2018-2019学年广东省惠州市惠城区七年级下学期期末考试数学试卷及答案解析
2018-2019学年度七年级下学期期末试卷数学试题卷
2018-2019学年度七年级下学期期末试卷数学试题卷一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算正确的是()A.a2+a2=2a4B.3a3﹣a=2a2C.﹣a3•2a4=﹣2a12 D.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直4.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm5.如图,AD和BE是△ABC的两条中线,设△ABD的面积为S1,△BCE的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D.不能确定6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C二.填空题(本大题共6小题,每小题3分,共18分)7.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.8.若x2+mx+16是完全平方式,则m的值是.9.如图,直线AB、CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=131°,则∠EOC=°.10.过去的一年里中国的精准脱贫推进有力,农村贫困人口减少1386万.其中数据13860000用科学记数法表示为.11.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.12.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②D是AC的中点;③AD=BD=BC;④△BDC的周长等于AB+BC,其中正确的序号是三.(本大题共5小题,每小题6分,共30分)13.(1)|﹣3|+(﹣1)2013×(π﹣3)0﹣(﹣)﹣3(2)a3•a3+(2a3)2+(﹣a2)3.14.先化简再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.15.如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.试说明:DE∥AC.16.如图是7×6的正方形网格,点A、B、C在格点上,在图中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(三个图形各不相同).17.一个不透明袋中有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍.已知从袋中摸出一个球是红球的概率为.(1)求绿球的个数;(2)若从袋中拿出4个黄球,求从袋中随机摸出一个球是黄球的概率.四.(本大题共3小题,每小题8分,共24分)18.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车邮箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠C>∠B,试探求∠DAE、∠B、∠C之间的数量关系.20.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由;(2)求∠3的度数.五.(本大题共2小题,每小题9分,共18分)21.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.22.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)试说明:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.六.(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.2018-2019学年度七年级下学期期末试卷数学试题卷参考答案与试题解析一.选择题(共6小题)1.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.【解答】解:(A)原式=2a2,故A错误;(B)原式=3a3﹣a,故B错误;(C)原式=﹣2a7,故C错误;故选:D.3.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.4.【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.5.【解答】解:如图,∵AD和BE是△ABC的两条中线,∴△ABD面积=△ACD面积,△BCE面积=△ABE面积,即S1+S4=S2+S3①,S2+S4=S1+S3②,①﹣②得:S1﹣S2=S2﹣S1,∴S1=S2.故选:B.6.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.二.填空题(共6小题)7.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.8.【解答】解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.9.【解答】解:∵∠AOD=131°,∴∠COB=131°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=131°﹣90°=41°,故答案为:41.10.【解答】解:数据1386 0000用科学记数法表示为1.386×107.故答案为:1.386×107.11.【解答】解:(2a+b)×(3a+2b)=6a2+7ab+2b2,则需要C类卡片7张.故答案为:7.12.【解答】解:∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠CBD=∠ABD=36°,即BD平分∠ABC;故①正确;∴∠BDC=∠C=72°,∴BC=BD,∴BC=BD=AD,故③正确;∴△BDC的周长为:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故④正确;∵CD<BD,∴CD<AD,∴D不是AC中点.故②错误.故答案为:①③④三.解答题(共11小题)13.【解答】解:(1)原式=3+(﹣1)×1﹣(﹣2)3=3﹣1+8=10;(2)原式=a6+4a6﹣a6,=4a6.14.【解答】解:原式=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=1时,原式=3﹣1=2.15.【解答】证明:∵∠BDE=60°,∠ADC=70°.∴∠CDE=180°﹣60°﹣70°=50°,∵∠C=50°,∴∠C=∠CDE,∴AC∥DE.16.【解答】解:如图所示,点D即为所求.17.【解答】解:(1)∵从袋中摸出一个球是红球的概率为,∴红球的个数是:36×=12(个),设绿球的个数为x个,根据题意得:x+2x=36﹣12=24,解得:x=8,答:绿球的个数是8个;(2)根据题意得:黄球的个数是:2×8﹣4=12(个),则从袋中随机摸出一个球是黄球的概率为:=.18.【解答】解:(3)由(2)可知:Q=100﹣6t故答案为:(1)t;Q(2)100;619.【解答】解:(1)∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°;(2)∠DAE=(∠C﹣∠B),如图:∠BAC=180°﹣∠B﹣∠C,∵AE是∠BAC平分线,∴∠EAC=(180°﹣∠B﹣∠C),又∵Rt△ACD中,∠DAC=90°﹣∠C,∴∠DAE=∠EAC﹣∠DAC=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B).20.【解答】解:(1)结论:BF∥CD.理由如下:在三角形ABC中,∠B+∠1+∠2=180°,∴42°+∠2+∠2+10°=180°,∴∠2=64°,又∵∠ACD=64°,∴∠2=∠ACD,∴BF∥CD.(2)∵∠ACD=64°,CE平分∠ACD,∴∠DCE=×64°=32°,由(1)知BF∥CD,∴∠3=180°﹣∠DCE=148°.21.【解答】解:(1)2、2.(2)23.(3)∵a2﹣3a+1=0两边同除a得:a﹣3+=0,移向得:a+=3,∴a2+=(a+)2﹣2=7.22.【解答】(1)证明:∵△ACB和△DCE都是等腰直角三角形,∴CD=CE,CA=CB,∵∠ACB=90°,∠DCE=90°,∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:∵△ACD≌△BCE,∴AD=BE,∵DB=AB=3cm,∴BE=2×3cm=6cm;(3)解:BE与AD垂直.理由如下:∵△ACD≌△BCE,∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.23.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
2018—2019学年第二学期七年级数学期末检测试题1江苏版苏科版七下含答案解析
2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x83.如图,与是同位角的为A.B.C.D.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣106.下列各式能用平方差公式计算的是A.B.C.D.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.88.已知不等式组有解,则的取值范围是()A.B.C.D.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.12直接写出计算结果:______;________.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.14如图,,,则=____°.15已知代数式与是同类项,则_______,________.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个17已知,,则2x3y+4x2y2+2xy3=_________.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).三、解答题(本大题共8小题,共96分)19计算:;.20解不等式:,并把解集表示在数轴上.21因式分解:(1);(2)25(a+b)2-9(a-b)2 .22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().23解方程组:(1);(2)24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】根据不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等式的方向不变;不等式的两边都乘以(或除以)同一个负数,不等式的方向改变,可得答案.【详解】、不等式的两边同时减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以再减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以,不等式的符号方向改变,即,故本选项正确;、不等式的两边同时除以,不等式仍成立,即,故本选项错误.故选:.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等式的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x8【来源】江苏省常州市2016-2017学年期末【答案】D【解析】A、3x+5y,无法计算,故此选项错误;B、(﹣x3)3=﹣x9,故此选项错误;C、x6÷x3=x3,故此选项错误;D、x3•x5=x8,故此选项正确.故选:D.3.如图,与是同位角的为A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:根据同位角的定义得与是同位角,故选:D.【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点【来源】江苏省丹阳市2017-2018学年下学期期末【答案】A【解析】分析:根据不等式的性质对A进行判断;根据绝对值的意义对B进行判断;根据锐角在大小对C进行判断;根据中点的定义对D进行判断.【解答】解:A、因为,所以,所以A选项正确;B、|a|=|b|,则a=b或a=-b,所以B选项错误;B、三角形的一个外角大于与之不相邻的任何一个内角,所以B选项错误;C、两个锐角的和有可能是锐角,有可能是直角,也有可能是钝角,所以C选项错误;D、线段上一点到该线段两端的距离相等,那么这点是这条线段的中点,所以D选项错误.故选:A.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣10【来源】江苏省常州市2016-2017学年期末【答案】B【解析】根据科学记数法的书写规则,,a只含有一位整数,易得:0.000 0000 76=7.6×10﹣8,故选:B.6.下列各式能用平方差公式计算的是A.B.C.D.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】B【解析】【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;中是相同的项,互为相反项是与,符合平方差公式的要求,故本选项正确;中不存在相反的项,不能用平方差公式计算,故本选项错误;中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:.【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.8【来源】江苏省淮安市淮安区2017-2018学年期末【答案】D【解析】【分析】多边形的内角和可以表示成,依次列方程可求解.设这个多边形边数为,则,解得.故选:.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要回根据公式进行正确运算、变形和数据处理.8.已知不等式组有解,则的取值范围是()A.B.C.D.【来源】江苏省盐城市射阳县2016年期末【答案】C【解析】∵不等式组有解,∴,故选:C点睛:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,把不等式的解集在数轴上表示出来,利用数轴可以直观地表示不等式组的解集.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.【来源】江苏省泗阳县2016-2017学年期末考试【答案】D【解析】试题分析:根据方程组解的定义将代入方程组,得到关于a,b的方程组.两方程相减即可得出答案:∵是方程组的解,∵.两个方程相减,得a﹣b=4.考点:1.二元一次方程组的解;2.求代数式的值;3.整体思想的应用.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】C【解析】分析:由、、、、……可知3n的个位数分别是3,9,7,1,…,四个数依次循环,用的指数2019除以4得到的余数是几就与第几个数字的个位数字相同,由此解答即可.详解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2019÷4=504…3,∵的末位数字与33的末位数字相同是7.故选C..点睛:此题考查了尾数特征及规律探究:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】x>-1 ,【解析】分析:不等式移项合并,将x系数化为1,即可求出解集.【解答】解:不等式1-x<2,移项合并得:-x<1,解得:x>-1.故答案为:x>-1点睛:此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.请在此填写本题解析!12直接写出计算结果:______;________.【来源】江苏省南京玄武区2016年期末考试【答案】【解析】,.故答案为:,.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.【来源】江苏省南京玄武区2016年期末考试【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【解析】试题分析:命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.考点:命题的改写点评:任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14如图,,,则=____°.【来源】江苏省扬州市江都区2016-2017学年期末【答案】【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.连接AC并延长,标注点E,∵∠DCE=∠D+∠DAC, ∠BCE=∠B+∠BAC, ∠BCE+∠DCE=106°,∠A+∠B=47°, ∴∠BCE+∠DCE=∠D+∠DAB+∠B=106°,∴∠D=106°-47°-47°=12°.故答案为:12.15已知代数式与是同类项,则_______,________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】3 1【解析】分析:根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个【来源】江苏省淮安市淮安区2017-2018学年期末【答案】3【解析】【分析】根据已知边长求第三边的取值范围为:,进而解答即可.【详解】设第三边长为,则,,故取、、.故答案为:.【点睛】本题考查了三角形三边关系定理:三角形两边之和大于第三边,两边之差小于第三边.17已知,,则2x3y+4x2y2+2xy3=_________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】-25【解析】分析:先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.详解:∵,,∴2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2=2×() ×52=-25.故答案为:-25.点睛:此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】试题解析:设大正方形的边长为x1,小正方形的边长为x2,由图∵和∵列出方程组得,解得,∵的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.考点:平方差公式的几何背景.三、解答题(本大题共8小题,共96分)19计算:;.【来源】江苏省常州市2017-2018年第二学期期末联考【答案】;.【解析】分析:(1)先根据零指数幂、绝对值的意义、负整数指数幂的意义逐项化简,然后合并同类项即可;(2)第一项根据完全平方公式计算,第二项根据平方差公式计算,然后合并同类项即可. 详解:原式;原式.点睛:本题考查了实数的运算和整式的运算,熟练掌握完全平方公式和平方差公式是解答本题的关键.20解不等式:,并把解集表示在数轴上.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】x≤﹣2【解析】【试题分析】不等式的两边同时乘以6,去分母得:;去括号得:移项得:系数化为1得:解集在数轴上表示见解析.【试题解析】去分母得:;去括号得:移项及合并得:系数化为1得:不等式的解集为x≥-2,在数轴上表示如图所示:21因式分解:(1);(2)25(a+b)2-9(a-b)2 .【来源】江苏省兴化市2017-2018学年期末【答案】(1) 6ab(2bc-1);(2)4(4a+b)(a+4b)【解析】分析:(1)根据本题特点,直接使用“提公因式法”分解即可;(2)根据本题特点,先用“平方差公式”分解,再提公因式即可.详解:(1)原式=6ab·2bc-6ab·1=6ab(2bc-1);(2)原式=[5(a+b)]2-[3(a-b)]2=(5a+5b+3a-3b)(5a+5b-3a+3b)=(8a+2b)(2a+8b)=4(4a+b)(a+4b).点睛:熟练掌握“综合提公因式法和公式法分解因式的方法”是解答本题的关键.22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().【来源】江苏省盐城市射阳县2016年期末【答案】已知,2,ECD ,角平分线的性质或定义,已知,∠1=∠ ECD ,两直线平行,内错角相等,等量代换【解析】试题分析:由角平分线定义和平行线的性质及等量代换即可证明.试题解析:证明:∵CE平分∠ACD (已知),∴∠2 =∠ECD (角平分线的性质或定义),∵AB∥CD(已知),∴∠1= ∠ECD (两直线平行,内错角相等),∴∠1=∠2(等量代换).23解方程组:(1);(2)【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2)【解析】试题分析:(1)方程组利用加减消元法求出解即可(2)先①+③得x与y的方程④,然后将②④联立求出x和y的值,最后将x和y的值代入①中求出z即可;试题解析:(1),①7得,③②2得,④③④得,,∴,将代入方程①,解得.∴原方程组的解为.(2)①+③得,,②2得,⑤,+⑤得,将代入方程②,解得,将,代入方程①,解得,∴原方程组的解为.24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位【来源】江苏省扬州市高邮市2017-2018学年期末【答案】(1)作图见解析,(2)平行;相等;(3)15【解析】【分析】直接利用平移的性质分别得出对应点位置进而得出答案;利用平移的性质得出线段、的位置与数量关系;利用三角形面积求法进而得出答案.【详解】解:如图所示:,即为所求;线段、的位置关系为平行,线段、的数量关系为:相等.故答案为:平行,相等;平移过程中,线段AB扫过部分的面积为:.故答案为:15.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.【来源】江苏省南京玄武区2016年期末考试【答案】火车速度20m/s, 长度200m【解析】试题分析: 设火车的车身长为x米,速度是ym/s,根据行程问题的数量关系路程=速度×时间建立方程组求出其解即可.试题解析:设火车的车身长为x米,速度是ym/s,根据题意可得:,解得,答:火车的车身长为200米,速度是20m/s.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2),过程见解析;(3)【解析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出+,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可(3)试题分析:试题解析:(1),∵、分别是和的角平分线,∴∴.(2)在△中,+,,(3)点睛:本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.。
惠州市七年级下册数学期末试卷-百度文库
惠州市七年级下册数学期末试卷-百度文库一、选择题1.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 2.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg 3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +4.下列图形可由平移得到的是( )A .B .C .D .5.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 6.下列各式中,计算结果为x 2﹣1的是( ) A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 7.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或15 9.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 10.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______.12.多项式2412xy xyz +的公因式是______.13.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 14.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 15.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.16.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____.17.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.18.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.19.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______. 20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三、解答题21.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 22.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;②研究①拼图发现,可以分解因式2a2+5ab+2b2=.23.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.24.解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:_____.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是_____.26.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.27.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.28.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.2.A解析:A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
2018-2019学年惠州市惠阳区七年级下学期期末考试数学试卷解析版
2018-2019学年惠州市惠阳区七年级下学期期末考试数学试卷
解析版
一、选择题(每小题3分,共30分)
1.(3分)在﹣3,,1,0这四个实数中,最大的是()
A.﹣3B .C.1D.0
解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,
∴﹣3<0<1<.
∴最大.
故选:B.
2.(3分)下列调查中,适合用全面调查方式的是()
A.调查全班同学观察《最强大脑》的学生人数
B.某灯泡厂检测一批灯泡的质量
C.了解一批袋装食品是否含有防腐剂
D.了解惠州市中学生课外阅读的情况
解:A、调查全班同学观察《最强大脑》的学生人数适合普查;
B、某灯泡厂检测一批灯泡的质量适合抽样调查;
C、了解一批袋装食品是否含有防腐剂适合抽样调查;
D、了解惠州市中学生课外阅读的情况时候抽样调查;
故选:A.
3.(3分)如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()
A.20°B.50°C.70°D.110°
解:∵∠1=70°,
∴∠3=70°,
∵a∥b,
第1 页共11 页。
广东省惠州市惠州一中2018-2019学年七年级下期中考试数学试题(word版含答案)
惠州一中2018-2019学年度第二学期七年级期中考试数学试卷一、选择题(每小题3分,共30分)1.如图所示,A 、B 、C 、D 中的哪幅图案可以通过图案①平移得到2.在平面直角坐标系中,点(-2,5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是 A.39±= B.()332-=- C.283-=- D.532=+4.在382414.131,π,,,-中,无理数的个数有 A.1个 B.2个 C.3个 D.4个5.如图,已知AB ∥CD ,∠2=125°,则1的度数是A.75°B.65°C.55°D.45°6.若,032=++-y x 则xy 的值为 A.-8 B.-6 C.5 D.67.如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是A.∠1=∠2B.∠3=∠4C.∠B=∠DCED.∠D+∠DAB=180°8.下列命题不成立的是A.等角的补角相等B.两直线平行,内错角相等C.同位角相等D.对顶角相等9.如图,将△ABC 沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为A.42B.96C.84D.4810.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A.(45,10)B.(45,6)C.(45,22)D.(45,0)二、填空题(每小题4分,共24分)11.16的平方根是_______.12.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是_________.13.若,,472.420414.12≈≈则≈2000_______.14.点P ()31+-m m ,在平面直角坐标系的y 轴上,则点P 的坐标是_______. 15.在平面直角坐标系中,点P(1,2)向右平移3个单位长度,再向上平移1个单位得到的点的坐标为__________.16.用“*”定义新运算:对于任意实数,、b a 都有,b a b a +=22*如,224324*32=+⨯=那么=2*3_______.三、解答题(一)(每小题6分,共18分) 17.计算:26425212322-÷-++⎪⎭⎫ ⎝⎛⨯--18.解方程:(1)()491162=+x (2)0125273=+x19.如图,AD ∥BE ,∠1=∠2,求证:∠A=∠E.请完成解答过程:解:∵AD ∥BE(已知)∠A=∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A=∠E(_________)四、解答题(二)(每小题7分,共21分)20.已知z y x ,,225==是9算术平方根,求z y x -+2的平方根。
2018-2019学年七年级下学期期末考试数学试卷含答案解析
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
七年级下册数学期末试卷人教版含答案免费
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
2018-2019学年七年级下期末考试数学试卷及答案
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
惠州市人教版七年级下册数学全册单元期末试卷及答案-百度文库
惠州市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c 2.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >>3.计算:202020192(2)--的结果是( )A .40392B .201932⨯C .20192-D .24.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b 5.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,66.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 7.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .8.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 9.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11 二、填空题11.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________. 12.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.13.a m =2,b m =3,则(ab )m =______.14.计算:x (x ﹣2)=_____15.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.16.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.17.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 18.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.19.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.20.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H的度数(用含α的代数式表示).22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是________(4)△ABC在整个平移过程中线段AB扫过的面积为________(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个(注:格点指网格线的交点)23.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)24.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.27.如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC=40°,求∠APB与∠ADP度数;(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).28.解不等式-3+3+1 21-3-18-xxx x ⎧≥⎪⎨⎪<⎩()【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A错误;B. 没把一个多项式转化成几个整式积,故B错误;C. 把一个多项式转化成几个整式积,故C正确;D. 没把一个多项式转化成几个整式积,故D错误;故选C.2.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19-,c=(-3)0=1, ∴c >a >b ,故选B .【点睛】 本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.3.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.4.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误. 故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.5.B解析:B【解析】试题分析:A 、2+2=4,不能构成三角形,故本选项错误;B 、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C 、1+2=3,不能构成三角形,故本选项错误;D 、2+3<6,不能构成三角形,故本选项错误.故选B .考点:三角形三边关系.6.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是因式分解,故A正确;B、是整式的乘法运算,故B错误;C、是单项式的变形,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.8.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.9.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米,故选:A.【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.10.D解析:D【解析】【分析】此题先把a2-ab-ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【详解】解:根据已知a2-ab-ac+bc=11,即a(a-b)-c(a-b)=11,(a-b)(a-c)=11,∵a>b,∴a-b>0,∴a-c>0,∵a、b、c是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.二、填空题11.a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.12.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.13.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab )m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m =2,b m =3,所以(ab )m =a m •b m =2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.14.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.15.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.16.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把代入方程得:4﹣1+k =0,解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.18.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.19.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长. 解:∵AB=6cm,AD解析:7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长.解:∵AB=6cm,AD=5cm ,△ABD 周长为15cm ,∴BD=15-6-5=4cm ,∵AD 是BC 边上的中线,∴BC=8cm,∵△ABC 的周长为21cm ,∴AC=21-6-8=7cm .故AC 长为7cm .“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC 的长,题目难度中等.三、解答题21.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.22.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB 扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点.【详解】(1)△A ′B ′C ′如图所示;(2)B ′D ′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB 扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(1)m =1,n =5;(2)(a +2b )2=a 2+4ab +4b 2;(3)2a 2+5ab +3b 2=(a +b )(2a +3b ),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B 型板1块,按裁法三裁剪时,可以裁出5块B 型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.24.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.25.(1)20°;(2)11 22 n m-【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC =90°,∴∠DAC =90°﹣n °,∴∠DAE =∠EAC ﹣∠DAC =(12n ﹣12m )°, 故答案为:(12n ﹣12m ). 【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线, ∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.27.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析. 【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.28.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.。
广东省惠州市七年级下学期数学期末考试试卷
广东省惠州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题3分,共30分。
) (共10题;共30分)1. (3分) (2019七下·杭锦旗期中) 如图,在长方形ABCD中,AB=2cm,AD=4cm,E、F分别为AD、BC的中点,分别以C,F为圆心、2cm为半径画圆把长方形分成三个部分,则图中两个阴影部分的面积为()A . 2cm2B . 4cm2C . 6cm2D . 无法确定2. (3分)(2018·平南模拟) 若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是()A . (2,2)B . (-2,-2)C . (2,2)或(-2,-2)D . (2,-2)或(-2,2)3. (3分)比较2 ,3,的大小,正确的是()A . <3<2B . 2 <<3C . 2 <3<D . <2 <34. (3分)关于x的不等式-2x+a≥2的解集如图所示,a的值是()A . 0B . 2C . -2D . -45. (3分)下列调查中,适合采用抽样调查的是()A . 调查本班同学的视力B . 调查一批节能灯管的使用寿命C . 学校招聘教师,对应聘人员面试D . 对乘坐某班客车的乘客进行安检6. (3分)解方程组,由① ②得正确的方程是()A . 3x=10B . -x=-5C . 3x=-5D . x=-57. (3分)若点P(a,b)在第一象限,则点P1(﹣a,﹣b)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (3分)下列表示方法正确的是()A . a∥AB . AB∥cdC . A∥BD . a∥b9. (3分)下列计算正确的是()A .B .C .D .10. (3分) (2015七下·龙口期中) 设方程组的解是,那么a,b的值分别为()A . ﹣2,3B . 3,﹣2C . 2,﹣3D . ﹣3,2二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)11. (4分) (2019八下·贵池期中) 已知x是实数且满足,则相应的代数式x2+2x﹣1的值为________.12. (4分) (2019八下·长春月考) 如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=________.13. (4分) (2019九上·新蔡期末) 已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c 分别为△ABC三边的长.如果x=-1是方程的根,则△ABC是________三角形.14. (4分) (2019八上·农安期末) 如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是________.15. (4分)(2017·蜀山模拟) 若关于x的不等式(a﹣2)x>a﹣2解集为x<1,化简|a﹣3|=________.16. (4分)如表是某校八年级(8)班共50位同学身高情况的频数分布表,则表中的组距是________ ,身高最大值与最小值的差至多是________ cm.组别(cm)145.5~152.5 152.5~159.5159.5~166.5166.5~173.5频数(人)919 148三、解答题(一)(本大题共3个小题,每小题6分,共18分) (共3题;共18分)17. (6分) (2018八下·合肥期中) 你见过像,…这样的根式吗?这一类根式叫做复合二次根式。
2022-2023学年广东省惠州市七年级下学期期末数学试卷及答案解析
2022-2023学年广东省惠州市七年级下学期期末数学试卷一、选择题(共10小题,每小题3分,共30分) 1.(3分)下列说法中,正确的是( ) A .相等的角是对顶角B .有公共顶点,并且相等的角是对顶角C .如果∠1与∠2是对顶角,那么∠1=∠2D .两条直线相交所成的两个角是对顶角2.(3分)若m >﹣1,则下列各式中错误的是( ) A .6m >﹣6B .﹣5m <﹣5C .m +1>0D .1﹣m <23.(3分)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为( ) A .先右转50°,后右转40° B .先右转50°,后左转40°C .先右转50°,后左转130°D .先右转50°,后左转50°4.(3分)解为{x =1y =2的方程组是( )A .{x −y =13x +y =5B .{x −y =−13x +y =−5C .{x −y =33x −y =1D .{x −2y =−33x +y =55.(3分)不等式组{x <−2−x >3的解集是( )A .x <﹣3B .x <﹣2C .﹣3<x <﹣2D .无解6.(3分)点A (﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为( ) A .(1,﹣8)B .(1,﹣2)C .(﹣6,﹣1)D .(0,﹣1)7.(3分)如图,下列能判定AB ∥CD 的条件有( )个. (1)∠B +∠BCD =180°; (2)∠1=∠2; (3)∠3=∠4; (4)∠B =∠5.A .1B .2C .3D .48.(3分)下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H 1N 1流感患者的同一车厢乘客进行医学检查 9.(3分)有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相平行. 其中真命题的个数为( ) A .1B .2C .3D .410.(3分)上课时,地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理老师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( ) A .{x +y =8365x −6y =1284B .{x −y =8366x −5y =1284C .{x +y =8366y −5x =1284D .{x −y =8366y −5x =1284二、填空题(共7小题,每小题4分,共28分)11.(4分)81的算术平方根是 ;√−643= .12.(4分)∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3= 度. 13.(4分)已知(2x +3y ﹣4)2+|x +3y ﹣7|=0,则x = ,y = . 14.(4分)不等式﹣3≤5﹣2x 的正整数解是 .15.(4分)如果点P (a ,2)在第二象限,那么点Q (﹣3,a )在 .16.(4分)对某市某文明小区500户家庭拥有电话机,电脑情况抽样调查,得到扇形图(如图),根据图中提供的信息,拥有电话机,电脑各一台的家庭有 户.17.(4分)小良用32元买了甲、乙两种水果,已知甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2kg ,求小良两种水果各买了多少千克?如果,设小良买甲种水果xkg ,乙种水果ykg ,根据题意,可列方程组 . 三、解答题(一)【共3小题,每小题6分,共18分】 18.(6分)解下列方程组:{x −2y =03x +2y =0.19.(6分)解不等式组{2x −3<6−x 1−4x ≤5x −2,并把解集在数轴上表示出来.20.(6分)如图,EF ∥AD ,∠1=∠2.说明:∠DGA +∠BAC =180°.请将说明过程填写完成.解:∵EF ∥AD ,(已知) ∴∠2= .( ) 又∵∠1=∠2,( ) ∴∠1=∠3,( ) ∴AB ∥ ,( )∴∠DGA +∠BAC =180°.( )四、解答题(二)【共3小题,每小题8分,共24分】21.(8分)罗浮山是国家级风景名胜区和国家AAAAA 级旅游景区,某校组织七年级540名学生参加社会实践,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知一辆小客车限载40人,一辆大客车限载60人,求这两种客车各租用多少辆?22.(8分)这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.23.(8分)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.五、解答题(三)【共2小题,每小题10分,共20分】24.(10分)如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.25.(10分)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?请设计出来.2022-2023学年广东省惠州市七年级下学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列说法中,正确的是()A.相等的角是对顶角B.有公共顶点,并且相等的角是对顶角C.如果∠1与∠2是对顶角,那么∠1=∠2D.两条直线相交所成的两个角是对顶角【解答】解:A、对顶角相等,但相等的角不一定是对顶角,故本选项错误;B、有公共顶点,并且相等的角是对顶角错误,故本选项错误;C、如果∠1与∠2是对顶角,那么∠1=∠2正确,故本选项正确;D、两条直线相交所成的四个角有两对对顶角,故本选项错误.故选:C.2.(3分)若m>﹣1,则下列各式中错误的是()A.6m>﹣6B.﹣5m<﹣5C.m+1>0D.1﹣m<2【解答】解:根据不等式的基本性质可知,A、6m>﹣6,正确;B、根据性质3可知,m>﹣1两边同乘以﹣5时,不等式为﹣5m<5,故B错误;C、m+1>0,正确;D、1﹣m<2,正确.故选:B.3.(3分)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A.先右转50°,后右转40°B.先右转50°,后左转40°C.先右转50°,后左转130°D.先右转50°,后左转50°【解答】解:两次拐弯后,仍在原来的方向上平行行驶,即转弯前与转弯后的道路是平行的,因而右转的角与左转的角应相等,理由是两直线平行,同位角相等.故选:D.4.(3分)解为{x =1y =2的方程组是( )A .{x −y =13x +y =5B .{x −y =−13x +y =−5C .{x −y =33x −y =1D .{x −2y =−33x +y =5【解答】解:将{x =1y =2分别代入A 、B 、C 、D 四个选项进行检验,能使每个方程的左右两边相等的x 、y 的值即是方程的解. A 、B 、C 均不符合, 只有D 满足. 故选:D .5.(3分)不等式组{x <−2−x >3的解集是( )A .x <﹣3B .x <﹣2C .﹣3<x <﹣2D .无解【解答】解:∵x <﹣2, 由﹣x >3得 x <﹣3,∴不等式组的解集为:x <﹣3, 故选:A .6.(3分)点A (﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为( ) A .(1,﹣8)B .(1,﹣2)C .(﹣6,﹣1)D .(0,﹣1)【解答】解:点A (﹣3,﹣5)向上平移4个单位,再向左平移3个单位得到点B ,坐标变化为(﹣3﹣3,﹣5+4);则点B 的坐标为(﹣6,﹣1). 故选:C .7.(3分)如图,下列能判定AB ∥CD 的条件有( )个. (1)∠B +∠BCD =180°; (2)∠1=∠2; (3)∠3=∠4; (4)∠B =∠5.A.1B.2C.3D.4【解答】解:(1)利用同旁内角互补,判定两直线平行,故(1)正确;(2)利用内错角相等,判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等,判定两直线平行,故(3)正确;(4)利用同位角相等,判定两直线平行,故(4)正确.故选:C.8.(3分)下列调查适合作普查的是()A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢乘客进行医学检查【解答】解:A、B项因为数目太大,而不适合进行普查,只能用抽查,C、因具有破坏性,也只能采用抽查的方式.D、了解某甲型H1N1确诊病人同机乘客的健康状况,精确度要求高、事关重大,必须选用普查.故选:D.9.(3分)有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相平行.其中真命题的个数为()A.1B.2C.3D.4【解答】解:相等的角不一定是对顶角,故①是假命题;两条平行线被第三条直线所截,同位角相等,故②是假命题;同一种四边形内角和为360°,且对应边相等,一定能进行平面镶嵌,故③真命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故④是假命题;∴真命题有:③,共一个, 故选:A .10.(3分)上课时,地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理老师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( ) A .{x +y =8365x −6y =1284B .{x −y =8366x −5y =1284C .{x +y =8366y −5x =1284D .{x −y =8366y −5x =1284【解答】解:根据长江比黄河长836千米,得方程x ﹣y =836;根据黄河长度的6倍比长江长度的5倍多1284千米,得方程6y ﹣5x =1284. 列方程组为{x −y =8366y −5x =1284.故选:D .二、填空题(共7小题,每小题4分,共28分) 11.(4分)81的算术平方根是 9 ;√−643= ﹣4 . 【解答】解:∵92=81, ∴√81=9; ∵(﹣4)3=﹣64, ∴√−643=−4. 故答案为:9;﹣4.12.(4分)∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3= 153 度. 【解答】解:∵∠1+∠2=90°,∠1=63°, ∴∠2=27°, 又∵∠2+∠3=180°, ∴∠3=153°.13.(4分)已知(2x +3y ﹣4)2+|x +3y ﹣7|=0,则x = ﹣3 ,y = 103.【解答】解:由(2x +3y ﹣4)2+|x +3y ﹣7|=0,得 {2x +3y −4=0x +3y −7=0,解得{x =−3y =103. 14.(4分)不等式﹣3≤5﹣2x 的正整数解是 1,2,3,4 . 【解答】解:不等式﹣3≤5﹣2x , 移项得:2x ≤5+3, 合并得:2x ≤8, 系数化为1得:x ≤4,则不等式的正整数解为1,2,3,4. 故答案为:1,2,3,4.15.(4分)如果点P (a ,2)在第二象限,那么点Q (﹣3,a )在 第三象限 . 【解答】解:∵点P (a ,2)在第二象限, ∴a <0,∴点Q 的横、纵坐标都为负数, ∴点Q 在第三象限. 故答案为第三象限.16.(4分)对某市某文明小区500户家庭拥有电话机,电脑情况抽样调查,得到扇形图(如图),根据图中提供的信息,拥有电话机,电脑各一台的家庭有 100 户.【解答】解:∵500×20%=100,∴拥有电话机,电脑各一台的家庭有100户.17.(4分)小良用32元买了甲、乙两种水果,已知甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2kg ,求小良两种水果各买了多少千克?如果,设小良买甲种水果xkg ,乙种水果ykg ,根据题意,可列方程组 {4x +6y =32y =x +2 .【解答】解:由题意可得:{4x +6y =32y =x +2.故答案为:{4x +6y =32y =x +2.三、解答题(一)【共3小题,每小题6分,共18分】 18.(6分)解下列方程组:{x −2y =03x +2y =0.【解答】解:将x ﹣2y =0记作①,将3x +2y =0记作②. ∴①+②,得4x =0. ∴x =0.将x =0代入①,得0﹣2y =0. ∴y =0.∴这个方程组的解为{x =0,y =0.19.(6分)解不等式组{2x −3<6−x 1−4x ≤5x −2,并把解集在数轴上表示出来.【解答】解:{2x −3<6−x ①1−4x ≤5x −2②解不等式①得x <3, 解不等式②得x ≥13,∴不等式组的解集为13≤x <3.其解集在数轴上表示为:.20.(6分)如图,EF ∥AD ,∠1=∠2.说明:∠DGA +∠BAC =180°.请将说明过程填写完成.解:∵EF ∥AD ,(已知)∴∠2= ∠3 .( 两直线平行,同位角相等 ) 又∵∠1=∠2,( 已知 ) ∴∠1=∠3,( 等量代换 )∴AB ∥ DG ,( 内错角相等,两直线平行 )∴∠DGA +∠BAC =180°.( 两直线平行,同旁内角互补 )【解答】解:∵EF ∥AD ,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB ∥DG ,(内错角相等,两直线平行)∴∠DGA +∠BAC =180°(两直线平行,同旁内角互补).四、解答题(二)【共3小题,每小题8分,共24分】21.(8分)罗浮山是国家级风景名胜区和国家AAAAA 级旅游景区,某校组织七年级540名学生参加社会实践,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知一辆小客车限载40人,一辆大客车限载60人,求这两种客车各租用多少辆?【解答】解:设大客车租用x 辆,小客车租用y 辆,依题意得:{x +y =1060x +40y =540, 解得:{x =7y =3. 答:大客车租用7辆,小客车租用3辆.22.(8分)这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.【解答】解:以南门的位置作为原点建立直角坐标系,则动物们的位置分别表示为:南门(0,0),马(﹣3,﹣3);两栖动物(4,1);飞禽(3,4);狮子(﹣4,5).23.(8分)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.【解答】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.五、解答题(三)【共2小题,每小题10分,共20分】24.(10分)如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D =∠ABD .∴DF ∥AC .∴∠A =∠F .25.(10分)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A ,B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A ,B 两种货厢的节数,有哪几种运输方案?请设计出来.【解答】解:设应安排x 节A 型货厢,则安排(50﹣x )节B 型货厢,由题意得, {35x +25(50−x)≥153015x +35(50−x)≥1150, 解得28≤x ≤30.因为x 为整数,所以x 只能取28,29,30.相应地(50﹣x )的值为22,21,20.所以共有三种调运方案:第一种调运方案:用A 型货厢28节,B 型货厢22节;第二种调运方案:用A 型货厢29节,B 型货厢21节;第三种调运方案:用A 型货厢30节,用B 型货厢20节.。
惠州市人教版七年级下册数学全册单元期末试卷及答案-百度文库
惠州市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩ 3.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .4.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2565.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106B .3.8×106C .3.8×105D .38×104 6.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 7.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 8.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个 9.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 10.七边形的内角和是( )A .360°B .540°C .720°D .900°二、填空题11.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 12.已知5x m =,4y m =,则2x y m +=______________.13.若29x kx -+是完全平方式,则k =_____.14.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.15.计算:5-2=(____________)16.分解因式:x 2﹣4x=__.17.计算:2020(0.25)-×20194=_________.18.计算:x (x ﹣2)=_____19.一个n 边形的内角和为1080°,则n=________.20.已知:()521x x ++=,则x =______________.三、解答题 21.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.22.计算(1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.23.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.24.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;(2)画出△ABC的中线AD;(3)画出△ABC的高CE所在直线,标出垂足E:(4)在(1)的条件下,线段AA1和CC1的关系是25.解不等式-3+3+121-3-18-xxx x⎧≥⎪⎨⎪<⎩()26.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a+-•-27.先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.不是乘积的形式,错误;B.等号左边的式子不是多项式,不符合因式分解的定义,错误;C.不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.2.B解析:B【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.【详解】解:设用x张制作盒身,y张制作盒底,根据题意得:18 21016x yx y+=⎧⎨⨯=⎩.故选:B.【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.4.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y x y a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.5.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B【分析】根据三角形中线的性质作答即可.【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线.故选:B .【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.7.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.8.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.故选A.【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.9.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.10.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.二、填空题11.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值.12.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键. 13.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键14.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x =﹣1.②当2x+3=﹣1时,解得:x =﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x =﹣2.③当x+2016=0时,x =﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x =﹣2016.综上所述,当x =﹣1,或x =﹣2,或x =﹣2016时,代数式(2x+3)x+2016的值为1. 故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.15.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.16.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).17.【分析】先将写成的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】×,,,=,故答案为:.【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆 解析:14【分析】先将2020(0.25)-写成201911()44⨯的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】 2020(0.25)-×20194,2019201911()444=⨯⨯, 201911(4)44=⨯⨯, =14, 故答案为:14. 【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆运算,正确掌握公式是解此题的关键.18.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.19.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218020.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.三、解答题21.22442a ab b-+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=4a2﹣4ab+b2﹣(a2+2a+1﹣b2)+a2+2a+1=4a2﹣4ab+b2﹣a2﹣2a﹣1+b2+a2+2a+1=4a2﹣4ab+2b2,当a=12,b=﹣2时,原式=1+4+8=13.【点睛】此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.22.(1)2-;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443xx x x x x x x xx x⨯+-⎛⎫⋅+⋅-=-=-=-=⎪⎝⎭.【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.23.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC的面积是3,得出格点△ABP的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S△ABC=1323 2⨯⨯=S△ABP=2S△ABC=6画格点△ABP如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.24.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A1B1C1即为所作图形;(2)如图,线段AD即为所作图形;(3)如图,直线CE即为所作图形;(4)∵△A1B1C1是由△ABC平移得到,∴A和A1,C和C1是对应点,∴AA1和CC1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.25.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.26.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.27.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。
2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)
2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。
2018-2019学年新人教版七年级数学下册期末测试卷(含答案)
2018-2019学年新人教版七年级数学下册期末测试卷(含答案)2018-201年七年级(下)期末数学试卷一、选择题(每小题3分,满分30分)1.如图,已知AB∥CD,∠2=100°,则下列正确的是()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°2.下列二元一次方程组的解为的是()A。
B。
C。
D.3.下面四个图形中,∠1与∠2为对顶角的图形是()A。
B。
C。
D.4.在-2.3.14这4个数中,无理数是()A。
-2 B。
C。
D。
3.145.下列不等式中一定成立的是()A。
5a>4a B。
-a>-2a C。
a+2<a+3 D。
<6.以下问题,不适合使用全面调查的是()A。
对旅客上飞机前的安检B。
航天飞机升空前的安全检查C。
了解全班学生的体重D。
了解广州市中学生每周使用手机所用的时间7.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14B.5C.7D.98.已知x、y满足方程组A.3B.12C.10D.89.XXX家位于公园的正东100米处,从XXX家出发向北走250米就到XXX家,若选取XXX家为原点。
分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(-250,-100)B.(100,250)C.(-100,-250)D.(250,100)10.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32B.0.2C.40D.0.25二、填空题(每小题3分,满分24分)11.4的平方根是2.12.若P(4,-3),则点P到x轴的距离是3.13.当x<-4时,式子3x-5的值大于5x+3的值。
14.已知是方程3mx-y=-1的解,则m=1/3.15.如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=56度。
2017-2018学年广东省惠州市惠城区七年级(下)期末数学试卷(解析版)
2017-2018学年广东省惠州市惠城区七年级(下)期末数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.的相反数是()A.﹣B.C.D.22.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角3.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.4.在平面直角坐标系中,点A(a﹣2,2a+8)在y轴上,则()A.a≠﹣4B.a=﹣4C.a≠2D.a=25.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高6.的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.不等式﹣2x<3的解集是()A.x<﹣B.x>﹣C.x<﹣D.x>﹣8.植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.9.某种商品的进价为400元,出售时标价为600元,后来由于该商品积压,商店准备打折销售,但在保证利润率不低于5%,则至少可打()A.6折B.7折C.8折D.9折10.把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1种B.2种C.3 种D.4种二.填空题(本大题共6小题,每小题4分,共24分)11.在实数﹣2、0、﹣1、2、﹣中,最小的是.12.在平面直角坐标系中,点P(x,y)且xy<0,则点P所在象限是.13.不等式组所有整数解的和是.14.已知a,b满足方程组,则3a+b的值为.15.如图,将一块三角板的直角顶点放在直尺的一边上,当∠1=55°时,∠2=°.16.如图是45名同学每周课外阅读时间的频数直方图(每组不含前一个边界值,含后一个边界值).由图可知,课外阅读时间不少于6小时的人数是人.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程组:18.(6分)解不等式,并在数轴上表示解集.19.(6分)如图,在平面直角坐标系中,小方格边长为1,点A,B,P都在格点上.且P(1,﹣3)(1)写出点A,B的坐标;(2)将线段AB平移,使点B与点P重合,请在图中画出平移得到的线段并写出此时点A的对应点A′坐标.四、解答题(共3小题,满分21分)20.(7分)已知:如图,∠A=∠D,∠EGC=∠FHB.(1)求证:AB∥CD;(2)求证:∠E=∠F.21.(7分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整约统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图.(3)扇形图中“15吨一20吨”部分的圆心角的度数是.(4)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有用户的用水全部享受基本价格.22.(7分)为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)五、解答题(共3小题,满分27分)23.(9分)已知:a=|1﹣|﹣(﹣),=3,c是﹣27的立方根.(1)b=,c=;(2)化简a,并求a+b﹣c的平方根;(3)若关于x的不等式组无解,求t的取值范围.24.(9分)如图,AC,BD相交于点O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.(1)证明:AD∥BC;(2)求∠EAD的度数;(3)求证:∠AOB=∠DAC+∠CBD.25.(9分)已知点A(﹣8,0)及动点P(x,y),且2x﹣y=﹣6.设三角形OPA的面积为S.(1)当x=﹣2时,点P坐标是;(2)若点P在第二象限,且x为整数时,求y的值;(3)是否存在第一象限的点P,使得S=12.若存在,求点P的坐标;若不存在,说明理由.2017-2018学年广东省惠州市惠城区七年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是:﹣.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选:B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.3.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.4.【分析】直接利用在y轴上点的横坐标为零,进而得出答案.【解答】解:∵点A(a﹣2,2a+8)在y轴上,∴a﹣2=0,解得:a=2,故选:D.【点评】此题主要考查了点的坐标,正确记忆y轴上点的坐标特征是解题关键.5.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】先估算出的范围,即可得出选项.【解答】解:2<<3,即在2和3之间,故选:B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.7.【分析】根据解一元一次不等式的方法可以解答本题.【解答】解:﹣2x<3系数化为1,得x>﹣,故选:D.【点评】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.8.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意可得:,故选:A.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.9.【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于5%,列不等式求解.【解答】解:设打了x折,由题意得,600×0.1x﹣400≥400×5%,解得:x≥7.答:至少打7折.故选:B.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.10.【分析】截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是非负整数,所以符合条件的解为:、、.则共有3种不同截法,故选:C.【点评】此题考查了二元一次方程的应用,弄清题意列出方程是解本题的关键.二.填空题(本大题共6小题,每小题4分,共24分)11.【分析】利用任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,即可得出结果.【解答】解:在实数﹣2、0、﹣1、2、﹣中,最小的是﹣2,故答案为:﹣2.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.12.【分析】直接利用各象限内点的坐标特征进而得出答案.【解答】解:∵点P(x,y)且xy<0,∴x,y异号,∴点P所在象限是第二或第四象限.故答案为:第二或第四象限.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标特征是解题关键.13.【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:解不等式2x>﹣1,得x>﹣,解不等式﹣3x+9≥0,得x≤3,所以不等式组的解集为﹣<x≤3,则不等式组的整数解为0,1,2,3,0+1+2+3=6.故答案为6.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.14.【分析】方程组中的两个方程相加,即可得出答案.【解答】解:①+②得:3a+b=3,故答案为:3.【点评】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解此题的关键.15.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=55°,∴∠3=90°﹣55°=35°.∵直尺的两边互相平行,∴∠2=∠3=35°.故答案为:35.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.【分析】将课外阅读时间在6~8小时和8~10小时的人数相加即可得.【解答】解:由频数分布直方图知课外阅读时间在6~8小时的有8人、8~10小时的有6人,所以课外阅读时间不少于6小时的人数是8+6=14人,故答案为:14.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.【分析】①×3+②得出13x=﹣26,求出x,将x=﹣2代入①求出y即可.【解答】解:①×3+②,得13x=﹣26,解得:x=﹣2,将x=﹣2代入①,得﹣6﹣y=﹣9,解得:y=3,所以原方程组的解为:.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.18.【分析】根据解一元一次不等式的方法可以解答本题,并在数轴上表示出不等式的解集.【解答】解:,去分母,得3(x﹣2)>4(x+1)﹣12解这个不等式,得x<2∴不等式组的解集为:x<2,将不等式解集表示在数轴上如图:.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.19.【分析】(1)直接利用A,B的位置得出其坐标;(2)利用平移的性质得出点A′坐标.【解答】解:(1)如图所示:A(﹣1,4),B(﹣3,0);(2)如图所示:A′(3,1).【点评】此题主要考查了平移变换,正确得出对应点位置是解题关键.四、解答题(共3小题,满分21分)20.【分析】(1)求出∠FGD=∠FHB,根据平行线的判定得出即可;(2)根据平行线的性质得出∠A=∠ECD,求出∠D=∠ECD,根据平行线的判定得出AE∥DF 即可.【解答】证明:(1)∵∠EGC=∠FHB(已知),∠EGC=∠FGD,∴∠FGD=∠FHB,∴AB∥CD(同位角相等,两直线平行);(2)∵由(1)得:AB∥CD,∴∠A=∠ECD(两直线平行,同位角相等),∵∠A=∠D(已知),∴∠ECD=∠D,∴AB∥CD(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).【点评】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.21.【分析】(1)用10吨﹣15吨的户数除以所占百分比即可;(2)求出15吨﹣20吨的户数,补全图形即可;(3)用“15吨一20吨”所占的百分比乘以360°即可;(4)由6万乘以符合条件的用户所占的百分比即可.【解答】解:(1)10×10%=100;故答案为:100;(2)100﹣10﹣38﹣24﹣8=20,补全频数分布直方图,如图所示:(3)“15吨一20吨”部分的圆心角的度数=×36°=72°;故答案为:72°;(4)6×=4.08(万),即该地区6万用户中约有 4.08万用户的用水全部享受基本价格;故答案为: 4.08万.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【分析】(1)设A型号家用净水器购进了x台,则B型号家用净水器购进了(160﹣x)台,根据总价=单价×数量结合购进两种型号的家用净水器共用去36000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设每台A型号家用净水器的售价为t元,则每台A型号家用净水器的毛利润为(t﹣150)元,每台B型号家用净水器的毛利润为2(t﹣150)元,根据售完这160台家用净水器的毛利润不低于11000元,即可得出关于t的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设A型号家用净水器购进了x台,则B型号家用净水器购进了(160﹣x)台,根据题意得:150x+350(160﹣x)=36000,解得:x=100,∴160﹣x=60.答:A型号家用净水器购进了100台,B型号家用净水器购进了60台.(2)设每台A型号家用净水器的售价为t元,则每台A型号家用净水器的毛利润为(t﹣150)元,每台B型号家用净水器的毛利润为2(t﹣150)元,根据题意得:100(t﹣150)+60×2(t﹣150)≥11000,解得:t≥200.答:每台A型号家用净水器的售价至少是200元.【点评】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由总的毛利润不低于11000元,列出关于t的一元一次不等式.五、解答题(共3小题,满分27分)23.【分析】(1)根据算术平方根和立方根的定义可得;(2)去绝对值符号和括号,再合并即可得a的值,继而将a、b、c的值代入计算可得;(3)将a、b、c的值代入不等式组,解不等式组即可得【解答】解:(1)∵=3,c是﹣27的立方根,∴2b﹣1=9、c=﹣3,则b=5,故答案为:5、﹣3;(2)∵a=,∴;(3)将a=1,b=5,c=﹣3代入不等式组,得,∵不等式组无解,∴t+5≤﹣3,∴t≤﹣8.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.【分析】(1)求出∠DCB+∠ADC=180°,根据平行线的判定得出即可;(2)根据平行线的性质求出∠DAC=∠ACB=45°,即可求出答案;(3)根据平行线的判定得出OF∥BC,根据平行线的性质得出∠ADB=∠DBC,∠AOF=∠DAC,∠FOB=∠CBD,即可求出答案.【解答】(1)证明:∵AC平分∠DCB,∴∠BCD=2∠ACD=2×45°=90°,∵CD⊥AD,∴∠ADC=90°,∴∠BCD+∠ADC=90°+90°=180°,∴AD∥BC;(2)解:∵AC平分∠DCB,∴∠ACB=∠ACD=45°,∵AD∥BC∴∠DAC=∠ACB=45°,∠EAD=180°﹣∠DAC﹣∠BAC=180°﹣45°﹣60°=75°;(3)证明:过点O作OF∥AD,∵AD∥BC,∴∠ADB=∠DBC,OF∥BC,∴∠AOF=∠DAC,∠FOB=∠CBD,∴∠AOB=∠AOF+∠FOB=∠DAC+∠CBD.【点评】本题考查了平行线的性质和判定、三角形外角性质等知识点,能熟练地运用定理进行推理是解此题的关键.25.【分析】(1)把x=﹣2代入2x﹣y=﹣6,求得相应的y值;(2)根据第二象限的点的坐标特征列出不等式,通过解该不等式求得x的取值范围,结合x为整数,求得x的值,代入求得y的值;(3)作PQ⊥x轴,垂足为Q,由三角形的面积公式列出方程并解答.【解答】解:(1)把x=﹣2代入2x﹣y=﹣6,得2×(﹣2)﹣y=﹣6,解得y=2,所以,点P坐标是(﹣2,2).故答案是:(﹣2,2).(2)∵2x﹣y=﹣6,∴y=2x+6.∵点P在第二象限,∴得﹣3<x<0.又∵x是整数∴x=﹣1,﹣2.当x=﹣1时,y=4;当x=﹣2时,y=2.(3)不存在.理由如下:如图,∵点P在第一象限,作PQ⊥x轴,垂足为Q,则PQ=2x+6,又∵OA=0﹣(﹣8)=8,∴S=×OA×PQ=12,即×8×(2x+6)=12,得x=,此时点P的坐标为(,3).∴点P不在第一象限,即不存在这样的点P.【点评】本题考查的是三角形的面积计算,坐标与图形的性质,三角形的面积公式.注意平面直角坐标系中每一象限的点的特征是解题的易错点.。
2022-2023学年广东省惠州市惠城市惠城区七年级(下)期末数学试卷(含解析)
2022-2023学年广东省惠州市惠城市惠城区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列实数12, 8,3.14159,−327,0, 2+1,π3中,无理数有个.( )A. 0 B. 1 C. 2 D. 32.如图,a //b ,∠1=60°,则∠2的度数为( )A. 90°B. 100°C. 110°D. 120°3. 点(2,−1)向右平移3个单位得到的点的坐标是( )A. (−1,−1)B. (−1,2)C. (2,2)D. (5,−1)4. 下列调查中,适宜采用全面调查方式的是( )A. 对全市每天丢弃的废旧电池数的调查B. 对冷饮市场上冰淇淋质量情况的调查C. 对惠城区某学校学生心理健康现状的调查D. 对我市居民夏天使用空调时间的调查5. 已知 15129=123, x =0.123,则x =( )A. 0.15129B. 0.015129C. 0.0015129D. 1.51296. 下列说法错误的是( )A. 数轴上的点与实数一一对应B. 带根号的数都是无理数C. 最大的负整数是−1D. “如果两个角相等,那么它们是对顶角”是假命题7. 如果y >x ,那么下列不等式正确的是( )A. 2y >2xB. −2y >−2xC. y−2<x−2D. y +2<x +28. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出9元,则多了4元;若每人出8元,则少了3元,设学生有x 人和该书单价为y 元,下列方程组正确的是( )A. {9x −y =4y −8x =3B. {x −9y =48y −x =3C. {9x −y =3y −8x =4D. {9x +y =4y +8x =39. 如图,两条平行光线射向平面镜面后被反射,其中一条光线AB反射后的半线是BC,此时∠1=∠2=56°,另一条光线的反射光线EF与镜面的夹角∠3的度数为( )A. 98°B. 56°C. 44°D. 34°10. 已知关于x的方程x−2−ax6=x3−1有非负整数解,则整数a的所有可能的取值的和为( )A. −6B. −7C. −14D. −19二、填空题(本大题共5小题,共15.0分)11. 比较大小:2______ 3,3.14______ π;12. 已知不等式组{x−a<1x−2b>3的解集为−1<x<3,则a=______ ,b=______ ;13. 若x m+2n+y2m−n=1是关于x,y二元一次方程,则m=______ ,n=______ .14.如图,已知AB//CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是______.15. 如图,在平面直角坐标系中,一动点从原点O出发,按向下、向左、向上、向左的方向不断地移动,每次移动一个单位,得到点A1(0,−1)、A2(−1,−1)、A3(−1,0)、A4(−2,0)、…那么点A2023的坐标为______ .三、解答题(本大题共8小题,共75.0分。
惠州市七年级下学期期末数学试题题及答案
惠州市七年级下学期期末数学试题题及答案一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒D .100cm 的木棒3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 4.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4 B .8 C .-8 D .±8 5.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种6.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=- B .2()ab a a b a -=- C .25(1)5x x x x +-=+-D .21()x x x x x+=+7.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12 B .15 C .10 D .12或15 8.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,9 9.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1)10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.计算126x x ÷的结果为______. 12.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.13.分解因式:29a -=__________.14.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 15.已知2m+5n ﹣3=0,则4m ×32n 的值为____ 16.因式分解:224x x -=_________.17.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .18.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________. 19.计算:2m·3m=______. 20.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.三、解答题21.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ; ②用含a ,b 的式子表示长方形EPHD 的面积为 ; (2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=, 请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ; ②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立; (2)小王说:可以将其转化为两数和的平方来说明等式成立; (3)小丽说:可以构造图形,通过计算面积来说明等式成立; 23.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有ACQB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.24.因式分解: (1)x 4﹣16; (2)2ax 2﹣4axy +2ay 2.25.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P、Q为有理数,且关于x、y的方程组3 33x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y是“爱心点”,求p、q的值.26.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.27.如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.28.已知有理数,x y满足:1x y-=,且221x y,求22x xy y++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a=-=-,2193b=--=-,2142c-⎛⎫=-=⎪⎝⎭,113d⎛⎫-=⎪⎝⎭=,∴它们的大小关系是:b<a<d<c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.B解析:B【解析】试题解析:已知三角形的两边是40cm和50cm,则10<第三边<90.故选40cm的木棒.故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.3.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.4.D解析:D【解析】试题分析:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.考点:完全平方式.5.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5; y=4,x=0, 共有5种换法. 故选:B . 【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.6.B解析:B 【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解. 【详解】解:根据因式分解的概念, A 选项属于整式的乘法,错误; B 选项符合因式分解的概念,正确; C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误. 故选B . 【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.7.B解析:B 【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6 此时336+=,不满足三角形的三边关系定理 (2)当等腰三角形的腰为6时,三边为3,6,6 此时366+>,满足三角形的三边关系定理 则其周长为36615++= 综上,该三角形的周长为15 故选:B . 【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.8.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C.【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.9.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.【分析】根据同底数幂的除法公式即可求解.【详解】=故答案为:.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式.解析:6x【分析】根据同底数幂的除法公式即可求解.【详解】126x x=6x故答案为:6x.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式.12.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.解析:1 2019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯⎪⎝⎭=12019 故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.13.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点 解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式. a 2-9=a 2-32=(a+3)(a-3). 故答案为(a+3)(a-3). 考点:因式分解-运用公式法.14.12 【解析】试题解析:根据题意,得 (n-2)•180-360=1260, 解得:n=11.那么这个多边形是十一边形. 考点:多边形内角与外角.解析:12 【解析】试题解析:根据题意,得 (n-2)•180-360=1260, 解得:n=11.那么这个多边形是十一边形. 考点:多边形内角与外角.15.8 【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案. 本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.16.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.x x-解析:2(2)【分析】直接提取公因式即可.【详解】2-=-.242(2)x x x xx x-.故答案为:2(2)【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.17.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【±解析:10【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13将y=1代入①,得3x=27解得x=9∴方程组的解为91x y =⎧⎨=⎩故答案为:91x y =⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.19.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 20.84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.三、解答题21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1, ∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG == ()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.24.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”;(2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m ﹣1=a ,22n +=﹣4, 解得:m =a +1,n =﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.26.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB,结合题干条件得到∠FDA=∠DAE,进而得到结论.【详解】证明:∵AB∥CD,∴∠CDA=∠DAB,∵∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣∠2,∴∠FDA=∠DAE,∴AE∥DF.【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单.27.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.28.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy , 即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案与试题解析
一.选择题(本题共10小题,每小题3分,共30分)
1.(3分)在平面直角坐标系中,点P(﹣1,4)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
解:点P(﹣1,4)在第二象限.
故选:B.
2.(3分)下列实数中,是无理数的是( )
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了名同学;
(2)条形统计图中m=,n=;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;
(4)学校计划购买课外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
五.解答题(三)(本题共3小题,每小题9分,共27分)
(1)画出平移后的三角形A′B′C′,写出点A′、B′、C′三个点的坐标.
(2)求四边形ACC′A′的面积.
22.(7分)在读书月活动中学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就”我最喜爱的课外读物”从文学、艺术、科普和其他四个类別进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.
17.(6分)计算,|1﹣ |+ ﹣ + .
18.(6分)解方程组
19.(6分)解不等式 ,并把解集在数轴上表示出来.
四.解答题(二)(本题共3小题,每小题7分,共21分)
20.(7分)已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.
21.(7分)如图,在平面直角坐标系中有三个点A(﹣3,2),B(﹣5,1),C(﹣2,0),P(a,b)是三角形的边AC上一点,三角形ABC经平移后得到三角形A′B′C′,点P的对应点为P′(a+4,b+3).
2018-2019学年广东省惠州市惠城区七年级下学期期末考试
数学试卷
一.选择题(本题共10小题,每小题3分,共30分)
1.(3分)在平面直角坐标系中,点P(﹣1,4)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.(3分)下列实数中,是无理数的是( )
A.0B. C. D.
3.(3分)若 是二元一次方程kx﹣y=3的解,则k的值为( )
24.(9分)已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)求证:CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF,并说明理由.
25.(9分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).
A.0B. C. D.
解:A、0是整数,是有理数,选项错误;
23.(9分)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?
A. B.
C. D.
10.(3分)如果关于x为不等式2≤3x﹣7<b有四个整数解,那么b的取值范围是( )
A.﹣11≤b≤﹣14B.11<b<14C.11<b≤14D.11≤b<14
二.填空题(本题共6小题,每小题4分,共24分)
11.(4分)点(2,﹣3)到x轴的距离为.
12.(4分)为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高,在这个问题中,样本容量是.
B.该班的总人数为40
C.得分在90~100分之间的人数最少
D.及格(≥60分)人数是26
7.(3分)若a<b,则下列式子一定成立的是( )
A.a+3>b+3B.a﹣1<b﹣1C. D.3a>3b
8.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:
(1)∠1=∠2;
(2)∠3=∠4;
(3)∠2+∠4=90°;
A.1B.2C.3D.4
4.(3分)如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是( )
A.20°B.50°C.70°D.110°
5.(3分)不等式组 的解集在数轴上可表示为( )
A. B.
C. D.
6.(3分)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )
A.得分在70~80分之间的人数最多
16.(4分)在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.
三.解答题本题共3小题,每小题6分,共18分)
13.(4分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,DM∥AB,若∠EOC=35°,则∠ODM=度.
14.(4分)命题“如果a2=b2,那么a=b”是(填写“真命题”或“假命题”)
15.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为3,则四边形ABED的面积等于.
(4)∠4+∠5=180°,
9.(3分)一辆汽车从A地出发,向东行驶,途中要经过十字路口B,在规定的某一段时间内,若车速为每小时60千米,就能驶过B处2千米,若每小时行驶50千米,就差3千米才能到达B处设A、B间的距离为x千米规定的时间为y小时,则可列出方程组是( )
(1)直接写出点E的坐标;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t=秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.