县高一期末]∀x∈R,[x]表示不超过x的最大整数,十八世纪,函数y=[x]被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[4.8]-[-3.5]=( )A.0 B.1 C.7 D.82.学习了函数的概念后,对于构成函数的要素:定义域、对应关系和值域,甲、乙、丙三个同学得出了各自的判断:甲:存在函数f(x),g(x),它们的定义域相同,值域相同,但对应关系不同;乙:存在函数f(x),g(x),它们的定义域相同,对应关系相同,但值域不同;丙:存在函数f(x),g(x),它们的对应关系相同,值域相同,但定义域不同.上述三个判断中,正确的个数是( )A.3 B.2 C.1 D.03.函数f(x)=-(x+3)0的定义域是( )A.(-∞,-3)∪(3,+∞)B. (-∞,-3)∪(-3,3)C.(-∞,-3)D.(-∞,3)4.若函数f(x)=3x-1,则f(f(1))的值为( )A.2 B.4C.5 D.145.已知函数f(x)=的定义域为R,则a的取值范围是( )A.[0,1] B.(0,+∞)C.[1,+∞) D.[0,+∞)6.(多选)下列各组函数是同一个函数的是( )A.f(x)=·与g(x)=B.f(x)= 与g(x)=xC.f(x)=与g(x)=D.f(x)=与g(x)=7.[2022·江苏盐城高一期末]函数f(x)=的定义域为________.8.[2022·辽宁营口高一期末][x]为不超过x的最大整数,若函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},则b-a的最大值为________.9.求下列函数的定义域:(1)y=·;(2)y=.10.已知定义域为R的函数f(x)=2x2-3和g(x)=4x,求f(g(-1)),g(f(-1)),f(f(-2)),g(g(-2))的值.核心素养升级练1.已知函数f(x)的定义域为(0,4),则函数g(x)=的定义域为( )A.(0,16) B.(-1,2)C.(-1,0)∪(0,2) D.(-2,0)∪(0,2)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f(x)=x2,值域为{0,1}的“同族函数”共有________个.3.已知函数f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求证:f(x)+f()是定值;(3)求f(2)+f(3)+…+f(2 022)+f()+f()+…+f()的值.3.1.1 函数的概念必备知识基础练1.答案:C解析:由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.2.答案:C解析:f(3)=+=3.3.答案:A解析:f(x)=x的定义域是R,四个选项中,B选项定义域是{x|x≠0},C选项定义域是{x|x≥0},不是同一函数,AD选项定义域都是R,D选项对应法则是y=|x|,不是同一函数,A选项化简后为y=x,是同一函数.4.答案:B解析:由函数定义可知,定义域包含x=0时,则与y轴有1个交点,当定义域不包含x=0时,则与y轴无交点,所以函数y=f(x)与y轴的交点个数最多为1个.5.答案:A解析:函数f(x)=有意义,则有,解得x≥1且x≠2,所以原函数的定义域是[1,2)∪(2,+∞).6.答案:ABD解析:ABD均满足函数的定义,C选项,同一个分数可以对应多个考试号,不满足对于任意的x,都有唯一的y与其对应,故C选项错误.7.答案:(-2,+∞)解析:x+2>0,x>-2,所以f(x)的定义域为(-2,+∞).8.答案:16解析:因为f(x)=-1,f(a)=3,所以-1=3,解得:a=16.关键能力综合练1.答案:D解析:由题意可知[4.8]-[-3.5]=4-(-4)=8.2.答案:B解析:甲:f(x)=x2,g(x)=|x|,两个函数的定义域和值域相同,但对应关系不同,故甲正确;乙:根据函数相等的定义可知,若两个函数的定义域相同,对应关系相同,值域一定相同,故乙错误;丙:f(x)=x2,x∈(1,2),g(x)=x2,x∈(-2,-1),两个函数的对应关系相同,值域相同,但定义域不同,故丙正确.3.答案:B解析:由f(x)=-(x+3)0,则,解得x<3且x≠-3,所以函数的定义域为(-∞,-3)∪(-3,3).4.答案:C解析:由f(x)=3x-1,所以f(1)=2,所以f(f(1))=f(2)=5.5.答案:D解析:由题意,函数f(x)=有意义,则满足ax2+1≥0,因为函数f(x)的定义域为R,即不等式ax2+1≥0在R上恒成立,当a=0时,1≥0恒成立,符合题意;当a>0时,ax2+1≥0恒成立,符合题意.当a<0时,不符合题意,综上可得,实数a的取值范围是[0,+∞).6.答案:CD解析:A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤-1或x≥1},不是同一个函数.B选项,f(x)=,x≤0,f(x)==-x≠g(x),不是同一个函数.C选项,f(x)===g(x),是同一个函数.D选项,f(x)==1(x>0),g(x)==1(x>0),是同一个函数.7.答案:[1,5]解析:由-x2+6x-5≥0,得x2-6x+5≤0,(x-1)(x-5)≤0,解得1≤x≤5,所以函数的定义域为[1,5].8.答案:4解析:因为函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},所以b最大取到3,a最小取到-1,所以b-a的最大值为3-(-1)=4.9.解析:(1)依题意⇒2≤x≤3,所以函数的定义域为[2,3].(2)依题意,解得-2≤x<2且x≠-.所以函数的定义域为[-2,-)∪(-,2).10.解析:由已知g(-1)=4×(-1)=-4,f(-1)=2×(-1)2-3=-1,同理g(-2)=-8,f(-2)=5,所以f(g(-1))=f(-4)=29,g(f(-1))=g(-1)=-4,f(f(-2))=f(5)=47,g(g(-2))=g(-8)=-32.核心素养升级练1.答案:C解析:因为f(x)的定义域为(0,4),所以0<x2<4,解得-2<x<0或0<x<2.又因为x+1>0,解得x>-1,所以g(x)的定义域为(-1,0)∪(0,2).2.答案:3解析:已知函数解析式为f(x)=x2,值域为{0,1}的“同族函数”的定义域可以为:{0,1},{0,-1},{0,-1,1},所以“同族函数”共有3个.3.解析:(1)f(x)=,f(2)+f()=+=1,f(3)+f()=+=1.(2)f(x)+f()=+=+=1.(3)f(2)+f(3)+…+f(2 022)+f()+f()+…+f()=[f(2)+f()]+[f(3)+f()]+…+[f(2 022)+f()]=2 021×1=2 021.。
新版高一数学必修第一册第三章全部配套练习题(含答案和解析)
新版高一数学必修第一册第三章全部配套练习题(含答案和解析)3.1.1 函数的概念基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)4.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)5.函数y =5x +4x -1的值域是( )A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞) 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]7.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( )A .-1B .0C .1D .2 8.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2x D .f (x )=x 2-9x -3,g (x )=x +39.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.10.求下列函数的值域:(1)y =2x +1,x ∪{1,2,3,4,5}; (2)y =x 2-4x +6,x ∪[1,5); (3)y =3-5x x -2; (4)y =x -x +1.能 力 练综合应用 核心素养11.已知等腰∪ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 12.函数f (x )=1x 2+1(x ∪R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]13.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 14.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示).15.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =________________(用区间表示).16.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________. 17.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________. 18.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.19.已知函数y =mx 2-6mx +m +8的定义域是R ,求实数m 的取值范围.20.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ∪B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∪U A 及A ∩(∪U B ).【参考答案】1. C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∪A ,可以是x →x ,x ∪A ,还可以是x →x 2,x ∪A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3. A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2.4. C 解析 ∪f (x )的定义域为[-1,2),∪-1≤x -1<2,得0≤x <3,∪f (x -1)的定义域为[0,3).5. C 解析 ∪y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∪y ≠5,即函数的值域为(-∞,5)∪(5,+∞).6. B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).7. B 解析 f (2)+f (-2)=2+12-2-12=0.8. B 解析 A 、C 、D 的定义域均不同.9. 解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∪R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∪R }.10. 解 (1)∪x ∪{1,2,3,4,5},∪(2x +1)∪{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}.(2)y =x 2-4x +6=(x -2)2+2. ∪x ∪[1,5),∪其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∪所求函数的值域为[2,11).(3)函数的定义域为{x |x ≠1},y =3-5x x -2=-5(x -2)+7x -2=-5-7x -2,所以函数的值域为{y |y ≠-5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =⎝⎛⎭⎫t -122-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}. 11. D 解析 ∪ABC 的底边长显然大于0,即y =10-2x >0,∪x <5,又两边之和大于第三边,∪2x >10-2x ,x >52,∪此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5.12. B 解析 由于x ∪R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1.13. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.14. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.15. [0,2)∪(2,+∞) 解析 要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.16. ⎝⎛⎦⎤0,23 解 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23. 17. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).18. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018. 19. 解 ∪当m =0时,y =8,其定义域是R .∪当m ≠0时,由定义域为R 可知,mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1.由∪∪可知,m ∪[0,1]. 20. 解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}. (2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ∪B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∪U A =(-∞,-2]∪(3,4]. 因为a =-1,所以B ={x |x <-1},所以∪U B =[-1,4],所以A ∩∪U B =[-1,3].3.1.2 函数的表示法基 础 练巩固新知 夯实基础1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速行驶.与以上事件吻合得最好的图象是( )2.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -33.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∪[-1,0],x 2+1,x ∪0,1],则函数f (x )的图象是( )4.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f [g (2)]的值为( )A .3B .2C .1D .0 5.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,+∞)C.[0,3]D.{x |0≤x ≤2或x =3} 6.设f (x )=⎩⎪⎨⎪⎧x +1,x >0,1,x =0,-1,x <0,则f (f (0))等于( )A.1B.0C.2D.-17.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________.8.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.9.已知二次函数f (x )满足f (0)=0,且对任意x ∪R 总有f (x +1)=f (x )+x +1,求f (x ).10 (1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.(3)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式.能 力 练综合应用 核心素养11.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 12.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)13.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A.-2或2B.2或-52C.-2D.2或-2或-5214.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 15.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -116.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.17.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.18. 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.19.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.【参考答案】1. C 解析 先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.2. B 解析 设f (x )=kx +b (k ≠0),∪2f (2)-3f (1)=5,2f (0)-f (-1)=1,∪⎩⎪⎨⎪⎧ k -b =5k +b =1,∪⎩⎪⎨⎪⎧k =3b =-2,∪f (x )=3x -2. 3. A 解析 当x =-1时,y =0,排除D ;当x =0时,y =1,排除C ;当x =1时,y =2,排除B. 4. B 解析 由函数g (x )的图象知,g (2)=1,则f [g (2)]=f (1)=2.5. D 解析 当0≤x ≤1时,f (x )∪[0,2],当1<x <2时,f (x )=2,当x ≥2时,f (x )=3, ∪值域是{x |0≤x ≤2或x =3}.6. C7. 5 解析 ∪f (2x +1)=3x -2=32(2x +1)-72,∪f (x )=32x -72,∪f (a )=4,即32a -72=4,∪a =5.8. 解 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∪⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∪f (x )=2x +7. 9. 解 设f (x )=ax 2+bx +c (a ≠0),∪f (0)=c =0,∪f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b , f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∪⎩⎪⎨⎪⎧2a +b =b +1,a +b =1. ∪⎩⎨⎧a =12,b =12.∪f (x )=12x 2+12x .10. 解 (1)∪f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∪f (x )=x 2-2(x ≥2或x ≤-2).(2)∪2f (x )+f (1x )=3x ,∪把∪中的x 换成1x ,得2f (1x )+f (x )=3x .∪, ∪×2-∪得3f (x )=6x -3x ,∪f (x )=2x -1x (x ≠0).(3)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得:f (x )=13x 2-2x .11. B 解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x ,则有f (t )=1t1-1t =1t -1,故选B. 12. B 解析 ∪f (x -1x )=x 2+1x 2=(x -1x)2+2,∪f (x )=x 2+2(x ≠0).13. C14. B 解析 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧ 2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.15. A 解析 令x -1=t ,则x =t +1,∪f (t )=f (x -1)=(t +1)2=t 2+2t +1,∪f (x )=x 2+2x +1.16. 7 解析 因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13));因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.17. f (x )=-x 2+23x (x ≠0) 解析 ∪f (x )=2f (1x )+x ,∪∪将x 换成1x ,得f (1x )=2f (x )+1x .∪由∪∪消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x(x ≠0).18.解 (1)∪当0≤x ≤2时,f (x )=1+x -x 2=1;∪当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由函数f (x )的图象知,f (x )在(-2,2]上的值域为[1,3).19 .解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1). 又f (0)=1,∪f (x )=x (x +1)+1=x 2+x +1.3.2.1 第1课时 函数的单调性基 础 练巩固新知 夯实基础1.函数f (x )的定义域为(a ,b ),且对其内任意实数x 1,x 2均有(x 1-x 2)(f (x 1)-f (x 2))<0,则f (x )在(a ,b )上( ) A .增函数B .减函数C .不增不减函数D .既增又减函数2.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性3.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∪[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f x 1-f x 2x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f x 1-f x 2>0 4.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( )A .一定是增函数B .一定是减函数C .可能是常数函数D .单调性不能确定5.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)26.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)7.若函数f (x )=2x 2-mx +3,当x ∪[-2,+∞)时是增函数,当x ∪(-∞,-2)时是减函数,则f (1)=________.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是 。
高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.2.2 Word版含解析.doc
3.2.2函数模型的应用实例课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.1.几种常见的函数模型(1)一次函数:y=______________________(2)二次函数:y=______________________(3)指数函数:y=______________________(4)对数函数:y=______________________(5)幂函数:y=________________________(6)指数型函数:y=pq x+r(7)分段函数2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________________;(3)________________;(4)________________;(5)______;(6)__________________________.一、选择题1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)012 3细菌数30060012002400A.75B.100C.150D.2002.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A.310元B.300元C.290元D.280元3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A.减少7.84%B.增加7.84%C.减少9.5%D.不增不减4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()5.把长为12cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A.332cm2B.4cm2C.32cm2D.23cm26.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14题号12345 6答案二、填空题7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=a log2(x+1)给出,则2000年年底它们的数量约为________头.9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.三、解答题10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10kg)与上市时间t(单位:天)的数据情况如下表:(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a log b t;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.能力提升12.某工厂生产一种电脑元件,每月的生产数据如表:y=ax+b或y=a x+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.13.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?1.函数模型的应用实例主要包括三个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题.2.函数拟合与预测的一般步骤:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.3.2.2函数模型的应用实例知识梳理1.(1)kx+b(k≠0)(2)ax2+bx+c(a≠0)(3)a x(a>0且a≠1)(4)log a x(a>0且a≠1)(5)xα(α∈R) 2.(1)收集数据(2)画散点图(3)选择函数模型(4)求函数模型(5)检验(6)用函数模型解释实际问题作业设计1.A[由表中数据观察可得细菌数y与时间x的关系式为y =300·2x (x ∈Z ).当x =-2时,y =300×2-2=3004=75.]2.B [由题意可知,收入y 是销售量x 的一次函数,设y =ax +b ,将(1,800),(2,1300)代入得a =500,b =300. 当销售量为x =0时,y =300.]3.A [设某商品价格为a ,依题意得:a (1+0.2)2(1-0.2)2=a ×1.22×0.82=0.921 6a ,所以四年后的价格与原来价格比较(0.921 6-1)a =-0.078 4a ,即减少7.84%.]4.A [由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.] 5.D [设一段长为x cm ,则另一段长为(12-x )cm. ∴S =34(x 3)2+34(4-x 3)2=318(x -6)2+23≥2 3.] 6.A [由三角形相似得24-y 24-8=x 20,得x =54(24-y ), ∴S =xy =-54(y -12)2+180.∴当y =12时,S 有最大值,此时x =15.] 7.2250解析 设每台彩电的原价为x 元,则x (1+40%)×0.8-x =270,解得x =2250(元).8.400解析 由题意,x =1时y =100,代入求得a =100,2000年年底时,x =15,代入得y =400.9.2ln2 1024解析 当t =0.5时,y =2, ∴2=12k e , ∴k =2ln2,∴y =e 2t ln2,当t =5时, ∴y =e 10ln2=210=1024.10.解 设每床每夜租金为10+2n (n ∈N ),则租出的床位为 100-10n (n ∈N 且n <10) 租金f (n )=(10+2n )(100-10n ) =20[-(n -52)2+2254], 其中n ∈N 且n <10.所以,当n =2或n =3时,租金最多, 若n =2,则租出床位100-20=80(张); 若n =3,则租出床位100-30=70(张); 综合考虑,n 应当取3,即每床每夜租金选择10+2×3=16(元).11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常值函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,可得:⎩⎨⎧150=2500a +50b +c ,108=12100a +110b +c ,150=62500a +250b +c ,解得a =1200,b =-32,c =4252.所以,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +4252.(2)当t =--322×1200=150(天)时,芦荟种植成本最低为 Q =1200×1502-32×150+4252=100(元/10kg). 12.解 将(1,50)、(2,52)分别代入两解析式得: ⎩⎨⎧ 50=a +b 52=2a +b 或⎩⎨⎧50=a +b ,52=a 2+b .(a >0)解得⎩⎨⎧a =2b =48(两方程组的解相同).∴两函数分别为y =2x +48或y =2x +48. 当x =3时,对于y =2x +48有y =54; 当x =3时,对于y =2x +48有y =56. 由于56与53.9的误差较大, ∴选y =ax +b 较好.13.解 (1)设每年砍伐面积的百分比为x (0<x <1),则 a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭.(2)设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,即11021122m ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 31021122n ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。
高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.2习题课 Word版含解析.doc
§3.2习题课课时目标 1.进一步体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.掌握几种初等函数的应用.3.理解用拟合函数的方法解决实际问题的方法.1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为()2.能使不等式log2x<x2<2x成立的x的取值范围是()A.(0,+∞) B.(2,+∞)C.(-∞,2) D.(0,2)∪(4,+∞)3.四人赛跑,假设其跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x4.某城市客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是______________________.5.如图所示,要在一个边长为150m 的正方形草坪上,修建两条宽相等且相互垂直的十字形道路,如果要使绿化面积达到70%,则道路的宽为____________________m(精确到0.01m).一、选择题1.下面对函数f (x )=12log x 与g (x )=(12)x 在区间(0,+∞)上的衰减情况说法正确的是( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D .f (x )的衰减速度越来越快,g (x )的衰减速度越来越快 2.下列函数中随x 的增大而增长速度最快的是( ) A .y =1100e x B .y =100ln x C .y =x 100D .y =100·2x3.一等腰三角形的周长是20,底边y 是关于腰长x 的函数,它的解析式为( )A .y =20-2x (x ≤10)B .y =20-2x (x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)4.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:型号 小包装 大包装 重量 100克 300克 包装费0.5元0.7元 销售价格 3.00元8.4元①买小包装实惠②买大包装实惠③卖3小包比卖1大包盈利多④卖1大包比卖3小包盈利多A.①③B.①④C.②③D.②④5.某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是() A.多赚约6元B.少赚约6元C.多赚约2元D.盈利相同6.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则下列函数中与沙漠增加数y万公顷关于年数x的函数关系较为相似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16x二、填空题7.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供________人洗澡.8.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是__________________.9.已知甲、乙两地相距150km,某人开汽车以60km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为________.三、解答题10.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正常数.(1)说明该函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求当N=N02时,t的值.11.我县某企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系;(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).能力提升12.某乡镇现在人均一年占有粮食360kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y kg粮食,求出函数y关于x的解析式.13.如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.(1)写出y关于x的函数关系式,并指出这个函数的定义域.(2)当AE为何值时,绿地面积y最大?解决实际问题的解题过程:(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学中,我们建立的函数模型一般都是基本初等函数;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点,正确选择函数知识求得函数模 型的解,并还原为实际问题的解. 这些步骤用框图表示:§3.2 习题课双基演练1.D [设某地区的原有荒漠化土地面积为a ,则x 年后的面积为a (1+10.4%)x,由题意y =a (1+10.4%)xa=1.104x,故选D.]2.D [由题意知x 的范围为x >0,由y =log 2x ,y =x 2,y =2x 的图象可知,当x >0时,log 2x <x 2,log 2x <2x .又因当x =2,4时x 2=2x ,故选D.] 3.D [由于指数函数的增长特点是越来越大,故选D.] 4.y =⎩⎨⎧0.5x (0<x ≤100)0.4x +10(x >100)5.24.50解析 设道路宽为x ,则2×150x -x 2150×150×100%=30%,解得x 1≈24.50,x 2≈275.50(舍去). 作业设计 1.C2.A [对于指数函数,当底数大于1时,函数值随x 的增大而增大的速度快,又∵e>2,故选A.]3.D [∵20=y +2x ,∴y =20-2x , 又y =20-2x >0且2x >y =20-2x , ∴5<x <10.]4.D [买小包装时每克费用为3100元,买大包装每克费用为8.4300=2.8100元,而3100>2.8100,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元).而2.3>2.1,卖1大包盈利多,故选D.]5.B [设A 、B 两种商品的原价为a 、b , 则a (1+20%)2=b (1-20%)2=23⇒a =23×2536,b =23×2516,a +b -46≈6(元).]6.C [将(1,0.2),(2,0.4),(3,0.76)与x =1,2,3时,选项A 、B 、C 、D 中得到的y 值做比较,y =2x10的y 值比较接近, 故选C.] 7.4解析 设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时y 有最小值,此时共放水34×172=289(升),可供4人洗澡. 8.y =1000.9576x解析 设每经过1年,剩留量为原来的a 倍,则y =a x , 且0.9576=a 100,从而a =0.95761100,因此y =0.9576x100.9.s =⎩⎨⎧60t (0≤t ≤2.5)150(2.5<t <3.5)325-50t (3.5≤t ≤6.5)解析 当0≤t ≤2.5时s =60t , 当2.5<t <3.5时s =150,当3.5≤t ≤6.5时s =150-50(t -3.5)=325-50t ,综上所述,s =⎩⎨⎧60t (0≤t ≤2.5),150(2.5<t <3.5),325-50t (3.5≤t ≤6.5).10.解 (1)由于N 0>0,λ>0,函数N =N 0e -λt 是属于指数函数y =e -x 类型的,所以它是减函数,即原子数N 的值随时间t 的增大而减少.(2)将N =N 0e -λt 写成e -λt =N N 0,根据对数的定义有-λt =ln N N 0,所以t =-1λ(ln N-ln N 0)=1λ(ln N 0-ln N ).(3)把N =N 02代入t =1λ(ln N 0-ln N ), 得t =1λ(ln N 0-ln N 02)=1λln 2.11.解 (1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=14,∴k 1=14,又g (4)=52,∴k 2=54. 从而f (x )=14x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入10-x 万元,设企业的利润为y 万元, y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10), 令10-x =t ,则y =10-t 24+54t =-14(t -52)2+6516(0≤t ≤10), 当t =52,y max ≈4,此时x =10-254=3.75,10-x =6.25.所以投入A 产品3.75万元,投入B 产品6.25万元时,能使企业获得最大利润,且最大利润约为4万元.12.解 设该乡镇现在人口量为M ,则该乡镇现在一年的粮食总产量为360M ,经过1年后,该乡镇粮食总产量为360M (1+4%),人口量为M (1+1.2%),则人均占有粮食为360M (1+4%)M (1+1.2%);经过2年后,人均占有粮食为360M (1+4%)2M (1+1.2%)2;…;经过x 年后,人均占有粮食为y =360M (1+4%)xM (1+1.2%)x ,即所求函数解析式为y =360(1.041.012)x .经典小初高讲义小初高优秀教案 13.解 (1)S △AEH =S △CFG =12x 2,S △BEF =S △DGH =12(a -x )(2-x ).∴y =S 矩形ABCD -2S △AEH -2S △BEF =2a -x 2-(a -x )(2-x ) =-2x 2+(a +2)x .由⎩⎪⎨⎪⎧ x >0a -x >02-x ≥0a >2,得0<x ≤2.∴y =-2x 2+(a +2)x ,定义域为(0,2].(2)当a +24<2,即a <6时,则x =a +24时,y 取最大值(a +2)28;当a +24≥2,即a ≥6时,y =-2x 2+(a +2)x 在(0,2]上是增函数, 则x =2时,y max =2a -4.综上所述:当a <6,AE =a +24时,绿地面积取最大值(a +2)28; 当a ≥6,AE =2时,绿地面积取最大值2a -4.。
2019新教材数学人教A版必修第一册作业课件:第三章函数概念和性质3.1 3.1.2 课时作业18
知识对点练
课时综合练
答案
解析
第二十二页,编辑于星期日:点 四十一分。
三、解答题 9.求下列函数的解析式: (1)已知 f1+x x=1+x2x2+1x,求 f(x); (2)已知 f( x+1)=x+2 x,求 f(x).
解 (1)解法一(换元法):令 t=1+x x=1x+1,则 t≠1. 把 x=t-1 1代入 f1+x x=1+x2x2+1x,
解析 设 f(x)=ax+b(a≠0),则 f[f(x)]=f(ax+b)=a2x+ab+b=4x+8.
所以aab2=+4b,=8,
a=2, 解得b=38
或ab= =- -28,.
所以 f(x)=2x+83或 f(x)=-2x-8.
知识对点练
课时综合练
答案
解析
第二十一页,编辑于星期日:点 四十一分。
一个单位得到函数 y=x-3 1的图象,再把它向上平移两个单位便得到函数 y
=2xx-+11的图象,如图所示.
知识对点练
课时综合练
答案
第九页,编辑于星期日:点 四十一分。
(2)先作 y=x2-2x 的图象,保留 x 轴上方图象,再把 x 轴下方图象对称 翻到 x 轴上方,得到 y=|x2-2x|的图象,再把它向上平移 1 个单位,即得到 y =|x2-2x|+1 的图象,如图所示.
答案 A
解析 解法一:设 t=x-1,则 x=t+1,∵f(x-1)=x2+4x-5, ∴f(t)=(t+1)2+4(t+1)-5=t2+6t,f(x)的表达式是 f(x)=x2+6x. 解法二:∵f(x-1)=x2+4x-5=(x-1)2+6(x-1),∴f(x)的表达式是 f(x) =x2+6x.故选 A.
知识对点练
2020高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.2.1 Word版含解析
§3.2 函数模型及其应用 3.2.1 几类不同增长的函数模型一、选择题1.今有一组数据如下:A .v =log 2tB .v =12log tC .v =t 2-12D .v =2t -22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s (千米)与时间t (小时)的函数关系用图象表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( ) A .一次函数B .二次函数C.指数型函数D.对数型函数4.某自行车存车处在某天的存车量为4000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y 元,则y关于x的函数关系式为( )A.y=0.2x(0≤x≤4000)B.y=0.5x(0≤x≤4000)C.y=-0.1x+1200(0≤x≤4000)D.y=0.1x+1200(0≤x≤4000)5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有( )A.f(b x)≥f(c x) B.f(b x)≤f(c x)C.f(b x)<f(c x) D.f(b x),f(c x)大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是________元.( )A.45.606B.45.6C.45.56D.45.51二、填空题7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是____________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b=23,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=(t∈N),销售量g(t)与时间t满足关系g(t)=-13t+433(0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.能力提升11.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N*)时的销售量增加10%.(1)写出礼品价值为n元时,利润y n(元)与n的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.12.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=a e-nt,那么桶2中的水就是y2=a-a e-nt,假定5min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有a 4 L?§3.2 函数模型及其应用3.2.1 几类不同增长的函数模型知识梳理1.增函数增函数增函数陡稳定 2.(1)y=a x y=x n a x>x n(2)y=log a x y=x n logax<x n作业设计1.C [将t的5个数值代入这四个函数,大体估算一下,很容易发现v=t2-1 2的函数比较接近表中v的5个数值.]2.C [由题意知s与t的函数关系为s=20-4t,t∈[0,5],所以函数的图象是下降的一段线段,故选C.]3.D [由于一次函数、二次函数、指数函数的增长不会后来增长越来越慢,只有对数函数的增长符合.]4.C [由题意得:y=0.2x+0.3(4000-x)=-0.1x+1200(0≤x≤4000).]5.B [由f(1+x)=f(1-x),知对称轴b2=1,b=2.由f(0)=3,知c=3.此时f(x)=x2-2x+3.当x<0时,3x<2x<1,函数y=f(x)在x∈(-∞,1)上是减函数,f(b x)<f(c x);当x=0时,f(b x)=f(c x);当x>0时,3x>2x>1,函数y=f(x)在x∈(1,+∞)上是增函数,f(b x)<f(c x).综上,f(b x)≤f(c x).]6.B [设该公司在甲地销售x辆,则在乙地销售(15-x)辆.由题意可知所获利润l=5.06x-0.15x2+2(15-x)=-0.15(x-10.2)2+45.606.当x=10时,l max≈45.6(万元).]7.45解析设过n个3分钟后,该病毒占据64MB内存,则2×2n=64×210=216⇒n =15,故时间为15×3=45(分钟).8.80(1+x)10解析一年后的价格为80+80·x=80(1+x).二年后的价格为80(1+x)+80(1+x)·x=80(1+x)(1+x)=80(1+x)2,由此可推得10年后的价格为80(1+x)10.9.解(1)b=23时,[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2=14(a-12)2+16,∴a=12时,f(x)=12x+23为最佳模型.(2)f(x)=x2+23,则y4=f(4)=83.10.解据题意,商品的价格随时间t变化,且在不同的区间0≤t<20与20≤t≤40上,价格随时间t的变化的关系式也不同,故应分类讨论.设日销售额为F(t).①当0≤t<20,t∈N时,F(t)=(12t+11)(-13t+433)=-16(t-212)2+16(4414+946),故当t=10或11时,F(t)max=176.②当20≤t≤40时,t∈N时,F(t)=(-t+41)(-13t+433)=13(t-42)2-13,故当t=20时,F(t)max=161.综合①、②知当t=10或11时,日销售额最大,最大值为176. 11.解(1)设未赠礼品时的销售量为m,则当礼品价值为n元时,销售量为m(1+10%)n.利润y n=(100-80-n)·m·(1+10%)n=(20-n)m×1.1n (0<n<20,n∈N*).(2)令y n+1-y n≥0,即(19-n)m×1.1n+1-(20-n)m×1.1n≥0.解得n≤9,所以y1<y2<y3<…<y9=y10,令y n+1-y n+2≥0,即(19-n)m×1.1n+1-(18-n)m×1.1n+2≥0,解得n≥8.所以y9=y10>y11>…>y19.所以礼品价值为9元或10元时,商店获得最大利润.12.解由题意得a e-5n=a-a·e-5n,即e-5n=12 .①设再过t min后桶1中的水有a4 L,则a e-n(t+5)=a4,e-n(t+5)=14.②将①式平方得e-10n=14 .③比较②、③得-n(t+5)=-10n,∴t=5.即再过5min后桶1中的水只有a 4 L.。
人教A版高中数学必修1 课时分层训练 :第三章 3.1 3.1.1
第三章3.1 3.1.1 方程的根与函数的零点课时分层训练‖层级一‖|学业水平达标|1.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下对应值表:则函数f (x )A .(-∞,1) B .(1,2) C .(2,3)D .(3,+∞)解析:选C 若f (x )在[a ,b ]上连续,且f (a )·f (b )<0则f (x )在(a ,b )上一定存在零点.因为f (2)>0,f (3)<0,所以f (x )在(2,3)上一定存在零点.2.函数f (x )=ax +8的零点为4,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选B 由题意得4a +8=0,即a =-2. 3.函数f (x )=2x -1+x -5的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C f (2)=22-1+2-5<0,f (3)=23-1+3-5>0,故f (2)·f (3)<0,又f (x )在定义域内是增函数,则函数f (x )=2x -1+x -5只有一个零点,且零点所在的区间为(2,3).4.已知函数f (x )=⎩⎨⎧2x -1,x ≤0,x 2-3x +1,x >0.则函数f (x )的零点的个数为( )A .0B .1C .2D .3解析:选D 由⎩⎨⎧2x -1=0,x ≤0,得x =0,由⎩⎨⎧x 2-3x +1=0,x >0,得x =3±52, ∴函数f (x )的零点的个数为3.5.函数f (x )=2x ·|log 0.5x |-1的零点的个数为( ) A .1 B .2 C .3D .4解析:选B 由2x ·|log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎫12x .在同一坐标系中作出函数y =|log 0.5x |与y =⎝ ⎛⎭⎪⎫12x 的图象,如图所示,由图可知两个函数的图象有两个交点,∴f (x )有2个零点.6.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________.解析:由⎩⎨⎧ 22-2a -b =0,32-3a -b =0,得⎩⎨⎧a =5,b =-6, 所以g (x )=-6x 2-5x -1的零点是-12,-13. 答案:-12,-137.已知函数f (x )=lg x +x -10的零点在区间(k ,k +1)上,k ∈Z ,则k =________.解析:由题意知函数f (x )为(0,+∞)上的增函数. 且f (9)=lg 9+9-10=lg 9-1<0, f (10)=lg 10+10-10=1>0, 即f (9)f (10)<0,所以函数f (x )在(9,10)内存在唯一的零点,因为函数f (x )=lg x +x -10的零点在区间(k ,k +1)上,k ∈Z ,所以k =9.答案:98.已知函数f (x )=3mx -4,若在区间[-2,0]上存在x 0,使f (x 0)=0,则实数m 的取值范围是________.解析:因为函数f (x )在[-2,0]上存在零点x 0使f (x 0)=0,且f (x )单调,所以f (-2)·f (0)≤0,所以(-6m -4)×(-4)≤0,解得m ≤-23.所以,实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-23. 答案:⎝ ⎛⎦⎥⎤-∞,-239.求下列函数的零点: (1)f (x )=2x +b ; (2)f (x )=-x 2+2x +3; (3)f (x )=log 3(x +2); (4)f (x )=2x -2.解:(1)令2x +b =0,解得x =-b 2,即函数f (x )=2x +b 的零点是x =-b2. (2)令-x 2+2x +3=0,解得x =-1或x =3,即函数f (x )=-x 2+2x +3的零点是x 1=-1,x 2=3.(3)令log 3(x +2)=0,解得x =-1,即函数f (x )=log 3(x +2)的零点是x =-1. (4)令2x -2=0,解得x =1,即函数f (x )=2x -2的零点是x =1.10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内.解:(1)由题意得⎩⎨⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1,解得2≤a <52.(2)由题意得f (1)=5-2a <0,解得a >52.(3)由题意知⎩⎨⎧f (0)=4>0,f (1)=5-2a <0,f (6)=40-12a <0,f (8)=68-16a >0,解得103<a <174.‖层级二‖|应试能力达标|1.二次函数f (x )=ax 2+bx +c 中,a ·c <0,则该函数的零点个数是( ) A .1 B .2 C .0D .无法确定解析:选B 因为ac <0,所以Δ=b 2-4ac >0,所以该函数有两个零点,故选B.2.若x 0是方程e x +x =2的解,则x 0属于区间( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 构造函数f (x )=e x +x -2,由f (0)=-1,f (1)=e -1>0,显然函数f (x )是单调函数,有且只有一个零点,则函数f (x )的零点在区间(0,1)上,所以e x +x =2的解在区间(0,1)上.3.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上零点的个数为( )A .至多有一个B .有一个或两个C .有且仅有一个D .一个也没有解析:选C 若a =0,则f (x )=bx +c 是一次函数,由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,若f (x )在(1,2)上有两个零点,则必有f (1)·f (2)>0,与已知矛盾,故f (x )在(1,2)上有且仅有一个零点.4.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C.(0,3) D.(0,2)解析:选C由题意可得f(1)f(2)=(0-a)(3-a)<0,解得0<a<3,故实数a的取值范围是(0,3),故选C.5.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有________个零点,这几个零点的和等于________.解析:因为f(x)是R上的奇函数,所以f(0)=0,又因为f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞),(-∞,0)上都只有一个零点,综上,函数f(x)在R上共有3个零点,其和为-2+0+2=0.答案:306.已知函数f(x)=a x-x-a(a>0,且a≠1)有且仅有两个零点,则实数a的取值范围是________.解析:分a>1与0<a<1两种情况,画出函数y=a x与函数y=x+a的图象,如图所示.由图知,当a>1时,两个函数的图象有两个交点,所以实数a的取值范围是(1,+∞).答案:(1,+∞)7.已知函数f(x)=3x+x,g(x)=log3x+2,h(x)=log3x+x的零点依次为a,b,c,则a,b,c的大小关系是________.解析:画出函数y=3x,y=log3x,y=-x,y=-2的图象,如图所示.观察图象可知,函数f(x)=3x+x,g(x)=log3x+2,h(x)=log3x+x的零点依次是点A,B,C的横坐标,由图象可知a<b<c.答案:a<b<c8.已知函数f(x)=-x2+2e x+m-1,g(x)=x+e2x(x>0).(1)若g(x)=m有零点,求m的取值范围;(2)试确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.解:(1)作出g(x)=x+e2x(x>0)的图象如图:可知若g(x)=m有零点,则有m≥2e.故m的取值范围为{m|m≥2e}.(2)g(x)-f(x)=0有两个相异实根,即g(x)与f(x)的图象有两个不同的交点.在同一平面直角坐标系中,作出g(x)=x+e2x(x>0)和f(x)的图象,如图.因为f(x)=-x2+2e x+m-1=-(x-e)2+m-1+e2,其图象的对称轴为直线x=e,开口向下,最大值为m-1+e2,故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个不同的交点,即g(x)-f(x)=0有两个相异实根,所以m的取值范围是m>-e2+2e+1.由Ruize收集整理。
高中数学(人教A版,必修一) 第三章函数的应用 3.1习题课 课时作业(含答案)
§3.1 习题课 课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.1.函数f (x )在区间(0,2)内有零点,则( )A .f (0)>0,f (2)<0B .f (0)·f (2)<0C .在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0D .以上说法都不正确2.函数f (x )=x 2+2x +b 的图象与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是( )A .0B .1C .2D .1或23.设函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是( ) A .(-1,-log 32) B .(0,log 32)C .(log 32,1)D .(1,log 34)4.方程2x -x -2=0在实数范围内的解的个数是________________________________.5.函数y =(12)x 与函数y =lg x 的图象的交点的横坐标是________.(精确到0.1) 6.方程4x 2-6x -1=0位于区间(-1,2)内的解有__________个.一、选择题1.已知某函数f (x )的图象如图所示,则函数f (x )有零点的区间大致是( )A .(0,0.5)B .(0.5,1)C .(1,1.5)D .(1.5,2)2.函数f (x )=x 5-x -1的一个零点所在的区间可能是( )A .[0,1]B .[1,2]C .[2,3]D .[3,4]3.若x 0是方程lg x +x =2的解,则x 0属于区间( )A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2)4.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( )A .[-2,1]B .[-1,0]C .[0,1]D .[1,2]5.已知函数f (x )=(x -a )(x -b )+2(a <b ),并且α,β(α<β)是函数y =f (x )的两个零点,则实数a,b,α,β的大小关系是()A.a<α<β<b B.α<a<b<βC.α<a<β<b D.a<α<b<β二、填空题6.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为___________________.9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.三、解答题10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:求方程x3+x211.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,(1)有两个负根;(2)有两个实根,且一根比2大,另一根比2小;(3)有两个实根,且都比1大.能力提升12.已知函数f(x)=x|x-4|.(1)画出函数f(x)=x|x-4|的图象;(2)求函数f(x)在区间[1,5]上的最大值和最小值;(3)当实数a为何值时,方程f(x)=a有三个解?13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.1.函数与方程存在着内在的联系,如函数y=f(x)的图象与x轴的交点的横坐标就是方程f(x)=0的解;两个函数y=f(x)与y=g(x)的图象交点的横坐标就是方程f(x)=g(x)的解等.根据这些联系,一方面,可通过构造函数来研究方程的解的情况;另一方面,也可通过构§3.1 习题课双基演练1.D [函数y =f (x )在区间(a ,b )内存在零点,我们并不一定能找到x 1,x 2∈(a ,b ),满足f (x 1)·f (x 2)<0,故A 、B 、C 都是错误的,正确的为D.]2.D [当f (x )的图象和x 轴相切与y 轴相交时,函数f (x )的零点个数为1,当f (x )的图象与y 轴交于原点与x 轴的另一交点在x 轴负半轴上时,函数f (x )有2个零点.]3.C [f (x )=log 3(1+2x)-a 在(1,2)上是减函数,由题设有f (1)>0,f (2)<0,解得a ∈(log 32,1).] 4.2 解析 作出函数y =2x 及y =x +2的图象,它们有两个不同的交点,因此原方程有两个不同的根.5.1.9(答案不唯一)解析 令f (x )=(12)x -lg x ,则f (1)=12>0,f (3)=18-lg 3<0,∴f (x )=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9.6.2解析 设f (x )=4x 2-6x -1,由f (-1)>0,f (2)>0,且f (0)<0,知方程4x 2-6x -1=0在 (-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解.作业设计1.B2.B [因为f (0)<0,f (1)<0,f (2)>0,所以存在一个零点x ∈[1,2].]3.D [构造函数f (x )=lg x +x -2,由f (1.75)=f (74)=lg 74-14<0,f (2)=lg 2>0,知x 0属于区间(1.75,2).]4.A [由于f (-2)=-3<0,f (1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.]5.A [函数g (x )=(x -a )(x -b )的两个零点是a ,b .由于y =f (x )的图象可看作是由y =g (x )的图象向上平移2个单位而得到的,所以a <α<β<b .]6.7解析 区间(2,3)的长度为1,当7次二分后区间长度为127=1128<1100=0.01. 7.0解析 不妨设它的两个正零点分别为x 1,x 2.由f (-x )=f (x )可知它的两个负零点分别是-x 1,-x 2,于是x 1+x 2-x 1-x 2=0.8.(-1,0)解析 设f (x )=x 2-2x +p +1,根据题意得f (0)=p +1>0,且f (1)=p <0,f (2)=p +1>0,解得-1<p <0.9.a <0解析 对ax 2+2x +1=0,当a =0时,x =-12,不符题意; 当a ≠0,Δ=4-4a =0时,得x =-1(舍去).当a ≠0时,由Δ=4-4a >0,得a <1,又当x =0时,f (0)=1,即f (x )的图象过(0,1)点,f (x )图象的对称轴方程为x =-22a =-1a, 当-1a>0,即a <0时, 方程f (x )=0有一正根(结合f (x )的图象);当-1a<0,即a >0时,由f (x )的图象知f (x )=0有两负根, 不符题意.故a <0.10.解 ∵f (1.375)·f (1.437 5)<0,且|1.437 5-1.375|=0.062 5<0.1,∴方程x 3+x 2-2x -2=0的一个近似根可取为区间(1.375,1.437 5)中任意一个值,通常我们取区间端点值,比如1.437 5.11.解 (1)方法一 (方程思想)设方程的两个根为x 1,x 2,则有两个负根的条件是⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,x 1+x 2=-2<0,x 1x 2=m +1>0,解得-1<m ≤0. 方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点均在y 轴左侧,结合函数的图象,有⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,-b 2a =-1<0,f (0)=m +1>0,解得-1<m ≤0.(2)方法一 (方程思想)设方程的两个根为x 1,x 2,则令y 1=x 1-2>0,y 2=x 2-2<0,问题转化为求方程(y +2)2+2(y +2)+m +1=0,即方程y 2+6y +m +9=0有两个异号实根的条件,故有y 1y 2=m +9<0,解得m <-9.方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点分别在2的两侧,结合函数的图象,有f (2)=m +9<0,解得m <-9.(3)由题意知,⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,x 1-1+x 2-1>0,(x 1-1)(x 2-1)>0(方程思想), 或⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,-b 2a =-1>1,f (1)=m +4>0(函数思想),因为两方程组无解,故解集为空集.12.解 (1)f (x )=x |x -4|=⎩⎪⎨⎪⎧x 2-4x , x ≥4,-x 2+4x , x <4.图象如右图所示.(2)当x ∈[1,5]时,f (x )≥0且当x =4时f (x )=0,故f (x )min =0; 又f (2)=4,f (5)=5,故f (x )max =5.(3)由图象可知,当0<a <4时,方程f (x )=a 有三个解.13.解 ①当a =0时,方程即为-2x +1=0,只有一根,不符合题意. ②当a >0时,设f (x )=ax 2-2x +1,∵方程的根分别在区间(0,1),(1,2)上,∴⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,即⎩⎪⎨⎪⎧1>0a -2+1<04a -4+1>0,解得34<a <1. ③当a <0时,设方程的两根为x 1,x 2,则x 1x 2=1a<0,x 1,x 2一正一负不符合题意. 综上,a 的取值范围为34<a <1.。
2020高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.1.1 Word版含解析
第三章 函数的应用 §3.1 函数与方程 3.1.1 方程的根与函数的零点一、选择题1.二次函数y =ax 2+bx +c 中,a ·c<0,则函数的零点个数是( )A .0个B .1个C .2个D .无法确定2.若函数y =f(x)在区间[a ,b]上的图象为一条连续不断的曲线,则下列说法正确的是( )A .若f(a)f(b)>0,不存在实数c ∈(a ,b)使得f(c)=0B .若f(a)f(b)<0,存在且只存在一个实数c ∈(a ,b)使得f(c)=0C .若f(a)f(b)>0,有可能存在实数c ∈(a ,b)使得f(c)=0D .若f(a)f(b)<0,有可能不存在实数c ∈(a ,b)使得f(c)=03.若函数f(x)=ax +b(a ≠0)有一个零点为2,那么函数g(x)=bx 2-ax 的零点是( )A .0,-12B .0,12C .0,2D .2,-124.函数f(x)=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)5.函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3, x ≤0,-2+ln x ,x>0零点的个数为( )A.0B.1C.2D.36.已知函数y=ax3+bx2+cx+d的图象如图所示,则实数b的取值范围是( ) A.(-∞,0)B.(0,1)C.(1,2)D.(2,+∞)二、填空题7.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.8.函数f(x)=ln x-x+2的零点个数为________.9.根据表格中的数据,可以判定方程e x-x-2=0的一个实根所在的区间为(k,k+1)(k∈N),则k的值为________.三、解答题10.证明:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.11.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围.能力提升12.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (-4)=f (0),f (-2)=-2,则方程f (x )=x 的解的个数是( ) A .1B .2 C .3D .413.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围.第三章 函数的应用 §3.1 函数与方程 3.1.1 方程的根与函数的零点知识梳理1.2 1 0 2 1 2.使f(x)=0的实数x 3.有实数根 与x 轴有交点 有零点 4.连续不断 f(a)·f(b)<0 有零点 f(c)=0 作业设计1.C [方程ax 2+bx +c =0中,∵ac<0,∴a ≠0, ∴Δ=b 2-4ac>0,即方程ax 2+bx +c =0有2个不同实数根,则对应函数的零点个数为2个.] 2.C[对于选项A,可能存在根;对于选项B,必存在但不一定唯一;选项D显然不成立.]3.A[∵a≠0,2a+b=0,∴b≠0,ab=-12.令bx2-ax=0,得x=0或x=ab=-12.]4.C[∵f(x)=e x+x-2,f(0)=e0-2=-1<0,f(1)=e1+1-2=e-1>0,∴f(0)·f(1)<0,∴f(x)在区间(0,1)上存在零点.]5.C[x≤0时,令x2+2x-3=0,解得x=-3.x>0时,f(x)=ln x-2在(0,+∞)上递增,f(1)=-2<0,f(e3)=1>0,∵f(1)f(e3)<0∴f(x)在(0,+∞)上有且只有一个零点.总之,f(x)在R上有2个零点.]6.A [设f(x)=ax3+bx2+cx+d,则由f(0)=0可得d=0,f(x)=x(ax2+bx+c)=ax(x-1)(x-2)⇒b=-3a,又由x∈(0,1)时f(x)>0,可得a>0,∴b<0.]7.3 0解析∵f(x)是R上的奇函数,∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R上共有3个零点,其和为-2+0+2=0.8.2解析 该函数零点的个数就是函数y =ln x 与y =x -2图象的交点个数.在同一坐标系中作出y =ln x 与y =x -2的图象如下图:由图象可知,两个函数图象有2个交点,即函数f (x )=ln x -x +2有2个零点. 9.1解析 设f (x )=e 2-(x +2),由题意知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,所以方程的一个实根在区间(1,2)内,即k =1.10.证明 设f (x )=x 4-4x -2,其图象是连续曲线. 因为f (-1)=3>0,f (0)=-2<0,f (2)=6>0. 所以在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解. 11.解 令f (x )=mx 2+2(m +3)x +2m +14. 依题意得⎩⎪⎨⎪⎧ m >0f 4<0或⎩⎪⎨⎪⎧m <0f 4>0,即⎩⎪⎨⎪⎧ m >026m +38<0或⎩⎪⎨⎪⎧m <026m +38>0,解得-1913<m <0.12.C [由已知⎩⎪⎨⎪⎧ 16-4b +c =c ,4-2b +c =-2,得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.当x ≤0时,方程为x 2+4x +2=x , 即x 2+3x +2=0, ∴x =-1或x =-2; 当x >0时,方程为x =2,∴方程f (x )=x 有3个解.]13.解 设f (x )=x 2+(k -2)x +2k -1.∵方程f (x )=0的两根中,一根在(0,1)内,一根在(1,2)内,∴⎩⎪⎨⎪⎧f 0>0f 1<0f2>0,即⎩⎪⎨⎪⎧2k -1>01+k -2+2k -1<04+2k -4+2k -1>0∴12<k <23.。
高一数学人教版必修1课时作业第三章 函数的应用 章末复习课 Word版含解析
.(·北京高考)已知函数()=-.在下列区间中,包含()零点的区间是( )
.(,) .(,) .(,) .(,+∞)
解析()的图象在(,+∞)上连续不间断.∵()=-=>,()=-=>,()=-=-<,∴包含()零点的区间是(,),故选.
答案
.(·湖南高考)若函数()=--有两个零点,则实数的取值范围是.
解析若函数()=--有两个零点,可得方程-=有两
个根,从而函数=-与函数=的图象有两个交点,结
合图象可得<<.
答案<<
.(·安徽高考)在平面直角坐标中,若直线=与函数=--的图象只有一个交点,则的值为.
解析若直线=与函数=--的图象只有一个交点,则方程=--只有一解,即方程-=+只有一解,故+=,所以=-.
答案-
.(·四川高考)某食品的保鲜时间(单位:小时)与储藏温度(单位:℃)满足函数关系式=+(为自然对数的底数,,为常数),若该食品在℃的保鲜时间是小时,在℃
的保鲜时间是小时,则该食品在℃的保鲜时间是( )
小时小时
小时小时
解析由已知得=①,=+=·,②
将①代入②得=,则=,
当=时,=+=·=×=,所以该食品在℃的保鲜时间是小时.
答案。
高一数学人教a版必修一_习题_第三章_函数的应用_3.1.1_word版有答案
高一数学人教a版必修一_习题_第三章_函数的应用_3.1.1_word版有答案一、选择题(每小题5分,共20分)1.函数f(x)=x+1x的零点的个数为()A.0B.1C.2 D.3解析:函数f(x)的定义域为{x|x≠0},当x>0时,f(x)>0;当x<0时,f(x)<0,但此函数在定义域内的图象不连续,所以函数没有零点,故选A.答案: A2.函数f(x)=x+ln x的零点所在的区间为()A.(-1,0) B.(0,1)C.(1,2) D.(1,e)解析:法一:因为x>0,所以A错.又因为f(x)=x+ln x在(0,+∞)上为增函数,f(1)=1>0,所以f(x)=x +ln x在(1,2),(1,e)上均有f(x)>0,故C、D错.法二:取x=1e∈(0,1),因为f⎝⎛⎭⎫1e=1e-1<0,f(1)=1>0,所以f(x)=x+ln x的零点所在的区间为(0,1).答案: B3.函数f(x)=ln x-(x2-4x+4)的零点个数为()A.0 B.1C.2 D.3解析:函数f(x)=ln x-(x2-4x+4)的零点个数等价于g(x)=x2-4x+4与φ(x)=ln x的交点个数.作出两个函数的图象,利用数形结合思想求解.g (x )=x 2-4x +4=(x -2)2,在同一平面直角坐标系内画出函数φ(x )=ln x 与g (x )=(x -2)2的图象(如图).由图可得两个函数的图象有2个交点.答案: C4.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上零点的个数为( )A .至多有一个B .有一个或两个C .有且仅有一个D .一个也没有解析: 若a =0,则f (x )=bx +c 是一次函数,由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,若f (x )在(1,2)上有两个零点,则必有f (1)·f (2)>0,与已知矛盾.故f (x )在(1,2)上有且仅有一个零点.答案: C二、填空题(每小题5分,共15分)5.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________.解析: 由于f (-1)=12-1=-12<0,f (0)=1>0, 故f (x )=2x +x 的零点a ∈(-1,0);因为g (2)=0,故g (x )的零点b =2;h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0, 故h (x )的零点c ∈⎝⎛⎭⎫12,1,因此a <c <b .答案: a <c <b6.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________.解析: 由⎩⎪⎨⎪⎧ 22-2a -b =0,32-3a -b =0,得⎩⎪⎨⎪⎧a =5,b =-6, ∴g (x )=-6x 2-5x -1的零点是-12,-13. 答案: -12,-137.若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,则a 的取值范围是________.解析: ∵f (x )=0在(0,1)上恰有一个解,有下面两种情况:①f (0)·f (1)<0或②⎩⎪⎨⎪⎧a ≠0,Δ=0,且其解在(0,1)上, 由①得(-1)(2a -2)<0,∴a >1,由②得1+8a =0,即a =-18,∴方程-14x2-x-1=0,∴x2+4x+4=0,即x=-2∉(0,1)应舍去,综上得a>1. 答案:a>1三、解答题(每小题10分,共20分) 8.求下列函数的零点:(1)f(x)=2x+b;(2)f(x)=-x2+2x+3;(3)f(x)=log3(x+2);(4)f(x)=2x-2.解析:(1)令2x+b=0,解得x=-b2,即函数f(x)=2x+b的零点是x=-b2.(2)令-x2+2x+3=0,解得x=-1或x=3,即函数f(x)=-x2+2x+3的零点是x1=-1,x2=3.(3)令log3(x+2)=0,解得x=-1,即函数f(x)=log3(x+2)的零点是x=-1.(4)令2x-2=0,解得x=1,即函数f(x)=2x-2的零点是x=1.9.已知函数f(x)=-3x2+2x-m+1.(1)当m为何值时,函数有两个零点、一个零点、无零点;(2)若函数恰有一个零点在原点处,求m的值.解析:(1)函数有两个零点,则对应方程-3x2+2x-m+1=0有两个不相等的实数根,易知Δ>0,即4+12(1-m)>0,可解得m<4 3.由Δ=0,可解得m=4 3;由Δ<0,可解得m>4 3.故当m<43时,函数有两个零点;当m=43时,函数有一个零点;当m>43时,函数无零点.(2)因为0是对应方程的根,有1-m=0,可解得m=1. 能力测评10.已知x0是函数f(x)=2x+11-x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0解析: 在同一平面直角坐标系中画出函数y =2x 和函数y =1x -1的图象,如图所示,由图可知函数y =2x 和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x 只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),所以由函数图象可知,f (x 1)<0,f (x 2)>0.答案: B11.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有________个零点,这几个零点的和等于________.解析: ∵f (x )是R 上的奇函数,∴f (0)=0,又∵f (x )在(0,+∞)上是增函数,由奇函数的对称性可知,f (x )在(-∞,0)上也单调递增,由f (2)=-f (-2)=0.因此在(0,+∞),(-∞,0)上都只有一个零点,综上f (x )在R 上共有3个零点,其和为-2+0+2=0.答案: 3 012.已知函数f (x )=2x -x 2,问方程f (x )=0在区间[-1,0]内是否有解,为什么?解析: 因为f (-1)=2-1-(-1)2=-12<0,f (0)=20-02=1>0, 而函数f (x )=2x -x 2的图象是连续曲线,所以f (x )在区间[-1,0]内有零点,即方程f (x )=0在区间[-1,0]内有解.13.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解, 求a 的取值范围.解析: (1)当x ∈(-∞,0)时,-x ∈(0,+∞),∵y =f (x )是奇函数,∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0. (2)当x ∈[0,+∞)时,f (x )=x 2-2x =(x -1)2-1,最小值为-1;∴当x ∈(-∞,0)时,f (x )=-x 2-2x=1-(x +1)2,最大值为1.∴据此可作出函数y=f(x)的图象,如图所示,根据图象得,若方程f(x)=a恰有3个不同的解,则a的取值范围是(-1,1).。
2019新教材数学人教A版必修第一册作业课件:第三章函数概念和性质3.1 3.1.1 课时作业17
∴y= x-1 的值域为[-1,+∞).
知识对点练
课时综合练
答案
第九页,编辑于星期日:点 四十一分。
(2)(分离常数法)
y=54xx- +12=544x+42x+-21-140=544x4+x+22-144
=54-24x7+2.
∵24x7+2≠0,∴y≠54.
∴函数的值域为yy≠54,y∈R
.
知识对点练
知识对点练
课时综合练
答案
第二十八页,编辑于星期日:点 四十一分。
10.求下列函数的值域: (1)y= x+1; (2)y=1x+-2x.
解 (1)(观察法)因为 x≥0,所以 x+1≥1, 所以 y= x+1 的值域为[1,+∞). (2)(分离常数法)y=1x+-2x=-xx++22+3=-1+x+3 2,故 y=1x+-2x的值域 为{y|y∈R 且 y≠-1}.
知识对点练
课时综合练
答案
第十一页,编辑于星期日:点 四十一分。
∴函数的值域为yy≠12且y≠-23,y∈R
.
(4)(换元法)设 u= 2x-1x≥12,
则 x=1+2 u2(u≥0),
∴y=1+2 u2+u=u+212(u≥0).
知识对点练
课时综合练
答案
第十二页,编辑于星期日:点 四十一分。
由 u≥0 知(u+1)2≥1, ∴y≥12. ∴函数 y=x+ 2x-1的值域为12,+∞. (5)(配方法)配方,得 y=(x-2)2+2.因为 x∈[1,5),所以函数图象如图所 示,函数的值域为[2,11).
答案 D 解析 由1x≥-0x,≥0, 解得 0≤x≤1,故选 D.
知识对点练
课时综合练
答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1 习题课课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.1.函数f (x )在区间(0,2)内有零点,则( )A .f (0)>0,f (2)<0B .f (0)·f (2)<0C .在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0D .以上说法都不正确2.函数f (x )=x 2+2x +b 的图象与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是( )A .0B .1C .2D .1或23.设函数f (x )=log 3-a 在区间(1,2)内有零点,则实数a 的取值范围是( )x +2x A .(-1,-log 32) B .(0,log 32)C .(log 32,1)D .(1,log 34)4.方程2x -x -2=0在实数范围内的解的个数是________________________________.5.函数y =()x 与函数y =lg x 的图象的交点的横坐标是________.(精确到120.1)6.方程4x 2-6x -1=0位于区间(-1,2)内的解有__________个.一、选择题1.已知某函数f(x)的图象如图所示,则函数f(x)有零点的区间大致是( ) A.(0,0.5)B.(0.5,1)C.(1,1.5)D.(1.5,2)2.函数f(x)=x5-x-1的一个零点所在的区间可能是( )A.[0,1]B.[1,2]C.[2,3]D.[3,4]3.若x0是方程lg x+x=2的解,则x0属于区间( )A.(0,1) B.(1,1.25)C.(1.25,1.75) D.(1.75,2)4.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )A.[-2,1]B.[-1,0]C.[0,1]D.[1,2]5.已知函数f(x)=(x-a)(x-b)+2(a<b),并且α,β(α<β)是函数y=f(x)的两个零点,则实数a,b,α,β的大小关系是( )A.a<α<β<b B.α<a<b<βC.α<a<β<b D.a<α<b<β题 号12345答 案二、填空题6.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为___________________.9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.三、解答题10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:f(1)=-2f(1.5)=0.625f(1.25)≈-0.984f(1.375)≈-0.260f(1.4375)≈0.162f(1.40625)≈-0.054求方程x3+x2-2x-2=0的一个近似根(精确度0.1).11.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,(1)有两个负根;(2)有两个实根,且一根比2大,另一根比2小;(3)有两个实根,且都比1大.能力提升12.已知函数f(x)=x|x-4|.(1)画出函数f(x)=x|x-4|的图象;(2)求函数f(x)在区间[1,5]上的最大值和最小值;(3)当实数a为何值时,方程f(x)=a有三个解?13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.§3.1 习题课双基演练1.D [函数y =f (x )在区间(a ,b )内存在零点,我们并不一定能找到x 1,x 2∈(a ,b ),满足f (x 1)·f (x 2)<0,故A 、B 、C 都是错误的,正确的为D.]2.D [当f (x )的图象和x 轴相切与y 轴相交时,函数f (x )的零点个数为1,当f (x )的图象与y 轴交于原点与x 轴的另一交点在x 轴负半轴上时,函数f (x )有2个零点.]3.C [f (x )=log 3(1+)-a 在(1,2)上是减函数,由题设有f (1)>0,f (2)<0,解2x 得a ∈(log 32,1).]4.2解析 作出函数y =2x 及y =x +2的图象,它们有两个不同的交点,因此原方程有两个不同的根.5.1.9(答案不唯一)解析 令f (x )=()x -lg x ,则f (1)=>0,f (3)=-lg3<0,∴f (x )=0在(1,3)内121218有一解,利用二分法借助计算器可得近似解为1.9.6.2解析 设f (x )=4x 2-6x -1,由f (-1)>0,f (2)>0,且f (0)<0,知方程4x 2-6x -1=0在(-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解.作业设计1.B2.B [因为f (0)<0,f (1)<0,f (2)>0,所以存在一个零点x ∈[1,2].]3.D [构造函数f (x )=lg x +x -2,由f (1.75)=f ()=lg -<0,f (2)=lg2>0,747414知x 0属于区间(1.75,2).]4.A [由于f (-2)=-3<0,f (1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.]5.A [函数g (x )=(x -a )(x -b )的两个零点是a ,b .由于y =f (x )的图象可看作是由y =g (x )的图象向上平移2个单位而得到的,所以a <α<β<b .]6.7解析 区间(2,3)的长度为1,当7次二分后区间长度为=<=0.01.127112811007.0解析 不妨设它的两个正零点分别为x 1,x 2.由f (-x )=f (x )可知它的两个负零点分别是-x 1,-x 2,于是x 1+x 2-x 1-x 2=0.8.(-1,0)解析 设f (x )=x 2-2x +p +1,根据题意得f (0)=p +1>0,且f (1)=p <0,f (2)=p +1>0,解得-1<p <0.9.a <0解析 对ax 2+2x +1=0,当a =0时,x =-,不符题意;12当a ≠0,Δ=4-4a =0时,得x =-1(舍去).当a ≠0时,由Δ=4-4a >0,得a <1,又当x =0时,f (0)=1,即f (x )的图象过(0,1)点,f (x )图象的对称轴方程为x =-=-,22a 1a 当->0,即a <0时,1a 方程f (x )=0有一正根(结合f (x )的图象);当-<0,即a >0时,由f (x )的图象知f (x )=0有两负根,1a 不符题意.故a <0.10.解 ∵f (1.375)·f (1.4375)<0,且|1.4375-1.375|=0.0625<0.1,∴方程x 3+x 2-2x -2=0的一个近似根可取为区间(1.375,1.4375)中任意一个值,通常我们取区间端点值,比如1.4375.11.解 (1)方法一 (方程思想)设方程的两个根为x 1,x 2,则有两个负根的条件是Error!解得-1<m ≤0.方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点均在y 轴左侧,结合函数的图象,有Error!解得-1<m ≤0.(2)方法一 (方程思想)设方程的两个根为x 1,x 2,则令y 1=x 1-2>0,y 2=x 2-2<0,问题转化为求方程(y +2)2+2(y +2)+m +1=0,即方程y 2+6y +m +9=0有两个异号实根的条件,故有y 1y 2=m +9<0,解得m <-9.方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点分别在2的两侧,结合函数的图象,有f (2)=m +9<0,解得m <-9.(3)由题意知,Error!(方程思想),或Error!(函数思想),因为两方程组无解,故解集为空集.12.解 (1)f (x )=x |x -4|=Error!图象如右图所示.(2)当x ∈[1,5]时,f (x )≥0且当x =4时f (x )=0,故f (x )min =0;又f (2)=4,f (5)=5,故f (x )max =5.(3)由图象可知,当0<a <4时,方程f (x )=a 有三个解.13.解 ①当a =0时,方程即为-2x +1=0,只有一根,不符合题意.②当a >0时,设f (x )=ax 2-2x +1,∵方程的根分别在区间(0,1),(1,2)上,∴Error!,即Error!,解得<a <1.34③当a <0时,设方程的两根为x 1,x 2,则x 1x 2=<0,x 1,x 2一正一负不符合题意.1a 综上,a 的取值范围为<a <1. 34。