考研必备——《高等数学》第六版课后全部答案(第四章)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x b
)dx =
1 a
∫sin axd(ax)−b∫e
x b
d( x)=− b
1 a
cos ax − be
x b
+C
.
(6) ∫ sin t dt ;
t
解 ∫ sin t dt =2∫sin td t =−2cos t +C .
t
(7) ∫ tan10 x⋅sec 2 xdx ;

∫ tan10
x⋅sec2

1 cos 2
x
)dx
=
−cot
x

tan
x
+C
.
(26)

(1−
1 x2
)
x
x dx ;

∫ ⎜⎝⎛1−
1 x2
⎟⎞ ⎠
x
x dx
=

(x
3 4

x
−5 4
)dx
=
4 7
x
7 4
+
4
x

1 4
+C
.
2. 一曲线通过点(e2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲 线的方程.


(x

2) 2
dx =
∫(x
2
−4x
+
4)dx = ∫
x
2 dx

4∫
xdx
+
4∫
dx
=
1 3
x
3

2x
2
+
4x
+C
.
(11) ∫ (x2 + 1)2 dx ;


(
x
2
+1)
2
dx
=

(
x
4
+
2
x
2
+1)dx
=

x
4
dx
+
2∫
x
2
dx
+

dx
=
1 5
x
5
+
2 3
x
3
+
x
+
C
.
(12) ∫ ( x +1)( x3 −1)dx ;
= ex(ex −e−x + ex +e−x ) = e2x ,
2
2
所以e
x
sh
x

ex chx −shx
的原函数.
因为
(e x c h x ) ′ = e x c h x + e x s h x = e x ( c h x + s h x )
= ex(ex +e−x + ex −e−x ) = e2x ,
1+ x2
cos 1+ x 2
= −∫
1
d cos 1+ x2 = −ln |cos 1+ x2 | +C .
cos 1+ x2
(10)

sin
dx x cos
x
;


sin
dx x cos
x
=

sec2 x tan x
dx
=

1 tan
x
d
tan
x
=
ln
|
tan
x|
+C
.
(11)

e
x
1 +e−x
x
−1
dx=∫(x 2
−2x
1 2
+
x
3 2
1
)dx=2x 2

4 3
x
3 2
+
2 5
x
5 2
+C
.
(14)

3x
4 +3x2 x 2 +1
+1
dx
;


3x
4 +3x2 x 2 +1
+1
dx
=

(3x
2
+
x
1 )dx 2 +1
=
x3
+
arctan
x
+
C
.
(15)

x 1+
2
x
2
dx
;


x 1+
2
解 dx = (−1) d(1−arctan x) . 1− x 2
(14) xdx = d ( 1− x 2 ) . 1− x 2
解 xdx = (−1) d ( 1− x 2 ) . 1− x 2
2. 求下列不定积分(其中 a, b, ω, ϕ 均为常数):
(1) ∫e5t dt ;


e 5t
xdx
= ∫ tan10
xd
tan x = 1 tan11 11
x+C
.
(8)

x ln
dx x ln ln
x
;


x
ln
dx x ln
ln
x
=

ln
x
1 ln
ln
x
d
ln
x
=

ln
1 ln
x
d
ln
ln
x
=
ln|ln
ln
x|+C
.
(9) ∫ tan 1+ x 2 ⋅ x dx ;
1+ x 2
解 ∫ tan 1+ x2 ⋅ x dx = ∫ tan 1+ x 2 d 1+ x 2 = ∫ sin 1+ x 2 d 1+ x 2
dx
;


3x3 1− x 4
dx = −
3 4

1 1− x
4
d (1− x 4
)=−
3 4
ln|1−
x4
|+C
.
(16) ∫cos2(ωt +ϕ)sin(ωt +ϕ)dt ;
(5) xdx= d (1− x 2 ) ;
解 xdx = − 1 d (1− x 2 ) . 2
(6)x3dx= d(3x4−2); 解x3dx= 1 d(3x4−2).
12 (7)e 2x dx= d(e2x);
解e 2x dx= 1 d(e2x). 2
(8)
e

x 2
dx
=
d
(1+
e

x 2
)
(11) dx = d (3−5ln|x|) ; x
解 dx = − 1 d (3−5ln| x|) . x5
(12) dx = d (arctan3x) ; 1+9x 2
解 dx = 1 d (arctan3x) . 1+9x 2 3
(13) dx = d (1−arctan x) ; 1− x 2
1 2
+C
.
x
(19) ∫3x e xdx ;


3x
e
x
dx
=

(3e)
x
dx
=
(3e) x ln(3e)
+
C
=
3x ex ln 3 +1
+C
.
(20)

2⋅3x −5⋅2 x 3x
dx
;


2⋅3x −5⋅2 x 3x
dx
=
∫[2

5(
2 3
)
x
]dx
=
2
x

5
(2 3 ln
)x 2
+C =2x−
解 设该曲线的方程为 y=f(x), 则由题意得
y′= f ′(x)= 1 , x
所以
y
=

1 x
dx
=
ln|
x|+C
.
又因为曲线通过点(e2, 3), 所以有=3−2=1
3=f(e 2)=ln|e 2|+C=2+C,
C=3−2=1. 于是所求曲线的方程为
y=ln|x|+1. 3. 一物体由静止开始运动, 经t秒后的速度是 3t2(m/s), 问 (1)在 3 秒后物体离开出发点的距离是多少? (2)物体走完 360m 需要多少时间?
1
3
解 ∫ ( x +1)( x3 −1)dx = ∫ (x 2 − x + x3 −1)dx = ∫ x 2dx − ∫ x 2 dx + ∫ x 2 dx − ∫ dx
=
1
x3

2
x
3 2
+
2
x
5 2

x
+C
.
33 5
(13) ∫ (1− x)2 dx ;
x


(1− x)2 x
dx= ∫1−2x+ x 2
|1−
2x|+C
.
dx
(4) ∫ 3 2−3x ;


3
dx 2−3x
=

1 3

(2

3x)

1 3
d
(2

3x)
=

1

3
(2

3x)
2 3
32
+
C
=

1
(2

3x)
2 3
2
+C
.
7
x
(5) ∫(sinax−e b )dx ;
考研资料下载 www.sinoky.com

∫ (sin ax − e
解 设位移函数为s=s(t), 则s′=v=3 t2, s = ∫3t 2dt =t 3 +C .
因为当t=0 时, s=0, 所以C=0. 因此位移函数为s=t 3.
4
考研资料下载 www.sinoky.com
(1)在 3 秒后物体离开出发点的距离是s=s(3)=33=27.
(2)由t 3=360, 得物体走完 360m所需的时间 t =3 360 ≈7.11s.
2
2
所以e x c h x 是
ex chx −shx
的原函数.
5
考研资料下载 www.sinoky.com
习题 4−2 1. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: dx = 1 d (4x + 7) : 4 (1) dx= d(ax); 解 dx= 1 d(ax). a (2) dx= d(7x−3); 解 dx= 1 d(7x−3). 7 (3) xdx= d(x2); 解xdx= 1 d(x2). 2 (4) xdx= d(5x2); 解xdx= 1 d(5x2). 10
5 (2)x ln 2−ln3 3
+C
.
3
(21) ∫sec x(sec x− tan x)dx ;
解 ∫secx(secx−tan x)dx = ∫(sec2 x−secxtan x)dx = tan x−secx+C .
(22)

cos
2
x 2
dx
;

∫ cos 2
x 2
dx
=

1+
cos 2
x
2

2 )dx ; 1−x 2


(3 1+ x
2

2 1−x 2
)dx
=
3∫
1 1+ x
2
dx − 2∫
1 dx=3arctan x −2arcsin x +C . 1− x 2
(18) ∫e x (1− e−x )dx ;
x

∫e
x
(1−
e−x
)dx= ∫(e x

−1
x2
)dx = e
x
−2x
(3) ∫ 1 dx ;
x


1 x
dx =

−1
x2
dx =

1 1 +1
− 1 +1
x2
+C
=2
x +C .
2
(4) ∫ x 2 3 xdx ;

∫x23
7
xdx = ∫ x 3 dx =
1
7 +1
x3
+C =
3
7 +1
10
x33
x +C
.
3
(5)

1 x2
x
dx
;


1 x2
x
dx
=

x

5 2
1
考研资料下载
www.sinoky.com


(
x
2
−3x
+
2)dx
=

x
2
dx

3∫
xdx
+
2∫
dx
=
1 3
x
3

3 2
x
2
+
2
x
+
C
.
(9) ∫ dh (g 是常数);
2gh
解∫
dh = 2gh
1
−1
∫ h 2 dh=
2g
1
1
⋅2h 2 +C =
2g
2h +C . g
(10) ∫(x−2)2 dx ;
考研资料下载
www.sinoky.com
习题 4−1 1. 求下列不定积分:
(1)

1 x2
dx
;


1 x2
dx = ∫ x −2 dx =
1 x −2+1 − 2+1
+C =−
1 x
+C
.
(2) ∫ x xdx ;
解 ∫x
xdx
=

x
3 2
dx
=
1 3 +1
x
3 +1 2
+
C
=
2 5
x
2
2
x +C .
x
2
dx = ∫
x 2 +1−1 1+ x 2
dx
=

(1−
1 1+ x
2
)dx = x −arctan x +C
.
2
考研资料下载
www.sinoky.com
(16)

(2e
x
+
3 x
)dx
;


(2e
x
+
3 x
)dx
=
2∫
e
x
dx
+
3∫
1 x
dx
=
2e
x
+
3ln
|
x|
+C
.
(17)

(3 1+ x


x⋅cos(x2)dx
=
1 2

Βιβλιοθήκη Baidu
cos(x2)d(x2) =
1 2
sin(x2) +C
.
(14) ∫ x dx ;
2 −3x 2
解∫
x 2 −3x 2
dx
=

1 6

(2

3x
2
)

1 2
d
(2

3x
2
)
=

1 3
(2

3x
2
)
1 2
+C =− 1 3
2−3x2 +C .
(15)

3x 3 1− x 4
;

e

x 2
dx
=
−2
d
(1+
e

x 2
)
.
(9) sin 3 xdx = d (cos 3 x) ;
2
2
解 sin 3 xdx = − 2 d (cos 3 x) .
2
3
2
(10) dx = d (5ln| x|) ; x
解 dx = 1 d (5ln| x|) . x5
6
考研资料下载 www.sinoky.com
dx
=

1 5 +1
x

5 2
+1
+
C
=

3 2

x
1
x
+C
.
2
(6) ∫ m x n dx ;

∫m
n
x n dx = ∫ x m dx =
1
n +1
xm +C=
m
n +1
n+m
m+n
xm
+C
.
m
(7) ∫5x3dx ;


5x
3 dx
=5∫
x 3 dx
=
5 4
x
4
+C
.
(8) ∫(x 2 −3x+ 2)dx ;
4. 证明函数 1 e 2x , ex s hx和ex ch x 都是 e x 的原函数.
2
chx −shx
证明
ex chx −shx
=
ex
ex +e−x − ex
−e−x
=
ex e−x
= e2x
.
2
2
因为 (1 e2x)′ = e2x , 2
所以
1 2
e2x

ex chx −shx
的原函数.
因为
(e x s h x ) ′ = e x s h x + e x c h x = e x ( s h x + c h x )
dx
;


ex
1 +e−x
dx
=∫
e x dx = e2x +1

1 1+ e
2
x
de x
= arctane x
+C
.
8
考研资料下载 www.sinoky.com
(12) ∫ xe−x2 dx ;


xe −x2
dx =−
1 2
∫e−x2
d (− x 2
)=−
1 2
e−x2
+C.
(13) ∫ x⋅cos( x2 )dx ;
dx =
1 2
∫ (1+ cos
x)dx =
1 2
(x +sin
x)+C
.
3
考研资料下载
www.sinoky.com
(23)

1+
1 cos
2x
dx
;


1+
1 cos
2x
dx
=

2
1 cos
2
x
dx
=
1 2
tan
x
+
C
.
(24)

cos 2x cos x − sin
x
dx
;


cos2x cos x−sin
x
dx
=

cos 2 cos
x x
−sin −sin
2
x
xdx
=

(cos
x
+
sin
x)dx
=
sin
x

cos
x
+C
.
(25)

cos2x cos2 xsin
2
x
dx
;


cos 2 x cos2 xsin
2
x
dx
=

cos2 x−sin 2 x cos2 xsin 2 x
dx
=

(1 sin 2
x
dt
=
1 5

e5x
d5x=
1 5
e5x
+C
.
(2) ∫(3−2x)3 dx ;

∫ (3− 2 x) 3
dx = −
1 2

(3−
2x)3
d
(3−
2 x) = −
1 8
(3− 2 x)
4
+C
.
(3)

1 1− 2 x
dx
;


1 1− 2
x
dx
=

1 2

1 1− 2
x
d
(1−
2x)=

1 2
ln
相关文档
最新文档