2019届云南省红河州开远市中考数学一模试卷((有答案))最新精选

合集下载

2016-2019年云南省红河州开远市中考数学一模试卷

2016-2019年云南省红河州开远市中考数学一模试卷

2018年云南省红河州开远市中考数学一模试卷一、填空题:本大题共6小题,每小题3分,满分18分.1. −8的相反数是________.2. 分解因式:x 2−1=________.3. 半径为2的圆中,60∘的圆心角所对的弧的弧长为________.4. 某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是________.5. 若一个几何体的三视图相同,则这个几何体是________.(填一个即可)6. 如图,正比例函数y 1=x 的图象与反比例函数y 2=kx (k ≠0)的图象相交于A 、B 两点,点A 的纵坐标为2.当y 1>y 2时,自变量x 的取值范围是________二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为( ) A.0.218009×108 B.2.18009×108 C.2.18009×107 D.21.8009×106下列计算正确的是( ) A.a 7÷a =a 6 B.a 5+a 5=a 10 C.a 3⋅a 2=a 6 D.(−a 3)2=−a 6不等式组{2−x >1,x+52≥1, 中,不等式①和②的解集在数轴上表示正确的是( )A.B.C.D.如图,把一张三角形纸片ABC 沿中位线DE 剪开后,在平面上将△ADE 绕着点E 顺时针旋转180∘,点D 到了点F 的位置,则S △ADE :S BCFD 是( )A.1:3B.1:4C.1:1D.1:2如图,在△ABC 中,AB =AC ,∠A =30∘,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A.45∘B.30∘C.75∘D.50∘赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )A.1.4,1.3B.1.2,1.3C.1.4,1.35D.1.3,1.3“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD 垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”,依题意,CD 长为( )A.13寸B.12寸C.24寸D.26寸如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.115∘B.105∘C.135∘D.125∘三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≅△DEF.先化简,再求值:1a+1−a+1a2−2a+1÷a+1a−1,其中a=√2.为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m和n的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字−1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.如图,菱形ABCD的对角线AC与BD相交于点O,且BE // AC,CE // BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4√10,tanα=12,求四边形OBEC的面积.如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3, 0)和点C(0, 3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积.某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证纯收入又能吸引顾客?如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30∘,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD // AB时,求PD的长;AB,连结DE.(2)如图3,当DC⌢=AC⌢时,延长AB至点E,使BE=12①求证:DE是⊙O的切线;②求PC的长.参考答案与试题解析2018年云南省红河州开远市中考数学一模试卷一、填空题:本大题共6小题,每小题3分,满分18分.1.【答案】此题暂无答案【考点】相反数【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】因式分解水都用公式法【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】弧因斯计算【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】根据于际问械列否次函这关系式【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】由三视正活断几何体【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】反比于函数偏压史函数的综合【解析】此题暂无解析【解答】此题暂无解答二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】同底射空的除法同底水水的乘法幂的乘表与型的乘方合较溴类项【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】解一元表次镜等式组在数较溴表示总等线的解集【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】图验把剪拼【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质线段垂直来分线慢性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】条都连计图中位数众数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展垂径水正的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相似三来形的循质【解析】此题暂无解析【解答】此题暂无解答三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.【答案】此题暂无答案【考点】全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇表统病图条都连计图【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元一表方型的应片——解程进度问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】菱都资性质矩根的惯定解直于三角姆【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式二次明数织性质二次常数图见合点的岸标特征待定水体硫故二次函数解析式抛物线明x稀的交点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元二较方程轻应用一元都次特等水的实常应用一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆因归合题【解析】此题暂无解析【解答】此题暂无解答。

2019学年云南省九年级上学期第一次月考数学试卷【含答案及解析】

2019学年云南省九年级上学期第一次月考数学试卷【含答案及解析】
雌C・
考点:一元二次方程的定义
第2题【答案】
参考答案及解析
第1题【答案】
【解析】试题井析;本趣银据一元二次方程的定义解答.一元二次方程必無碇皿个条件:
<1>未壬蹴的最高次数是力
(2)二次项系数不为①
(3)罡整式方程;
<4}含育一个未知對.
①、万程不是整式丹畐故错误,
食 方程含有两个诔知数,故错误审
③、符合一元二次方程的定:义、正确?
⑥、符合一元二次方程的定义,正确;
13.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀 后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为
14.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,第'个图形中需要
黑色瓷砖块(用含陀的代数式表示).
(1<2(3
亦就曲.pint
三、解答题
15.(1)(4分)计算::U「-1'
800件,如果每件提价1元出售,其销售量就减少20件。现在要获利12000元,且销售成 本不超过24000元,问这种服装销售单价确定多少为宜?这时应进多少服装?
22.(6分)如图,在平行四边形:中,上为― 的中点,连接丄并延长交… 的 延长线于点「.
(2)当;与*满足什么数量关系时,四边形是矩形,请说明理由.
18.(6分)国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.某中学
为了了解学生体育活动情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是
否超过1小时及未超过1小时的原因” •以下是根据所得的数据制成的统计图的一部分.
根据以上信息,解答下列问题:
(1)每天在校锻炼时间超过1小时的人数是;

红河哈尼族彝族自治州中考数学一模试卷

红河哈尼族彝族自治州中考数学一模试卷

红河哈尼族彝族自治州中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)把7﹣(﹣3)+(﹣5)﹣(+2)写成省略加号和的形式为()A . 7+3﹣5﹣2B . 7﹣3﹣5﹣2C . 7+3+5﹣2D . 7+3﹣5+22. (2分)下列说法错误的是()A . 如果m>n,那么-m<-nB . 如果-a是正数,那么a是负数C . 如果x是大于1的数,那么-x是小于-1的数D . 一个数的相反数不是正数就是负数3. (2分)函数中自变量x的取值范围是()A . x≥﹣3B . x≥3C . x≥0且x≠1D . x≥﹣3且x≠14. (2分)将一元二次方程2(x﹣3)=x2+x﹣1化成一般形式后,一次项系数和常数项分别为()A . 1,﹣4B . ﹣1,5C . ﹣1,﹣5D . 1,﹣65. (2分)(2017·都匀模拟) 下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分)如图,吸管与易拉罐上部的夹角∠1=60°,则∠2的度数是()A . 50°B . 60°C . 70°D . 80°7. (2分)如图,在Rt△ABC中,CD是斜边AB的中线,已知CD=2,AC=3,则sinB的值是()。

A .B .C .D .8. (2分) (2015八上·福田期末) 方程组的解是()A .B .C .D .9. (2分)如图,已知是的角平分线,是的垂直平分线,,,则的长为()A . 6B . 5C . 4D .10. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④二、填空题 (共7题;共7分)11. (1分) (2016八下·余干期中) 观察下列各式: =2 , =3 , =4 ,…请你找出其中规律,并将第n(n≥1)个等式写出来________.12. (1分)分解因式:m2﹣10m=________13. (1分) 2元的人民币x张,5元的人民币y张,共120元,这个关系用方程可以表示为________14. (1分)(2017·和平模拟) 如果反比例函数y= (a为常数)的图象,在每一个象限内,y随x的增大而减小,写出一个符合条件的a的值为________.15. (1分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩________.16. (1分) (2019八上·椒江期中) 已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE 与CD交于点Q,连接PQ,OC.以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有________(把你认为正确的序号都填上)17. (1分) (2019七上·施秉月考) 观察下列多项式:,,,,…按此规律,则可以得到第个多项式是________.三、综合题 (共9题;共47分)19. (5分)计算:(1)(8985+10023﹣7932)0;(2)(﹣3)2×(﹣3)0+(﹣3)﹣2×(﹣3)2;(3)(1.1×10﹣6)(1.2×107).20. (5分)(2018·乌鲁木齐模拟) 先化简,再求值:,其中a=21. (2分)(2016·广元) 某班数学课外活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度i=1:2,且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测倾器的高度忽略不计,结果保留根号)22. (10分)(2017·鄞州模拟) 将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x <10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.23. (10分)(2017·杭州) 在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.24. (2分)(2018·遵义模拟) 已知,AB是⊙O的直径,点C、D是半⊙O 的三等分点(如图1),(1)求证:四边形OBCD是菱形.(2)直线PD切⊙O于D,交直径BA的延长线于P,若切线长PD的长为3,求菱形的面积.25. (6分) (2018九上·西湖期末) 已知两个函数:y1=ax+4,y2=a(x﹣)(x﹣4)(a≠0).(1)求证:y1的图象经过点M(0,4);(2)当a>0,﹣2≤x≤2时,若y=y2﹣y1的最大值为4,求a的值;(3)当a>0,x<2时,比较函数值y1与y2的大小.26. (2分)(2020·拉萨模拟) 如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y 轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0).(1)直接写出抛物线的解析式及其对称轴;(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;(3)在(2)的条件下,若△PDG的面积为,①求点P的坐标;②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、综合题 (共9题;共47分)19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

2019年云南省中考数学模拟试卷(一)含答案解析

2019年云南省中考数学模拟试卷(一)含答案解析

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 . 2.在函数y=中,自变量x 的取值范围是.3.若x 、y 为实数,且|x+3|+=0,则 的值为 .4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 . 6.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700 D .2370008.下列运算正确的是( ) A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1) 11.下面空心圆柱形物体的左视图是( )2019xy()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE ⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA ⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 ﹣2 . 【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答. 【解答】解:|﹣2|的相反数是-2, 故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则 的值为 ﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得:x+3=0,且y ﹣3=0, 解得x=﹣3,y=3. 则原式=﹣1. 故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019xy()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+...+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n 的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO ⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE ⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD 是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA ⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.21。

云南省红河哈尼族彝族自治州中考数学模拟试卷

云南省红河哈尼族彝族自治州中考数学模拟试卷

云南省红河哈尼族彝族自治州中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2019·宁洱模拟) 如图所示的几何体,它的俯视图是()A .B .C .D .2. (2分)已知m , n是方程x2+2 x+1=0的两根,则代数式的值为()A . 9B . 4C . 3D . 53. (2分) (2020八上·昭平期末) 当x=﹣1时,函数y=的函数值为()A . ﹣2B . ﹣1C . 2D . 44. (2分)已知四个命题:①若一个数的相反数等于它本身,则这个数是0;②若一个数的倒数等于它本身,则这个数是1;③若a=b,则a2=b2;④若一个数的绝对值就等于它本身,则这个数是正数.其中真命题有()A . 1个B . 2个C . 3个D . 4个5. (2分)如图,DE∥BC,则下列不成立的是()A . =B . =C . =D . =6. (2分)如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A . 100°B . 110°C . 120°D . 130°7. (2分)(2015·绵阳) 如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A . 1<x<3B . x<1或x>3C . 0<x<1D . 0<x<1或x>38. (2分)历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A . “正面向上”必会出现5次B . “反面向上”必会出现5次C . “正面向上”可能不出现D . “正面向上”与“反面向上”出现的次数必定一样,但不一定是5次9. (2分)(2017·达州模拟) 如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A . ①②B . ①②③C . ①②③④D . ②③④10. (2分) (2016高一下·新疆期中) 用一根长为24cm的铁丝围成一个矩形,如果矩形的面积是35 cm2 ,那么这个矩形的长与宽分别是()A . 7 cm,5 cmB . 8 cm,4 cmC . 9 cm,3 cmD . 6 cm,6 cm11. (2分)(2016·资阳) 如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB= ,EF=2,∠H=120°,则DN的长为()A .B .C . ﹣D . 2 ﹣12. (2分)已知⊙O的面积为4π,则其内接正三角形的面积为()A .B .C . 3D . 313. (2分)如图为某菜农搭建的一个横截面为抛物线的大棚,有关尺寸如图所示,某菜农身高1.6米,则他在不弯腰的情况下在大棚内左右活动的范围是()A . 米B . 米C . 1.6米D . 0.8米14. (2分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A .B .C .D .15. (2分)(2017·桂林模拟) 如图,二次函数y=ax2+bx+c的图象的一部分过点A(5,0),对称轴为直线x=1,则下列结论中错误的是()A . abc<0B . 当x<1时,y随x的增大而增大C . 4a﹣2b+c<0D . 方程ax2+bx+c=0的根为x1=﹣3,x2=5二、填空题 (共5题;共5分)16. (1分)(2018·东莞模拟) 写出一个二次项系数为1,且一个根是3的一元二次方程________.17. (1分) (2020八上·徐州期末) 如图,点A在线段BG上,正方形ABCD和正方形DEFG的面积分别为3和7,则△CDE的面积为________.18. (1分) (2017八上·孝南期末) 已知∠MON=45°,其内部有一点P关于OM的对称点是A,关于ON的对称点是B,且OP=2cm,则S△AOB=________.19. (1分)(2017·仙游模拟) 若一圆锥的轴截面是等边三角形,则其侧面展开图的圆心角是________.20. (1分) (2019九上·长葛期末) 如图,已知双曲线y= (k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD=________.三、计算题 (共2题;共10分)21. (5分)(2018·福田模拟) 计算:22. (5分) (2019九上·莲湖期中) 已知关于x的一元二次方程x2+(2m+1)x+m2-4=0有实数根,求m的取值范围.四、解答题 (共7题;共73分)23. (7分)(2017·微山模拟) 已知:如图,AD是△ABC的中线,∠ACE是△ABC的外角.(1)读下列语句,尺规作图,保留作图痕迹.①作∠ACE的角平分线,交BA延长线于点F;②过点D作DH∥AC,交AB于点H,连接CH.(2)依据以上条件,解答下列问题.①与△AHD面积相等的三角形是________;②若∠B=40°,∠F=30°,求∠BAC的度数.________24. (10分) (2018九上·绍兴月考) 张强和叶轩想用抽签的方法决定谁去参加“优胜杯”数学竞赛。

(完整)云南省2019年中考数学模拟试题及答案,推荐文档

(完整)云南省2019年中考数学模拟试题及答案,推荐文档

一元二次方程x 2-2x .2,021-==x x 1:对这两名运动员的成绩进行比较,下列
四个结论中,不正确的是
.甲运动员得分的极差大于乙运动员得分的极差如图3,△ABC 的周长为AC 对折,使顶点BC 边于点D ,交
,有一块含有点放在直尺的对边上
图730°. 已知A 点海班勤工俭学活动中获得2018元,班委会决定拿出不少于270元但不超过参加勤工俭学活动的同学购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.恤和每本影集的价格分别为多少元?1
1
y
图3图4。

2019年云南省红河州中考数学模拟试卷及答案(word解析版)

2019年云南省红河州中考数学模拟试卷及答案(word解析版)

云南省红河州2019年中考数学模拟试卷一、选择题(本大题共7个小题,每小题3分,共21分)1.(3分)(2019•红河州模拟)下列运算正确的是()A.(a3)2=a5B.a3+a2=a5C.(a3﹣a)÷a=a2D.a3÷a3=1考点:整式的混合运算分析:A、利用幂的乘方法则即可判定;B、利用同类项的定义即可判定;C、利用多项式除以单项式的法则计算即可判定;D、利用同底数的幂的除法法则计算即可.解答:解:A、(a3)2=a6,故错误;B、∵a3和a2不是同类项,∴a3+a2≠a5,故错误;C、(a3﹣a)÷a=a2﹣,故错误;D、a3÷a3=a0=1,正确.故选D.点评:此题主要考查了整式的运算,对于相关的法则和定义一定要熟练.2.(3分)(2019•红河州模拟)今年是我云南省实施新课改后的首次高考,报名总人数达21万人,是全省高考报名持续10年增长后首次下降,21万用科学记数法表示这个数,结果正确的是()A.2.1×104B.2.1×105C.21×104D.2.1×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将21万用科学记数法表示为2.1×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2019•红河州模拟)下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:各图形中:(1)不是轴对称图形,是中心对称图形,不符合题意;(2)是轴对称图形,不是中心对称图形,不符合题意;(3)既是轴对称图形,也是中心对称图形,符合题意;(4)既是轴对称图形,又是中心对称图形,符合题意.故既是轴对称图形又是中心对称图形的共有2个.故选B.点评:考查了中心对称图形与轴对称图形的概念.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.4.(3分)(2019•红河州模拟)如图,几何体左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一层有2个正方形,第二层左边有一个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)(2019•红河州模拟)如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A.70°B.35°C.30°D.20°考点:圆周角定理;垂径定理.分析:由于直径AB⊥CD,由垂径定理知B是的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠A的度数.解答:解:∵直径AB⊥CD,∴B是的中点;∴∠A=∠BOC=35°;故选B.点评:此题主要考查的是垂径定理和圆周角定理的综合应用,理解等弧所对的圆周角是圆心角的一半是解决问题的关键.6.(3分)(2019•红河州模拟)某校九年级8位同学一分钟跳绳的次数如下:168,164,183,168,150,172,176,185,则由这组数据得到的下列结论中错误的是()A.中位数为159 B.众数为168 C.极差为35 D.平均数为170.75考点:极差;算术平均数;中位数;众数.分析:将数据从小到大重新排列,由中位数、众数、极差及平均数的定义进行各选项的判断即可.解答:解:将数据从小到大排列为:150,164,168,168,172,176,183,185,A、中位数为=170,结论错误,故本选项正确;B、众数为168,结论正确,故本选项错误;C、极差=185﹣150=35,结论正确,故本选项错误;D、平均数为170.75,结论正确,故本选项错误;故选A.点评:本题考查了中位数、众数、极差及平均数的知识,属于基础题,掌握各自的定义是关键.7.(3分)(2019•红河州模拟)某县为发展教育事业,加强了对教育经费的投入,2008年投入3 000万元,预计2010年投入5 000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=5000考点:由实际问题抽象出一元二次方程.专题:增长率问题;压轴题.分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2008年投入3 000万元,预计2010年投入5 000万元即可得出方程.解答:解:设教育经费的年平均增长率为x,则2009的教育经费为:3000×(1+x)2010的教育经费为:3000×(1+x)2.那么可得方程:3000×(1+x)2=5000故选A.点评:本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.二、填空题(本大题共7个小题,每小题3分,共21分)8.(3分)(2019•红河州模拟)﹣100的倒数是﹣.考点:倒数.专题:计算题.分析:直接根据倒数的定义求解.解答:解:﹣100的倒数为﹣.故答案为﹣.点评:本题考查了倒数的定义:a(a≠0)的倒数为.9.(3分)(2019•红河州模拟)不等式组的解集为x<﹣3.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,∵解不等式①得:x≤﹣2,解不等式②得:x<﹣3,∴不等式组的解集是x<﹣3,故答案为x<﹣3.点评:本题考查了解一元一次不等式和解一元一次不等式组,注意:解不等式的规律是同大取大,同小取小,大大小小解不了,小大大小取中间.10.(3分)(2019•红河州模拟)函数y=中,自变量x的取值范围是x>1.考点:函数自变量的取值范围.专题:函数思想.分析:从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.解答:解:根据题意得到:x﹣1>0,解得x>1.故答案为:x>1.点评:本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.11.(3分)(2019•红河州模拟)已知扇形的面积为12π,半径等于6,则它的圆心角等于120度.考点:扇形面积的计算.专题:压轴题.分析:根据扇形的面积公式S=,得n=.解答:解:根据扇形的面积公式,得n===120°.点评:此题主要是能够灵活运用扇形的面积公式.12.(3分)(2019•红河州模拟)已知关于x的方程2x2﹣mx﹣6=0的一个根2,则m=1,另一个根为﹣.考点:一元二次方程的解.分析:根据一元二次方程的解的定义,将x=2代入已知方程,列出关于m的新方程,通过解该方程即可求得m的值;然后由根与系数的关系即可求得原方程的另一根.解答:解:设方程的另一根为x2.∵关于x的方程2x2﹣mx﹣6=0的一个根2,∴x=2满足该方程,∴2×22﹣2m﹣6=0,解得,m=1;由韦达定理知,2x2=﹣3,解得,x2=﹣;故答案是:1;﹣.点评:本题主要考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.(3分)(2019•红河州模拟)如图,在△ABC中,若DE∥BC,=,DE=4cm,则BC的长为12cm.考点:平行线分线段成比例.专题:计算题.分析:因为DE∥BC,可利用平行线分线段成比例定理求出BC的长.解答:解:∵DE∥BC,∴=,又∵=,∴,∴=,∴BC=12cm.故答案为12cm.点评:本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键.14.(3分)(2019•红河州模拟)计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是4.考点:尾数特征.分析:通过观察可发现个位数字的规律为4、0、8、2依次循环,再计算即可得出答案.解答:解:∵2009÷4=502…1,∴32009+1的个位数字与31+1=4的个位数字相同,为4.故答案为:4.点评:考查了尾数特征,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共9个小题,共58分)15.(5分)(2019•红河州模拟)先化简,再求值:,再选择一个使原式有意义的x代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=×=2x+8当x=1时,原式=2×1+8=10.点评:本题考查的是分式的化简求值,在选取x的值时要保证分式有意义.16.(6分)(2019•红河州模拟)如图,四边形ABCD中,AD∥BC,AF=CE,BE⊥AC于E,DF⊥AC于F.试判断DC与AB的位置关系,并说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:探究型.分析:根据ASA证△DFA≌△BEC,推出AD=BC,根据平行四边形的判定得出四边形ABCD 是平行四边形,根据平行四边形的性质推出即可.解答:解:DC∥AB,理由如下:∵AD∥BC,∴∠DAF=∠BCE,又∵BE⊥AC,DF⊥AC,∴∠DFA=∠BEC=90°,在△DFA和△BEC中∵,∴△DFA≌△BEC(ASA),∴AD=BC,∵AD∥BC∴四边形ABCD是平行四边形,∴DC∥AB.点评:本题考查了平行四边形的性质和判定和全等三角形的性质和判定的应用,关键是推出四边形ABCD是平行四边形,题目比较好,也可证△DFC≌△BEA,推出∠DCF=∠BAC,根据平行线的判定推出平行.17.(6分)(2019•红河州模拟)某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50米至D处,测得最高点A的仰角为60°.则该兴趣小组测得的摩天轮的高度AB约是多少米?(结果精确到1米)(参考数据:,)考点:解直角三角形的应用-仰角俯角问题.分析:分别在Rt△ABD和Rt△ABC中,用AB表示出BC、BD的长,进而由CD=BC﹣BD=50求出AB的长.解答:解:在Rt△ABC中,由∠C=45°,得AB=BC,在Rt△ABD中,tan60°=,得BD===AB,又因为CD=50,即BC﹣BD=50,得AB﹣AB=50,解得:AB≈118.答:摩天轮的高度AB约是118米.点评:此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.18.(6分)(2019•红河州模拟)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?考点:条形统计图;用样本估计总体;扇形统计图;众数.专题:压轴题;图表型.分析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.解答:解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.点评:题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)(2019•红河州模拟)如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.考点:列表法与树状图法.专题:计算题.分析:(1)由转盘被等分成三个扇形,上面分别标有﹣1,1,2,利用概率公式即可求得小静转动转盘一次,得到负数的概率;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解答:解:(1)∵转盘被等分成三个扇形,上面分别标有﹣1,1,2,∴小静转动转盘一次,得到负数的概率为:;(2)列表得:﹣1 1 2小静小宇﹣1 (﹣1,﹣1)(﹣1,1)(﹣1,2)1 (1,﹣1)(1,1)(1,2)2 (2,﹣1)(2,1)(2,2)∴一共有9种等可能的结果,两人得到的数相同的有3种情况,∴两人“不谋而合”的概率为=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2019•红河州模拟)如图,已知一次函数y=kx+b的图象和反比例函数的图象相交于A(3,m),B(n,﹣3)两点.(1)求此一次函数的解析式;(2)求△OAB的面积.考点:反比例函数与一次函数的交点问题.分析:(1)把点A、B的坐标代入反比例函数解析式求出m、n的值,从而得到点A、B,然后利用待定系数法求一次函数解析式解答;(2)根据一次函数解析式求出OC的长,再根据△OAB的面积=△OCB的面积+△OAC的面积列式计算即可得解.解答:解:(1)将A(3,m),B(n,﹣3)两点代入反比例函数得,m=1,n=﹣1,所以,A(3,1),B(﹣1,﹣3),又∵一次函数y=kx+b的图象过A(3,1),B(﹣1,﹣3)两点,∴,解得,所以,一次函数的解析式是y=x﹣2;(2)令x=0,则y=﹣2,∴点C的坐标为(0,﹣2),∴OC=2,△OAB的面积=△OCB的面积+△OAC的面积=×2×1+×2×3=4.点评:本题考查了反比例函数与一次函数的交点问题,比较简单,利用反比例函数解析式求出点A、B的坐标是解题的关键.21.(6分)(2019•红河州模拟)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B 的坐标为(﹣2,1).(1)画出△ABC绕C点顺时针旋转90°的△A1B1C1并写出A1点的坐标.(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.考点:作图-位似变换;作图-旋转变换.分析:(1)根据△ABC绕C点顺时针旋转90°的△A1B1C1,得出各对应点的坐标即可得出答案;(2)根据位似图形的性质得出对应点位置即可得出答案.解答:解:(1)如图所示:A1(﹣2,5);(2)如图所示:C1(﹣2,4).点评:此题主要考查了位似图形的画法以及图形的旋转变换,根据已知得出对应点位置是解题关键.22.(8分)(2019•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.考点:一次函数的应用;一元一次不等式的应用.分析:(1)派往A地x台乙型联合收割机,那么派往B地(30﹣x)台,派往A地的(30﹣x)台甲型收割机,派往B地(20﹣30+x)台,可得y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200,10≤x≤30.(2)根据题意可列不等式(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200≥79600,解出x看有几种方案.解答:解:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况(13分)①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.点评:本题考查的是用一次函数解决实际问题,根据题意列出函数式以及根据题意列出不等式结合自变量的取值范围确定方案.23.(9分)(2019•红河州模拟)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)先求出t=1时,AP和OQ的长,即可求得P1,Q1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l的解析式.(2)当直线PQ与圆C相切时,连接CP,CQ则有Rt△CMP∽Rt△QMC(M为PG 与圆的切点),因此可设当t=a秒时,PQ与圆相切,然后用a表示出AP,OQ的长即PM,QM的长(切线长定理).由此可求出a的值.(3)本题的关键是确定N的位置,先找出与P点关于直线l对称的点P′的坐标,连接P′Q,那么P′Q与直线l的交点即为所求的N点,可先求出直线P′Q的解析式,进而可求出N点的坐标.解答:解:(1)由题意得A、P1、Q1的坐标分别为A(0,8)、P1(1,8)、Q1(4,0)(1分)设所求抛物线解析式为y=ax2+bx+c则∴a=﹣,b=,c=8∴所求抛物线为y=﹣x2++8对称轴为直线l:x=;(2)设t=a时,PQ与⊙C相切于点M连接CP、CM、CQ,则PA=PM=a,QO=QM=4a又∵CP、CQ分别平分∠APQ和∠OQP,而∠APQ+∠OQP=180°∴∠PCQ=90°∴PC⊥CQ∴Rt△CMP∽Rt△QMC∴即∴a=±2由于时间a只能取正数,所以a=2即当运动时间t=2时,PQ与⊙C相切此时:P(2,8),Q(8,0);(3)点P关于直线l的对称点为P(﹣1,8)则直线PQ的解析式为:y=当x=时,y=﹣×+==.因此N点的坐标为(,).点评:本题主要考查了二次函数解析式的确定、切线的性质、切线长定理等知识点.。

2019年云南省中考数学试卷含答案

2019年云南省中考数学试卷含答案

数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前云南省2019年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)一、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)1.若零上8℃记作8+℃,则零下6℃记作℃.2.分解因式:221x x -+=.3.如图,若AB CD ∥,140∠=度,则2∠=度.4.若点(3,5)在反比例函数(0)ky k x=≠的图象上,则k =.5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A ,B ,C ,D ,E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是.6.在平行四边形ABCD 中,30A ∠=,AD =,4BD =,则平行四边形ABCD 的面积等于.二、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)7.下列图形既是轴对称图形,又是中心对称图形的是()A B C D8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.一个十二边形的内角和等于()A .2160 B .2080C .1980D .180010.要使12有意义,则x 的取值范围为()A .0x ≤B .1x ≥-C .0x ≥D .1x ≤-11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A .48πB .45πC .36πD .32π12.按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……第n 个单项式是()A .121(1)n n x ---B .211()n n x --C .121(1)n n x -+-D .211()n n x +-13.如图,ABC △的内切圆O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形AEOF )的面积是()A .4B .6.25C .7.5D .914.若关于x 的不等式组2(1)2,0x a x -⎧⎨-⎩><的解集为x a >,则a 的取值范围是()A .2a <B .2a ≤C .2a >D .2a ≥三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分6分)计算:2013(π5)(1)----+-.毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)16.(本小题满分6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x ,y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(),x y 所有可能出现数学试卷第5页(共18页)数学试卷第6页(共18页)的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(本小题满分8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(本小题满分8分)已知k 是常数,抛物线223)6(y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在抛物线223)6(y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(本小题满分9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(本小题满分12分)如图,AB 是C 的直径,M ,D 两点在AB 的延长线上,E 是C 上的点,且2DE DB DA = .延长AE 至F ,使AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE △∽△;(2)求DA ,DE 的长;(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共18页)数学试卷第8页(共18页)云南省2019年初中学业水平考试数学答案解析一、填空题1.【答案】6-【解析】零上记为正数,则零下记为负数,故答案为6-.【考点】正负数表示两个相反意义的量.2.【答案】2(1)x -【解析】222211(1)x x x -+=- ,故答案为2(1)x -.【考点】分解因式.3.【答案】140【解析】∵AB CD ∥,∴同位角相等,∴1∠与2∠互补,∴218040140∠=-= ,故答案为140.【考点】平行线的性质,平角的意义.4.【答案】15【解析】∵点(3,5)在反比例函数k y x =上,∴53k=,∴3515k =⨯=.【考点】反比例函数的性质.5.【答案】甲班【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为4030%12⨯=,∴D 等级较多的人数是甲班,故答案为甲班.【考点】统计图的应用.6.【答案】或【解析】过点D作DE AB⊥于E ,∵30A ∠=,∴sin30DE AD == ,cos306AE AD == ,在Rt DBE△中,2BE =,∴8A B A E B E =+=,或4AB AE BE =-=,∴平行四边形ABCD的面积为8⨯=或4⨯=,故答案为或.【考点】平行四边形的性质,特殊角的三角函数,勾股定理.二、选择题7.【答案】B【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选B .【考点】轴对称图形和中心对称图形的概念.8.【答案】C【解析】科学记数法较大数10N a ⨯,其中110a ≤<,N 为小数点移动的位数.∴6.88,5a N ==,故选C .【考点】科学记数法.9.【答案】D【解析】多边形内角和公式为(2)180n -⨯ ,其中n 为多边形的边的条数.∴十二边形内角和为(122)1801800-⨯= ,故选D .【考点】多边形的内角和公式.10.【答案】【解析】要使2有意义,则被开方数1x +要为非负数,即10x +≥,∴1x -≥,故选B .【考点】二次根式有意义的条件.11.【答案】A【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴数学试卷第9页(共18页)数学试卷第10页(共18页)2π8πr =,∴4r=,圆锥的全面积等于2ππ16π32π48πS S rl r +=+=+=侧底,故选A .【考点】圆锥的侧面展开图,圆锥的全面积.12.【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +,故选C .【考点】探索规律.13.【答案】A【解析】∵5AB =,13BC =,12C A =,∴222AB AC BC +=,∴ABC △为直角三角形,且90A ∠=,∵O 为ABC △内切圆,∴90AFO AEO ∠=∠=,且AE AF =,∴四边形AEOF 为正方形,设O 的半径为r ,∴OE OF r ==,∴2AEOF S r =四边形,连接AO ,BO ,CO ,∴ABC AOB AOC BOC S S S S =++△△△△,∴1()2AB AC BC ++12AB AC = ,∴2r =,∴24AEOF S r ==四边形,故选A .【考点】勾股定理逆定理,正方形的判定与性质,切线长定理,解方程组.14.【答案】D【解析】解不等式组得2x >,x a >,根据同大取大的求解集的原则,∴2a >,当2a =时,也满足不等式的解集为2x >,∴2a ≥,故选D .【考点】解不等式组.三、解答题15.【答案】解:9121=+--原式7=【解析】解:9121=+--原式7=【考点】实数的运算.16.【答案】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△.∴B D ∠=∠.【解析】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△.∴B D ∠=∠.【考点】全等三角形的判定及性质.17.【答案】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90;(2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【解析】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90;(2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【考点】统计的综合应用.18.【答案】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=.解得60x =,经检验,60x =是原分式方程的解.∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60km /h 和90km /h .【解析】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=.解得60x =,经检验,60x =是原分式方程的解.∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60km /h 和90km /h .数学试卷第11页(共18页)数学试卷第12页(共18页)【考点】列分式方程解应用题.19.【答案】解:(1)方法一:列表法如下:xy12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)5(4,1)(4,2)(4,3)(4,4)(),x y 方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.∵x y +为奇数的有8种情况,∴81()162P ==甲获胜.∵x y +为偶数的有8种情况,∴81()162P ==乙获胜.∴()()P P =甲获胜乙获胜.∴这个游戏对双方公平.【解析】解:(1)方法一:列表法如下:xy12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)5(4,1)(4,2)(4,3)(4,4)(),x y 方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.∵x y +为奇数的有8种情况,∴81()162P ==甲获胜.∵x y +为偶数的有8种情况,∴81()162P ==乙获胜.∴()()P P =甲获胜乙获胜.∴这个游戏对双方公平.【考点】求随机事件的概率.20.【答案】解:(1)证明:∵AO OC =,BO OD =,∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角,∴AO B O AD AD O ∠=∠+∠.∴OAD ADO ∠=∠.∴AO OD =.又∵2AC AO O C AO =+=,2BD BO OD OD =+=,∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3O D C x ∠=,则3O D C O C D x ∠=∠=.在ODC △中,180DOC OCD CDO ∠+∠+∠= .∴433180x x x ++= ,解得18x = .∴31854ODC ∠=⨯= .∴90905436ADO ODC ∠=-∠=-= .【解析】解:(1)证明:∵AO OC =,BO OD =,∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角,∴AOB OAD ADO ∠=∠+∠.∴OAD ADO ∠=∠.∴AO OD =.又∵2AC AO OC AO =+=,2BD BO OD OD =+=,∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3ODC x ∠=,则3ODC OCD x ∠=∠=.在ODC △中,180DOC OCD CDO ∠+∠+∠= .∴433180x x x ++= ,解得18x = .∴31854ODC ∠=⨯= .∴90905436ADO ODC ∠=-∠=-= .【考点】矩形的判定与性质,三角形外角的性质,等腰三角形的判定,三角形的内角和定数学试卷第13页(共18页)数学试卷第14页(共18页)理.21.【答案】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去.当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意.∴3k =-.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为2-或2.当2x =时,5y =-;当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--.【解析】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去.当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意.∴3k =-.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为2-或2.当2x =时,5y =-;当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--.【考点】二次函数的图象与性质.22.【答案】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+,266200220017()()()200()12502W x y x x x =-=--+=-+-∵2000-<,610x ≤≤,当172x =时,W 最大,且W 的最大值为1250.当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-.∵2000>,∴2001200W x =-随x 增大而增大.又∵1012x <≤,∴当12x =时,W 最大,且W 的最大值为1200.∵12501200>,∴W 的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.【解析】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+,266200220017()()()200(12502W x y x x x =-=--+=-+-∵2000-<,610x ≤≤,当172x =时,W 最大,且W 的最大值为1250.当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-.∵2000>,∴2001200W x =-随x 增大而增大.又∵1012x <≤,∴当12x =时,W 最大,且W 的最大值为1200.∵12501200>,∴W 的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.【考点】函数的综合应用.23.【答案】解:(1)证明:2DE DB DA = ,∴DE DBDA DE=.又∵BDE EDA ∠=∠,数学试卷第15页(共18页)数学试卷第16页(共18页)∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点,∴90AEB ∠= ,即BE AF ⊥.又∵AE EF =,10BF =,∴10AB BF ==.∴DEB DAE △△,4os 5c BED ∠=,∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=.在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE ==.∴DEB DAE △∽△,∴6384DE DB EB DA DE AE ====.∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解.∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩.(3)解:连接FM.∵BE AF ⊥,即90BEF ∠= ,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上,∴点M 在以BF 为直径的圆上.∴FM AB ⊥.在Rt AMF △中,由cos FAM AMAF∠=得,cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯.∴160643527535MD DA AM -==-=.∴35235MD =.【解析】解:(1)证明:2DE DB DA = ,∴DE DBDA DE=.又∵BDE EDA ∠=∠,∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点,∴90AEB ∠= ,即BE AF ⊥.又∵AE EF =,10BF =,∴10AB BF ==.∴DEB DAE △△,4os 5c BED ∠=,∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=.在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE =.∴DEB DAE △∽△,∴6384DE DB EB DA DE AE ====.∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解.数学试卷第17页(共18页)数学试卷第18页(共18页)∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩.(3)解:连接FM.∵BE AF ⊥,即90BEF ∠= ,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上,∴点M 在以BF 为直径的圆上.∴FM AB ⊥.在Rt AMF △中,由cos FAM AMAF∠=得,cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯.∴160643527535MD DA AM -==-=.∴35235MD =.【考点】相似三角形的判定与性质,圆的性质,等腰三角形的判定,锐角三角函数,勾股定理.。

2019年4月云南省红河州开远市中考数学模拟试卷(有答案解析)最新

2019年4月云南省红河州开远市中考数学模拟试卷(有答案解析)最新

2019年云南省红河州开远市中考模拟试卷(4月份)数学一.填空题(共6小题,满分18分)1.一个数的相反数等于它本身,则这个数是.2.分解因式:x2﹣2x+1= .3.半径为4,圆心角为120°的弧长为;弧长为2π,半径为6的圆心角为.4.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x 的函数解析式是(不写定义域).5.三视图都相同的几何体是.(至少填两个)6.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.二.选择题(共8小题,满分32分,每小题4分)7.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( )A .36×107B .3.6×108C .0.36×109D .3.6×1098.下列运算结果正确的是( )A .a 3+a 4=a 7B .a 4÷a 3=aC .a 3•a 2=2a 3D .(a 3)3=a 69.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D . 10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为( )A .2a+5B .2a+8C .2a+3D .2a+211.如图,在底边BC 为2,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+B .2+2C .4D .312.某中学组织了一次读书活动,随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数和众数分别是( )A.2,1 B.1,1.5 C.1,2 D.1,113.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.414.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁三.解答题(共9小题,满分70分)15.(6分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.16.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.17.(8分)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为度.18.(6分)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?19.(7分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)20.(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE ∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.21.(8分)如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数解析式;(2)求直线BC的函数解析式.22.(9分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(12分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.参考答案与试题解析一.填空题1.一个数的相反数等于它本身,则这个数是0 .【分析】根据相反数的定义解答.【解答】解:0的相反数是0,等于它本身,∴相反数等于它本身的数是0.故答案为:0.2.分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.3.半径为4,圆心角为120°的弧长为;弧长为2π,半径为6的圆心角为60°.【分析】把半径、圆心角代入弧长公式,求出弧长;把弧长、半径代入弧长公式,求出其圆心角.【解答】解:弧长公式为:l=,把r=4,n=120代入公式,得l==;把l=2π,r=6代入公式,得2π=,解得n=60.答案:,60°.4.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x 的函数解析式是S=﹣2x2+10x (不写定义域).【分析】根据题意列出S与x的二次函数解析式即可.【解答】解:设平行于墙的一边为(10﹣2x)米,则垂直于墙的一边为x米,根据题意得:S=x(10﹣2x)=﹣2x2+10x,故答案为:S=﹣2x2+10x5.三视图都相同的几何体是球,正方体.(至少填两个)【分析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.【解答】解:三视图都相同的几何体是球,正方体.故答案为:球,正方体.6.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2, +2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.二.选择题(共8小题,满分32分,每小题4分)7.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米()A.36×107B.3.6×108C.0.36×109D.3.6×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将360000000用科学记数法表示为:3.6×108.故选:B.8.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a6【分析】根据同底数幂的除法、同底数幂的乘法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵a3+a4≠a7,∴选项A不符合题意;∵a4÷a3=a,∴选项B符合题意;∵a3•a2=a5,∴选项C不符合题意;∵(a3)3=a9,∴选项D不符合题意.故选:B.9.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5 B.2a+8 C.2a+3 D.2a+2【分析】利用已知得出矩形的长分为两段,即AB+AC,即可求出.【解答】解:如图所示:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.故选:A.11.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4 D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.12.某中学组织了一次读书活动,随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数和众数分别是()A.2,1 B.1,1.5 C.1,2 D.1,1【分析】先将图中的数据按照从小到大的顺序排列,找出中位数,再找出图中出现次数最多的数据,求出众数即可.【解答】解:将图中的数据按照从小到大的顺序排列,可得出第20名和第21名学生的阅读时间均为1小时,可得出中位数为: =1(小时),由图可得,阅读时间为1小时的学生人数最多,故可得出众数为:1小时.故选:D.13.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.4【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,由CD=OD ﹣OC即可得出结论.【解答】解:∵AB=16,OD⊥AB,OA=10,∴AC=AB=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选:D.14.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁【分析】根据相似三角形的对应高的比等于相似比,代入数值即可求得结果.【解答】解:∵△RPQ∽△ABC,∴,即,∴△RPQ的高为6.故点R应是甲、乙、丙、丁四点中的乙处.故选:B.三.解答题(共9小题,满分70分)15.(6分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC.【解答】证明:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).16.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.17.(8分)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E 五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车3000 辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为54 度.【分析】(1)根据B类别车辆的数量及其所占百分比可得总数量;(2)用总数量乘以C类别的百分比求得其数量,据此即可补全条形图;(3)用360°乘以D类车辆占总数量的比例即可得出答案.【解答】解:(1)该汽车交易市场去年共交易二手轿车1080÷36%=3000辆,故答案为:3000;(2)C类别车辆人数为3000×25%=750辆,补全条形统计图如下:(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为360°×=54°,故答案为:54.18.(6分)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【分析】(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据表格中的数据和意义列出方程并解答;(2)总利润=甲的利润+乙的利润.【解答】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:5x+9(140﹣x )=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.19.(7分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.20.(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.【分析】(1)如图,首先证明∠COD=90°;然后证明∠OCE=∠ODE=90°,即可解决问题.(2)如图,首先证明CO=AO=3,∠AOB=90°;运用勾股定理求出BO,即可解决问题.【解答】解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.(2)∵四边形ABCD为菱形,∴AO=OC=AC=3,OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,∴四边形CODE的周长=2(3+4)=14.21.(8分)如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数解析式;(2)求直线BC的函数解析式.【分析】(1)利用待定系数法即可解决问题;(2)求出B、C两点坐标,利用待定系数法即可解决问题;【解答】解:(1)由题意,∴,∴抛物线的解析式为y=x2﹣2x﹣3.(2)对于抛物线y=x2﹣2x﹣3,令y=0,得到x=﹣1或3,∴B(3,0),C(0,﹣3),设直线BC的解析式为y=mx+n,则有,解得,∴直线BC的解析式为y=x﹣3.22.(9分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得: 2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤112,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣0.1×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.23.(12分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE﹣HE=,再根据垂径定理得到BH=HG=,所以BG=1.【解答】(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.。

云南省红河哈尼族彝族自治州中考数学一模试卷

云南省红河哈尼族彝族自治州中考数学一模试卷

云南省红河哈尼族彝族自治州中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018八上·罗湖期末) 若 + = (b为整数),则a的值可以是()A .B . 27C . 24D . 202. (2分)(2020·宽城模拟) 预计到2025年,中国5G用户将超过460000000,将460000000这个数用科学记数法表示为()A . 0.46×109B . 4.6×109C . 4.6×108D . 46×1073. (2分)用因式分解法解一元二次方程x(x-1)-2(1-x)=0,正确的步骤是()A . (x+1)(x+2)=0B . (x+1)(x-2)=0C . (x-1)(x-2)=0D . (x-1)(x+2)=04. (2分) (2019七上·静安期末) 下列说法中错误的是()A . 轴对称图形只有一条对称轴B . 中心对称图形只有一个对称中心C . 成轴对称的两个图形只有一条对称轴D . 成中心对称的两个图形只有一个对称中心5. (2分)(2019·河北) 某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A . ②→③→①→④B . ③→④→①→②C . ①→②一④→③D . ②→④→③→①6. (2分)某个长方体主视图是边长为1cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是()A .B .C .D .7. (2分) (2016七下·莒县期中) 小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是().A .B .C .D .8. (2分) (2020九上·龙岗期末) 如图,二次函数y=ax2+bx+c的图象与x轴交于点(-1,0),对称轴为直线x=1,2<c<3,下列结论:①abc>0;②9a+3b+c=0;③若点M(,y1),点N(,y2)是此函数图象上的两点,则y1= y2;④-1<a< .其中正确的个数()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)9. (1分) (2018八上·新乡期末) 分解因式 -2a2+8ab-8b2=________.10. (1分)(2019·哈尔滨模拟) 甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为________.11. (1分)(2017·大理模拟) 如果圆锥的侧面展开图是圆心角为120°,半径为3cm的扇形,那么这个圆锥的高为________ cm.12. (1分) (2017八上·金牛期末) 如图,直线y=﹣x+m与y=nx+5n(n≠0)的交点横坐标为﹣3,则关于的不等式﹣x+m>nx+5n>0的整数解是________.13. (1分) (2020九上·港南期末) 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.14. (1分)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为________元.15. (1分)(2017·桂平模拟) 如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为________.(结果保留π)16. (1分)如图,正比例函数与反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影面积的和是________.三、解答题 (共10题;共95分)17. (5分) (2015九下·武平期中) 解不等式组,并在数轴上表示解集.18. (10分) (2020八下·兴化期末)(1)计算:;(2)解方程: .19. (13分)(2017·临沂) 为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1) x=________,a=________,b=________;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.20. (7分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次________变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点________(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.21. (11分)暑期,某学校将组织部分优秀学生分别到A、B、C、D四个地方进行夏令营活动,学校按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是________ 张,补全统计图;(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么李明同学抽到去B地的概率是多少?(3)若有一张去A地的车票,红红和天天都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给红红,否则票给天天(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.22. (5分)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.23. (10分)(2017·郴州) 如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)24. (14分)(2017·平顶山模拟) 已知函数y=2+ .(1)写出自变量x的取值范围:________;(2)请通过列表,描点,连线画出这个函数的图象:①列表:12348 …x…﹣8﹣4﹣3﹣2 ﹣1﹣y…10 ﹣2﹣61064 3 …②描点(在下面给出的直角坐标系中补全表中对应的各点);③连线(将图中描出的各点用平滑的曲线连接起来,得到函数的图象).(3)观察函数的图象,回答下列问题:①图象与x轴有________个交点,所以对应的方程2+ =0实数根是________;②函数图象的对称性是________.A、既是轴对称图形,又是中心对称图形B、只是轴对称图形,不是中心对称图形C、不是轴对称图形,而是中心对称图形D、既不是轴对称图形也不是中心对称图形(4)写出函数y=2+ 与y= 的图象之间有什么关系?(从形状和位置方面说明)25. (10分)(2018·河池模拟) 某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.26. (10分) (2019八下·谢家集期末) 已知一次函数的图象经过,两点.(1)求这个一次函数的解析式;(2)试判断点是否在这个一次函数的图象上;参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共95分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、。

2019届云南省红河州开远市中考数学一模试卷((有答案))最新

2019届云南省红河州开远市中考数学一模试卷((有答案))最新

2019届云南省红河州开远市中考一模试卷数学一、填空题:本大题共6小题,每小题3分,满分18分.1.﹣8的相反数是.2.分解因式:x2﹣1= .3.半径为2的圆中,60°的圆心角所对的弧的弧长为.4.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.5.若一个几何体的三视图相同,则这个几何体是.(填一个即可)6.如图,正比例函数y1=x的图象与反比例函数y2=(k≠0)的图象相交于A、B两点,点A的纵坐标为2.当y1>y2时,自变量x的取值范围是二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A.2.18009×108B.0.218009×108C.2.18009×107D.21.8009×1068.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a69.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.10.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D到了点F的位置,则S△ADE:S是()▱BCFDA.1:4 B.1:3 C.1:2 D.1:111.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°12.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.313.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸14.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.16.(6分)先化简,再求值:﹣÷,其中a=.17.(8分)为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m 和n 的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.18.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?19.(7分)小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.20.(8分)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.21.(8分)如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3,0)和点C(0,3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积.22.(9分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y (元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证纯收入又能吸引顾客?23.(12分)如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.参考答案与试题解析一、填空题1.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣8的相反数是8.故答案为:8.2.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).3.【分析】将n=60,r=2代入弧长公式l=进行计算即可.【解答】解:l===π.故答案为π.4.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)25.【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球体的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.故填球体或正方体.6.【分析】由点A的纵坐标为2结合正比例函数图象上点的坐标特征可得出点A 的坐标,利用正反比例函数的对称性可得出点B的坐标,观察函数图象,找出正比例函数图象在反比例函数图象上方时x的取值范围,此题得解.【解答】解:∵点A在正比例函数y1=x的图象上,且点A的纵坐标为2,∴点A的坐标为(2,2).∵正、反比例函数图象关于原点中心对称,∴点B的坐标为(﹣2,﹣2).观察函数图象,可知:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象上方,∴当y1>y2时,自变量x的取值范围是﹣2<x<0或x>2.故答案为:﹣2<x<0或x>2.二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:21800900=2.18009×107,故选:C.8.【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.9.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.10.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED =1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱BCFD的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S=1:4,▱B CFD故选:A.11.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.12.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,1.4万步,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选:B.13.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,如图所示,设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.14.【分析】根据相似三角形的对应角相等即可得出.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选D.三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.【分析】先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS,即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).16.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷====,当a=时,原式=.17.【分析】(1)根据植4棵的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以该班共有人数为:11÷22%=50(人);(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7,m=50﹣(4+18+11+7)=10;(3)所求扇形圆心角的度数为:360°×=72°.18.【分析】设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.【解答】解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=34.答:从甲班抽调了35人,从乙班抽调了34人.19.【分析】(1)首先根据题意列出图表,然后由图表求得所有可能的结果;(2)由(1)列出的图表可得出所有出现的结果,再根据概率公式即可求出答案.【解答】解:(1)列表如下:),∴P(两数之积为负数)==.20.【分析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.【解答】(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.21.【分析】(1)利用待定系数法分别求一次函数和抛物线解析式;(2)过点D作DE∥y轴交直线BC于E,如图,先配方得到y=(x﹣2)2﹣1.则D(2,﹣1),再确定E(2,1),然后利用S△DBC=S△CDE+S△BDE进行计算.【解答】解:(1)设直线BC的解析式y=kx+b(k≠0)将点B(3,0)C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3.将B(3,0),C(0,3)代入抛物线的解析式得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)过点D作DE∥y轴交直线BC于E,如图,∵y=x2﹣4x+3=(x﹣2)2﹣1.∴D(2,﹣1),当x=2时,y=﹣x+3=1,则E(2,1),∴S△DBC=S△CDE+S△BDE=×3×DE=×3×(1+1)=3.22.【分析】(1)①利用每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),以及每份套餐售价不超过10元,每天可销售400份得出等式求出即可;②由题意得400(x﹣5)﹣600≥800,解出x的取值范围即可.(2)由题意可得y与x的函数关系式,再求出当y=1560时x的值即可.【解答】解:(1)①y=400(x﹣5)﹣600.(5<x≤10),②依题意得:400(x﹣5)﹣600≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣600,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣600=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.23.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.【解答】解:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===2;(2)①证明:如图3,连接OD,交CB于点F,连接BD,∵=,∴∠D BC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.。

云南省红河州开远市2018-2019学年九年级数学学业水平考试模拟试题

云南省红河州开远市2018-2019学年九年级数学学业水平考试模拟试题

云南省红河州开远市2019年初中学业水平复习统一检测 数 学 试 题 卷(全卷共三大题,23小题,满分:120分,考试用时:120分钟)注意事项:本卷为试题卷,考生解题作答必须在答题卡上,答案书写在答题卡相应的位置上,在试题卷、草稿纸上作答无效.一、填空题:本大题共6小题,每小题3分,满分18分. 1.9-= . 2.若分式62xx-有意义,则实数x 的取值范围是 . 3.一个几何体的三视图如图所示,则这个几何体的名称是 .4.因式分解:x 2﹣x = .5.小明某次月考,语文、数学、英语的平均成绩是93分,其中语文成绩是90分,英语成绩是95分,则数学成绩是 分.左视图主视图俯视图6.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则BED ∠的度数为 .二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.下列四个通信商标图中,不是中心对称图形的是( )8.改革开放40年,是我国逐步消除贫困的40年,2019年是脱贫攻坚关键的一年,中共中央政治局委员、国务院扶贫开发领导小组组长胡春华表示,2019年要确保再减少农村贫困人口1000万左右,基本完成“十三五”易地扶贫搬迁规划建设任务.其中“1000万”用科学记数法表示为( ) A .3110⨯B .7110⨯C .8110⨯D .11110⨯9.下列计算,正确的是( ) A .2(2)--=4 B .0322-⨯18=-C .46÷(﹣2)6=64D210.有一条圆弧的长为2πcm ,半径为2cm ,则这条圆弧所对的圆心角的度数是( )A .90°B .120°C .135°D .180°A B C DBCD EA11.不等式组312840>xx-⎧⎨-⎩≥的解集在数轴上表示为( )12.某市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,最终以每平方米12150元的均价销售,则平均每次下调的百分率是()A.11% B.10% C.9% D.8%13.如图,圆的两条弦AB与CD相交于点E ,且=,∠A=40°,则∠CEB的度数为( )A.50°B.70°C.80°D.90°14.如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,1),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,…,按此规律继续作下去,得到等边三角形O2018A2018A2019,则点A2019的纵坐标为( )AEDCBA .201612⎛⎫ ⎪⎝⎭B .201712⎛⎫ ⎪⎝⎭C .201812⎛⎫ ⎪⎝⎭D .201912⎛⎫ ⎪⎝⎭三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分6分)先化简,再求值:22121121x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中x = -3.16.(本小题满分6分)如图,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.求证:△ABC ≌△ADE .12EDCBA17.(本小题满分8分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.18.(本小题满分7分)如图,反比例函数ykx=的图象与一次函数y12=-x的图象分别交于M,N两点,已知点M的坐标是(2,)m-.(1)求反比例函数的表达式;(2)点P为y轴上的一点,当∠MPN为直角时,请求出点P的坐标.19.(本小题满分7分)某区域平面示意图如图所示,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°的方向上,乙勘测员在B 处测得点O 位于南偏西73.7°的方向上,再测得AC =840m ,BC =500m .请求出点O 到公路BC 的距离. 参考数据:sin 73.7°2425≈,cos 73.7°725≈,tan 73.7°247≈.20.(本小题满分7分)在一个不透明的布袋里装有四个标号为1,2,3,4的小球,它们的形状、大小、质地完全相同.小明从布袋里随机取出一个小球,记下小球上的数字,这个数字作为横坐标x ,再把这个小球放回不透明的布袋里搅匀,小红从布袋里随机取出一个小球,记下小球上的数字,这个数字作为纵坐标y ,这样确定了一个点Q 的坐标(,)x y .(1)请用画树形图或列表法,写出点Q 所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy ≥6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?请说明理由.B21.(本小题满分8分)中国共产党第十九次全国代表大会提出了要坚定实施七大战略,某数学兴趣小组从中选取了四大战略进行调查,A:科教兴国战略,B:人才强国战略,C:创新驱动发展战略,D:可持续发展战略,要求被调查的每位学生只能从中选择一个自已最关注的战略,根据调查结果,该小组绘制了如图所示的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:(1)求本次抽样调查的学生人数;(2)求出统计图中m、n的值;(3)在扇形统计图中,求战略B所在扇形的圆心角度数;(4)若该校有3000名学生,请估计出选择战略A和B共有的学生数.四大战略扇形统计图人数/人22.(本小题满分9分)如图,AB 是⊙O 的直径,AF 是⊙O 的切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作AD 的平行线与AF 相交于点F ,已知CD =,BE =1. (1)求弦AD 的长;(2)求证:直线FC 是⊙O 的切线.23.(本小题满分12分)如图①,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0,6),点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向点A 移动,同时点Q 从点A 出发,沿线段AB 以每秒2个单位长度的速度向点B 移动,当点P 与点A 重合时移动停止.设点P 移动的时间为t 秒. (1)当△CBQ 与△PAQ 相似时,求t 的值;(2)当t =1时,抛物线y =x 2+bx +c 经过P ,Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图②所示,该抛物线上是否存在点D ,使∠MQD 12∠MKQ ?若存在,请求出所有满足条件的点D 的坐标;若不存在,请说明理由.图①图②E FDCOBA云南省红河州开远市2019年初中学业水平复习统一检测数学参考答案及评分标准一、填空题:本大题共6小题,每小题3分,满分18分.二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤. 15.(6分) 解:原式=()()2211121(1)---+-÷++x x x x x x …………………………………………1分22211(1)12--++=⋅+-x x x x x …………………………………………2分 ()22(1)12--+=⋅+-x x x x x …………………………………………3分 =﹣x (x +1).…………………………………………4分∴当x =-3时,原式=-(-3)×(-3+1)=-6. ……………………………………6分 16.(6分)证明:∵∠1=∠2,∵∠DAC +∠1=∠2+∠DAC . ∴∠BAC =∠DAE . ……………………2分在△ABC 和△ADE 中, ∠=∠⎧⎪=⎨⎪∠=∠⎩B DAB ADBAC DAE , ……………………5分∴△ADE ≌△ABC (ASA ). ……………………6分 17.(8分)解:设每枚黄金重x 两,每枚白银重y 两. ……………………1分12EDCBA由题意得()()91110813=⎧⎨+-+=⎩x yy x x y .……………………4分解得14341174⎧=⎪⎪⎨⎪=⎪⎩x y .……………………7分答:每枚黄金重1434两,每枚白银重1174两. ……………………8分18.(7分)解:(1)∵点M (﹣2,m )在一次函数y 12=-x 的图象上,∴m 12=-⨯(﹣2)=1.………………………………1分∴M (﹣2,1).∵反比例函数y =kx的图象经过点M (﹣2,1),∴k =﹣2×1=﹣2. ∴反比例函数的表达式为2=-y x. ………………………………3分(2)∵正比例函数y 12=-x 的图象与反比例函数y =kx的图象分别交于M ,N 两点,点M (﹣2,1), ∴N (2,﹣1).∵点P 为y 轴上的一点, ∴设P (0,n ),………………………………4分∵∠MPN 为直角,∴△MPN 是直角三角形,∴PM 2+PN 2=MN 2. ∴(0+2)2+(n ﹣1)2+(0﹣2)2+(n +1)2=(2+2)2+(﹣1﹣1)2,解得n. ∴点P 的坐标为(0)或(0,).………………………………7分19.(7分)解:作OM ⊥BC 于M ,ON ⊥AC 于N . ……………………1分 则四边形ONCM 为矩形.∴ON =MC ,OM =NC .设OM =x ,则NC =x ,AN =840﹣x . 在Rt △ANO 中,∠OAN =45°.∴ON =AN =840﹣x ,则MC =ON =840﹣x .……………3在Rt △BOM 中,724==∠OM BM tan OBM x .……………5分由题意得,840﹣x 724+x =500. 解得,x =480.……………………6分 答:点O 到公路BC 的距离为480m . …………………7分20.(7分)解:(1)画树形图得:则点Q 所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.………………………4分列表得:1 1234246836912481216(1,1) 1 2 开始3 2 横坐标x : 43 2 3 1 24 3 1 2 4 3 纵坐标y : 坐标(x ,y ): (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)积xy :BM(请参考树形图给分) (2)这个游戏是公平的.理由如下:………………………………5分理由:∵x、y满足xy≥6有:(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4),共8种情况,x、y满足xy<6有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(4,1),共8种情况.∴P(小明胜)18162==,P(小红胜)18162==.∴这个游戏是公平的.………………………………7分21.(8分)解:(1)本次抽样调查的学生人数为105126360÷=300人.………………2分(2)m=300﹣(105+90+45)=60.………………3分n90300=⨯100=30.………………4分(3)战略B所在扇形的圆心角度数为360°60300⨯=72°.………………6分(4)估计选择A和B战略的学生有300010560300+⨯=1650人.………………8分22.(9分)(1)解:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE12=CD12=⨯.设OC=x,∵BE=1,∴OE=x﹣1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣1)22.解得x=2.………………3分∴OA=OC=2,OE=1.∴AE=3.在Rt△AED中,AD=4分(2)证明:∵AF是⊙O切线,∴AF⊥AB.∵CD⊥AB,∴AF∥CD.∵CF∥AD,∴四边形ADCF是平行四边形.EFDCOBA∵AD =CD ,∴平行四边形ADCF 是菱形. ………………7分在Rt △ACE 中,AC=AC =AD =CD .∴△ACD 是等边三角形.∵四边形ADCF 是平行四边形,∴AF =CD ,CF =AD .∴AF =CF =AC . ∴三角形ACF 是等边三角形.∴∠ACF =60°. 在Rt △OCE 中,∵tan ∠OCE===OE CE ,∴∠OCE =30°.∴∠OCA =∠ACD -∠OCE =60°-30°=30°.∴∠OCF =∠ACF +∠OCA =60°+30°=90°.∵点C 在⊙O 上,∴FC 是⊙O 的切线.………………9分 23.(12分)解:(1)如图①,∵当点P 与点A 重合时运动停止,且△P AQ 可以构成三角形,∴0<t <3.……1分∵四边形OABC 是矩形,∴∠B =∠P AQ =90°. ∴当△CBQ 与△P AQ 相似时,存在两种情况: ①当△QBC ∽△P AQ 时,∴=BC BQAQ AP ,∴36223-=-t t t .∴4t 2﹣15t +9=0.∴(t ﹣3)(4t 3-)=0. ∴t 1=3(舍),t 234=. (4)②当△CBQ ∽△P AQ 时,∴=CB BQ PA AQ .∴36232-=-t t t.∴t 2﹣9t +9=0.∴t =7,∴t 不符合题意,舍去. 综上所述,当△CBQ 与△P AQ 相似时,t =34或t .………………………6分(2)当t =1时,P (1,0),Q (3,2).把P (1,0),Q (3,2)代入抛物线y =x 2+bx +c 中得10932++=⎧⎨++=⎩b c b c ,解得32=-⎧⎨=⎩b c .图①∴抛物线:y =x 2﹣3x +2=23124⎛⎫-- ⎪⎝⎭x .∴顶点k (32,14-).……………………………7分连接MQ ,∵Q (3,2),M (0,2),∴MQ ∥x 轴,作抛物线对称轴,交MQ 于E ,∴KM =KQ .∴KE ⊥MQ . ∴∠MKE =∠QKE 12=∠MKQ .设DQ 交y 轴于H . (ⅰ)当点D 在直线MQ 的上方时,如图②所示, 则∠DQM 12=∠MKQ =∠MKE . ∵∠HMQ =∠MEK =90°,∴△HMQ ∽△MEK .∴=H M M E M Q E K .∴321324=+HM.解得MH =2.∴H (0,4).∴直线HQ 的解析式为y 23=-x +4.由方程组224332⎧=-+⎪⎨⎪=-+⎩y x y x x 得x 2﹣3x +223=-x +4.解得x 1=3(舍),x 223=-.∴D (23-,409).……10分(ⅱ)当点D 在直线MQ 的下方时,y 轴上存在点H ,如图③所示,使∠HQM 1=∠MKQ =∠MKE .由对称性得H (0,0),即H 与原点重合.∴直线OQ 的解析式y 23=x . 由方程组22332⎧=⎪⎨⎪=-+⎩y x y x x 得3x 2﹣11x +6=0.解得x 1=3(舍),x 223=.∴D (23综上所述,点D 的坐标为D (23-,409)或(23,49).……………12分注意:以上参考答案及评分标准仅供评卷时参考,其它答案请参考评分标准酌情给分.图②图③。

云南省2019-2020学年数学中考模拟试卷一(含答案)

云南省2019-2020学年数学中考模拟试卷一(含答案)

云南省2019-2020学年数学中考模拟试卷一(含答案)一、单选题1.一个数用科学记数法表示为2.37×105,则这个数是()A. 237B. 2370C. 23700D. 237000【答案】 D【考点】科学记数法—表示绝对值较大的数2.下列运算正确的是()A. 3a+2a=5a2B. 3﹣3=C. 2a2•a2=2a6D. 60=0【答案】B【考点】单项式乘单项式,0指数幂的运算性质,负整数指数幂的运算性质,合并同类项法则及应用3.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A. 2B. 3C. 4D. 5【答案】C【考点】中心对称及中心对称图形4.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A. (4,3)B. (3,4)C. (﹣1,﹣2)D. (﹣2,﹣1)【答案】B【考点】坐标与图形变化﹣平移5.下面空心圆柱形物体的左视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图6.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集7.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A. 25,25B. 24.5,25C. 25,24.5D. 24.5,24.5【答案】A8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A. B. 2 C. 3 D. 4【答案】B【考点】等腰三角形的性质,勾股定理,平行四边形的性质二、填空题9.|﹣2|的相反数是________.【答案】-2【考点】相反数及有理数的相反数,绝对值及有理数的绝对值10.已知函数关系式:y= ,则自变量x的取值范围是________.【答案】x≥1.【考点】二次根式有意义的条件,解一元一次不等式11.若x、y为实数,且|x+3|+ =0,则的值为________.【答案】﹣1【考点】代数式求值,非负数之和为012.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是________(只需添加一个即可)【答案】∠ABC=90°或AC=BD【考点】正方形的判定13.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是________.【答案】(1,4)【考点】待定系数法求二次函数解析式,二次函数y=ax^2+bx+c的性质14.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M= ,即1+3+32+33+…+3100= ,仿照以上推理计算:1+5+52+53+…+52015的值是________.【答案】【考点】有理数的乘方三、解答题15.先化简,再求值:(1+ )÷ ,其中x= ﹣1.【答案】解:原式= • = ,当x= ﹣1时,原式=【考点】分式的化简求值16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【答案】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.【考点】全等三角形的判定与性质17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【答案】(1)解:观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:(2)解:∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°(3)解:0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【答案】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元【考点】分式方程的应用19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【答案】(1)解:∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为(2)解:画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为【考点】列表法与树状图法20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y= 的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【答案】(1)解:当x=12时,y= =20,B(12,20),∵AB段是恒温阶段,∴A(2,20),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)解:把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y= ,即15= ,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小【考点】待定系数法求一次函数解析式,一次函数的性质,反比例函数图象上点的坐标特征,通过函数图像获取信息并解决问题21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB= ,求线段OE的长.【答案】(1)证明:∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD(2)解:在Rt△AOB中,cos∠CAB= = ,AB=14,∴AO=14× = ,在Rt△ABE中,cos∠EAB= = ,AB=14,∴AE= AB=16,∴OE=AE﹣AO=16﹣= .【考点】菱形的判定,解直角三角形的应用22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F= ,⊙O的半径为4,求CD的长.【答案】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴∠AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB(2)解:如图,设CD=a,∵OA⊥CD,∴CE= CD= a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F= ,tan∠ACF= = ,即,解得AE= a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a= ,CD= .【考点】等腰三角形的判定,垂径定理,切线的性质,锐角三角函数的定义23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【答案】(1)解:在Rt△ABC中,AB=4,BC=a,∴AC= = ,∴CD= AC= ,∵∠ACD=90°,∴S△ACD= AC•CD= .(2)解:如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF= BC= a,∴D到射线BN的距离为 a(3)解:存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA= AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC= AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD= = ,AG=a+2,CD= ,∴,∴a=4 +8,即:满足条件的a的值为2或4 +8.【考点】三角形的面积,等腰三角形的性质,勾股定理,相似三角形的判定与性质。

云南省2019年中考数学模拟考试试卷(一)(含解析)

云南省2019年中考数学模拟考试试卷(一)(含解析)

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019xy ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019xy ()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

2019年云南省中考数学模拟试卷(一)(解析版)

2019年云南省中考数学模拟试卷(一)(解析版)

2019年云南省中考数学模拟试卷(一)(解析版)2019年云南省中考数学模拟试卷(一)一、选择题(每小题4分,共32分)1.2019的相反数是()A。

-2019 B。

-1 C。

2019 D。

12.下列图形中,既是轴对称图形又是中心对称图形的是()A。

图A B。

图B C。

图C D。

图D3.下列运算正确的是()A。

3a^2-2a^2=a^2B。

-(2a)^2=-2a^2C。

(a+b)^2=a^2+b^2D。

-2(a-1)=-2a+14.云南宣威普立大桥,连接桥面的公路总长度约为米,将数据用科学记数法表示为()A。

1.46×10^5 B。

0.146×10^6 C。

1.46×10^6 D。

146×10^35.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A。

图A B。

图B C。

图C D。

图D6.一组数据2,4,6,4,8的中位数为()A。

2 B。

4 C。

6 D。

87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A。

35° B。

45° C。

55° D。

65°8.已知一元二次方程x^2+kx-3=0有一个根为1,则k的值为()A。

-2 B。

2 C。

-4 D。

4二、填空题(每小题3分,共18分)9.因式分解:8a^3-2ab^2=2a(4a^2-b^2)10.函数y=√(x-2)的自变量x的取值范围是[2,∞)11.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为1/312.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=50°13.如图,点D为矩形OABC的AB边的中点,反比例函数y=k/x的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=214.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为4π cm三、解答题(共9个小题,70分)15.(6分)计算:|-2|-2cos60°-(2019-1)=|-2|-2×1/2-2018=-201916.(6分)解不等式组:{x|x≤-2}∪{x|x>3},表示为数轴上的解集。

红河哈尼族彝族自治州中考数学一模考试试卷

红河哈尼族彝族自治州中考数学一模考试试卷

红河哈尼族彝族自治州中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·宜昌期末) 我国嫦娥三号探测器发射总质量约为3700千克,3700用科学记数法表示为()A . 3.7×102B . 3.7×103C . 37×102D . 0.37×1042. (2分)已知2x3y2和﹣x3my2是同类项,则式子4m﹣24的值是()A . 20B . -20C . 28D . -283. (2分)(2017·深圳模拟) 如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A .B .C .D .4. (2分)若代数式x2+ax可以分解因式,则常数a不可以取()A . ﹣1B . 0C . 1D . 25. (2分) (2019八下·昭通期中) 已知,化简二次根式的正确结果为()A .B .C .D .6. (2分) (2017九上·河口期末) 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A . (5,2)B . (2,5)C . (2,﹣5)D . (5,﹣2)7. (2分)(2015•上海)下列各统计量中,表示一组数据波动程度的量是()A . 平均数B . 众数C . 方差D . 频率8. (2分)(2016·乐山) 如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB=()A . 10°B . 20°C . 30°D . 40°9. (2分)如图是某一个物体的三种视图,该物体的形状是().A . 圆柱B . 正方体C . 圆锥D . 长方体10. (2分)为提升我市城区旅游形象,将大湖景观和沿江景观连成一片,市政府决定对棋盘山南段mkm道路规划修建,工程施工期间为减少对周边小区居民生活的影响,工作效率比原计划提高了n%,结果提前了8天完成任务,设原计划每天修建x千米,根据题意,下列方程正确的是()A .B . =8C .D .二、填空题 (共5题;共5分)11. (1分) (2017八下·嘉兴期中) 若关于的一元二次方程有实数根,则m的取值范围是________.12. (1分)(2017·建昌模拟) 如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C 为圆心,大于线段BC长度一半的长为半径作弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE.若AB=6,BC=8,则△ABE的周长为________.13. (1分)(2016·张家界) 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm.14. (1分) (2018九上·永定期中) 如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为________.15. (1分)(2019·丹阳模拟) 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B (0,6)分别在x轴,y轴上,反比例函数y= (x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.三、计算题 (共1题;共5分)16. (5分) (2016八上·西昌期末) 计算:0.25×(﹣)﹣2+(﹣π)0+() 2 .四、综合题 (共6题;共47分)17. (2分)(2017·昆山模拟) 国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖100.05二等奖200.10三等奖30b优胜奖a0.30鼓励奖800.40请根据所给信息,解答下列问题:(1) a=________,b=________,(2)补全频数分布直方图;(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.18. (2分) (2019八上·龙湾期中) 如图,在4×4方格中,按要求作出以AB为边,第三个顶点在格点上的等腰三角形ABC.(1)面积为2(2)面积为2.5(3)面积为________(要求不与1、2图形全等)19. (15分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如表所示:设某户每月用水量x(立方米),应交水费y (元).月份用水量(m3)收费(元)957.510927(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y与x的函数关系式;(3)若该户11月份用水量为10立方米,求该户11月份水费是多少元?20. (2分)(2018·柳州模拟) 如图,AB是⊙O的直径,过圆心O作弦AD垂线交半⊙O于点E,交AC于点C,使∠BED=∠C.(1)求证:AC是半⊙O的切线;(2)若AC=8,cos∠BED=0.8,求线段AD的长.21. (11分) (2019八上·盘龙镇月考) 计算下列各式,然后回答问题(1) (x+4)(x+3)=________(x+4)(x-3)=________(x-4)(x+3)=________(x-4)(x-3)=________(2)有上面各式总结规律:一般地,(x+p)(x+q)=________(3)运用上述规律,直接写出下式的结果:(x-199)(x+201)=________22. (15分)(2017·盘锦模拟) 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D,F分别在AB,AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD= 时,求线段CM的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、计算题 (共1题;共5分)16-1、四、综合题 (共6题;共47分)17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、第11 页共11 页。

【精品】2019年云南省中考数学模拟试卷(一)含答案解析

【精品】2019年云南省中考数学模拟试卷(一)含答案解析

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 . 2.在函数y=中,自变量x 的取值范围是.3.若x 、y 为实数,且|x+3|+=0,则 的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700D .2370008.下列运算正确的是( ) A .3a+2a=5a 2 B .3﹣3=C .2a 2•a 2=2a 6D .60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1) 11.下面空心圆柱形物体的左视图是( )2019x y()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 ﹣2 . 【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答. 【解答】解:|﹣2|的相反数是-2, 故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围. 【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得:x+3=0,且y ﹣3=0, 解得x=﹣3,y=3. 则原式=﹣1. 故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019x y()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

中考数学一模试卷(含答案解析)

中考数学一模试卷(含答案解析)

初中数学试题2019年云南省曲靖市中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,不是中心对称图形.故不符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、是轴对称图形,也是中心对称图形.故符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查中心对称图形,轴对称图形的知识,记住:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.2.下列是一元二次方程的是()+2x−6=0A. x2+3=0B. xy+3x−4=0C. 2x−3+y=0D. 1x【答案】A【解析】解:A、该方程是一元二次方程,故本选项正确;B、该方程中含有两个未知数,不是一元二次方程,故本选项错误;C、该方程中含有两个未知数,不是一元二次方程,故本选项错误;D、该方程是分式方程,故本选项错误;故选:A.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.半径为r的圆的内接正六边形边长为()A. 12r B. √32r C. r D. 2r【答案】C【解析】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=r.故选:C.画出圆O的内接正六边形ABCDEF,连接OA,OB,得到正三角形AOB,可以求出AB的长.本题考查的是正多边形和圆,连接OA,OB,得到正三角形AOB,就可以求出正六边形的边长.4.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A. 2.4m2B. 3.2m2C. 4.8m2D.7.2m2【答案】B【解析】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故选:B.利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5.在平面直角坐标系中,点(1,−2)关于原点对称的点的坐标是()A. (1,2)B. (−1,2)C. (2,−1)D. (2,1)【答案】B【解析】解:点(1,−2)关于原点对称的点的坐标是(−1,2),故选:B.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),记忆方法是结合平面直角坐标系的图形记忆.关于原点对称的点坐标的关系,是需要识记的基本问题.6.下列事件中必然发生的事件是()A. 一个图形平移后所得的图形与原来的图形不一定全等B. 不等式的两边同时乘以一个数,结果仍是不等式C. 过圆外一点引圆的两条切线,这两条切线的长度不一定相等D. 200件产品中有8件次品,从中任意抽取9件,至少有一件是正品【答案】D【解析】解:一个图形平移后所得的图形与原来的图形一定全等,A是不可能事件;不等式的两边同时乘以一个数0,结果不是不等式,B是随机事件;过圆外一点引圆的两条切线,这两条切线的长度一定相等,C是不可能事件;200件产品中有8件次品,从中任意抽取9件,至少有一件是正品,D是必然事件;故选:D.根据事件发生的可能性大小判断相应事件的类型.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144∘,则∠C的度数是()A. 14∘B. 72∘C. 36∘D. 108∘【答案】D【解析】解:∵∠A=12∠BOD=12×144∘=72∘,而∠A+∠C=180∘,∴∠C=180∘−72∘=108∘.故选:D.先根据圆周角定理计算出∠A=72∘,然后根据圆内接四边形的性质求∠C的度数.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了圆周角定理.8.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为( )A. (x−1)(x−2)=18B. x2−3x+16=0C. (x+1)(x+2)=18D. x2+3x+16=0【答案】A【解析】解:设原正方形的边长为xm,依题意有(x−1)(x−2)=18,故选:A.可设原正方形的边长为xm,则剩余的空地长为(x−1)m,宽为(x−2)m.根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.二、填空题(本大题共6小题,共18.0分)9.若式子√3−x有意义,则x的取值范围是______.【答案】x≤3【解析】解:根据题意得:3−x≥0,解得:x≤3.故答案是:x≤3.根据二次根式有意义的条件即可求解.本题考查的知识点为:二次根式的被开方数是非负数.10.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124∘,则∠A=______.【答案】68∘【解析】解:∵∠BOC=124∘,∴∠OBC+∠OCB=180∘−124∘=56∘,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112∘,∴∠A=180∘−112∘=68∘,故答案为:68∘.根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.11.若x2−2x=3,则多项式2x2−4x+3=______.【答案】9【解析】解:∵x2−2x=3,∴原式=2(x2−2x)+3=6+3=9.故答案为:9.原式前两项提取2变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于______cm.【答案】5【解析】解:根据题意得:S=πrl,即r=Sπl =30π6π=5,则圆锥底面圆的半径长等于5cm,故答案为:5利用圆锥的侧面积公式计算即可求出所求.此题考查了圆锥的计算,熟练掌握圆锥侧面积公式是解本题的关键.13.若y=(m+2)x m2−2+mx+1是关于自变量x的二次函数,则m=______.【答案】2【解析】解:根据二次函数的定义,得:m2−2=2,解得m=2或m=−2,又∵m+2≠0,∴m≠−2,∴当m=2时,这个函数是二次函数.故答案是:2.根据二次函数的定义条件列出方程与不等式求解即可.本题考查了二次函数,利用二次函数的定义是解题关键,注意二次项的系数不等于零.14.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90∘,把△AP1B绕点B顺时针旋转180∘,得到△BP2C,把△BP2C绕点C顺时针旋转180∘,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2019的坐标为______.【答案】(4037,1) 【解析】解:作P 1⊥x 轴于H , ∵A(0,0),B(2,0), ∴AB =2, ∵△AP 1B 是等腰直角三角形,∴P 1H =12AB =1,AH =BH =1, ∴P 1的纵坐标为1,∵△AP 1B 绕点B 顺时针旋转180∘,得到△BP 2C ;把△BP 2C 绕点C 顺时针旋转180∘,得到△CP 3D ,∴P 2的纵坐标为−1,P 3的纵坐标为1,P 4的纵坐标为−1,P 5的纵坐标为1,…, ∴P 2019的纵坐标为1,横坐标为2019×2−1=4037, 即P 2019(4037,1). 故答案为:(4037,1).根据题意可以求得P 2的纵坐标为−1,P 3的纵坐标为1,P 4的纵坐标为−1,P 5的纵坐标为1,…,从而发现其中的变化的规律,从而可以求得P 2019的坐标.本题考查坐标与图形变化−旋转,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.三、计算题(本大题共1小题,共6.0分)15. 先化简,再求值:(1+1x 2−1)÷x 2x 2−2x+1,其中x =2.【答案】解:(1+1x 2−1)÷x 2x 2−2x+1=x 2−1+1x 2−1÷x 2x 2−2x +1=x 2(x +1)(x −1)⋅(x −1)2x 2=x−1x+1, 当x =2时, 原式=2−12+1=13.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共64.0分) 16. 计算:√9+(√93−2)0−|−3|−(13)−1 【答案】解:原式=3+1−3−3 =−2.【解析】直接利用零指数幂的性质以及零指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.17. 如图,在边长均为1的正方形网格纸上有△ABC 和△DEF ,顶点A 、B ,C ,D 、E 、F 均在格点上,如果△DEF 是由△ABC 绕着某点O 旋转得到的,点A(−4,1)的对应点是点D ,点C 的对应点是点F.请按要求完成以下操作或运算:(1)在图上找到点O 的位置(不写作法,但要标出字母),并写出点O 的坐标;(2)求点B 绕着点O 顺时针旋转到点E 所经过的路径长.【答案】解:(1)如图所示,连接AD ,CF ,作AD 和CF 的垂直平分线,交于点O ,则点O 即为旋转中心,由点A(−4,1)可得直角坐标系,故点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径长为:90×π×3180=32π.【解析】(1)根据旋转变换中对应点与旋转中心的距离相等,可知旋转中心即为对应点连线的垂直平分线的交点;根据点A(−4,1)可得直角坐标系,进而得到点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径为扇形的弧线,根据弧长计算公式即可得到路径长.本题主要考查了利用旋转变换作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.解方程(1)x2−4x+3=0(用配方法求解)(2)(2x−3)2−2x+3=0【答案】解:(1)x2−4x+3=0,x2−4x=−3x2−4x+4=−3+4,即(x−2)2=1,开方,得x−2=±1,解得x1=3,x2=1.(2)(2x−3)2−2x+3=0,(2x−3)(2x−3−1)=0,∴2x−3=0或2x−4=0,所以x1=32,x2=2.【解析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)提取公因式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把一元二次方程化为一般式,然后把方程左边分解为两个一次式的积,从而可把一元二次方程化为两个一元一次方程,解两个一元一次方程,得到一元二次方程的解.也考查了配方法解一元二次方程.19.已知y=x2−(m+2)x+(2m−1)是关于x的抛物线解析式.(1)求证:抛物线与x轴一定有两个交点;(2)点A(−2,y1)、B(1,y2)、C(4,y3)是抛物线上的三个点,当抛物线经过原点时,判断y1、y2、y3的大小关系.【答案】(1)证明:y=x2−(m+2)x+(2m−1),∵△=[−(m+2)]2−4×1×(2m−1)=(m+2)2+4>0,∴抛物线与x轴一定有两个交点;(2)解:∵抛物线y=x2−(m+2)x+(2m−1)经过原点,∴2m−1=0.解得:m=12,∴抛物线的解析式为y=x2−52x.当x=−2时,y1=7;当x=1时,y2=−2;当x=4时,y3=6.∴y2<y1<y3.【解析】(1)根据一元二次方程的根的判别式求出即可;(2)由抛物线经过原点可求得m=12,从而得到抛物线的解析式,然后可求得y1、y2、y3的值,然后再比较大小即可.本题主要考查的是抛物线与x轴的交点,二次函数图象上点的坐标特征,求得m的值是解题的关键.20.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;【答案】解:(1)设口袋中黄球的个数为x个,根据题意得:22+1+x =12,解得:x=1,经检验:x=1是原分式方程的解,∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:212=16.【解析】(1)设口袋中黄球的个数为x个,根据概率公式得到22+1+x =12,然后利用比例性质求出x即可;(2)画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某网店经营一种新文具,进价为20元,销售一段时间后统计发现:当销售单价是25元时,平均每天的销售量为250件,销售单价每上涨1元,平均每天的销售量就减少10件.(1)求销售单价x(元)为多少时,该文具每天的销售利润W(元)最大?并求出W;(2)为回馈广大顾客同时提高该文具知名度,该网店决定在11月11日(双十一)开展降价促销活动.若当天按(1)的单价降价m%销售并多售出2m%件文具,求销售款额为5250时m的值.【答案】解:(1)∵销售量=250−10(x−25)=500−10x,∴总利润=(x−20)(500−10x)=−10x2+700x−10000=−10(x−35)2+2250∴当x=35时,最大利润为2250元.(2)原来销售量500−10x=500−350=150,35(1−m%)150(1+2m%)=5250设m%=a,∴(1−a)(1+2a)=1,解得:a=0或a=12,∵要降价销售,∴a=12,∴m=50.【解析】(1)首先确定有关利润与售价x之间的二次函数,配方后即可确定最大利润;(2)首先确定原来的销售量,然后销售量×单件利润=总利润列出方程求解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,二次函数的性质的运用,解答时根据条件建立方程是解答本题的关键.22.如图,AB是⊙O的直径,点C是⊙O外一点,连接AC,BC,AC与⊙O交于点D,弦DE与直径AB交于点F,∠C=∠E.(1)求证:BC是⊙O的切线;(2)若DE⊥AB,AE⏜=2BE⏜,AB=2√3,求CD的长.【答案】(1)证明:连接BD,则∠BAE=∠BDE,∵∠AFE=∠DFB,∴∠E=∠ABD,∵∠C=∠E,∴∠C=∠ABE,∵AB是⊙O的直径,∴∠ADB=90∘,∴∠BDC=90∘,∴∠C+∠CBD=90∘,∴∠ABD+∠CBD=90∘,∴AB⊥BC,∴BC是⊙O的切线;(2)解:∵AB是⊙O的直径,DE⊥AB,∴AD⏜=AE⏜,BD⏜=BE⏜,∵AE⏜=2BE⏜,∴AD⏜=2BD⏜,∴∠ABD=2∠DAB,∴∠BAC=30∘,∠ABD=60∘,∴∠C=60∘,∵AB=2√3,∴BC=√3AB=2,3BC=1.∴CD=12【解析】(1)连接BD,根据圆周角定理得到∠BAE=∠BDE,推出∠C=∠ABE,由AB 是⊙O的直径,得到∠ADB=90∘,推出AB⊥BC,于是得到结论;(2)根据垂径定理得到AD⏜=AE⏜,BD⏜=BE⏜,等量代换得到AD⏜=2BD⏜,求得∠ABD=2∠DAB,解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,解直角三角形,圆周角定理,熟练掌握切线的判定和性质是解题的关键.23.如图,对称轴为x=1的抛物线y=x2+bx+c与x轴交于点A(3,0)与y轴交于点B,顶点为C.(1)求抛物线的解析式;(2)求△ABC的面积;(3)若点P在x轴上,将线段BP绕着点P逆时针旋转90∘得到PD,点D是否会落在抛物线上?如果会,求出点P的坐标;若果不会,说明理由.【答案】解:(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),则抛物线的表达式为:y=(x+1)(x−3)=x2−2x−3,令x=0,则y=−3,即点B(0,−3),点C的坐标为(1,−4);(2)设对称轴交直线AB与点H,把点B、A坐标代入一次函数表达式:y=kx−3得:0=3k−3,解得:k=1,则直线BA的表达式为:y=x−3,则点H(1,−2),S△ABC=12CH×OA=12×2×3=3;(3)会,理由:①当点D在对称轴左侧时,如图所示,过点D分别作x、y轴的垂线于点N、M,设点P坐标为(m,0),∵∠DPN+∠OPB=90∘,∠OPB+∠OBP=90∘,∴∠OBP=∠DPN,∠DNP=∠BOP=90∘,PB=PD,∴△DNP≌△POB(AAS),∴DM=OB=3,DN=OP=−m,即点D的坐标(−3,−m)将点D坐标代入二次函数表达式解得:m=−12,即点P坐标为(−12,0),②当点D在对称轴右侧时,同理当点P坐标为(−5,0).【解析】(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),即可求解;(2)利用S△ABC=1CH×OA即可求解;2(3)会,理由:分①当点D在对称轴左侧时、②当点D在对称轴右侧时,两种情况求解即可.本题考查的是二次函数综合运用,涉及到三角形全等、一次函数等知识,题目难度不大,但要弄清题意,避免遗漏.研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届云南省红河州开远市中考一模试卷数学一、填空题:本大题共6小题,每小题3分,满分18分.1.﹣8的相反数是.2.分解因式:x2﹣1= .3.半径为2的圆中,60°的圆心角所对的弧的弧长为.4.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.5.若一个几何体的三视图相同,则这个几何体是.(填一个即可)6.如图,正比例函数y1=x的图象与反比例函数y2=(k≠0)的图象相交于A、B两点,点A的纵坐标为2.当y1>y2时,自变量x的取值范围是二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A.2.18009×108B.0.218009×108C.2.18009×107D.21.8009×1068.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a69.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.10.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D到了点F的位置,则S△ADE:S是()▱BCFDA.1:4 B.1:3 C.1:2 D.1:111.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°12.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.313.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸14.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.16.(6分)先化简,再求值:﹣÷,其中a=.17.(8分)为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m 和n 的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.18.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?19.(7分)小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.20.(8分)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.21.(8分)如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3,0)和点C(0,3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积.22.(9分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y (元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证纯收入又能吸引顾客?23.(12分)如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.参考答案与试题解析一、填空题1.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣8的相反数是8.故答案为:8.2.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).3.【分析】将n=60,r=2代入弧长公式l=进行计算即可.【解答】解:l===π.故答案为π.4.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)25.【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球体的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.故填球体或正方体.6.【分析】由点A的纵坐标为2结合正比例函数图象上点的坐标特征可得出点A 的坐标,利用正反比例函数的对称性可得出点B的坐标,观察函数图象,找出正比例函数图象在反比例函数图象上方时x的取值范围,此题得解.【解答】解:∵点A在正比例函数y1=x的图象上,且点A的纵坐标为2,∴点A的坐标为(2,2).∵正、反比例函数图象关于原点中心对称,∴点B的坐标为(﹣2,﹣2).观察函数图象,可知:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象上方,∴当y1>y2时,自变量x的取值范围是﹣2<x<0或x>2.故答案为:﹣2<x<0或x>2.二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:21800900=2.18009×107,故选:C.8.【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.9.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.10.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED =1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱BCFD的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S=1:4,▱B CFD故选:A.11.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.12.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,1.4万步,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选:B.13.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,如图所示,设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.14.【分析】根据相似三角形的对应角相等即可得出.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选D.三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.【分析】先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS,即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).16.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷====,当a=时,原式=.17.【分析】(1)根据植4棵的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以该班共有人数为:11÷22%=50(人);(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7,m=50﹣(4+18+11+7)=10;(3)所求扇形圆心角的度数为:360°×=72°.18.【分析】设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.【解答】解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=34.答:从甲班抽调了35人,从乙班抽调了34人.19.【分析】(1)首先根据题意列出图表,然后由图表求得所有可能的结果;(2)由(1)列出的图表可得出所有出现的结果,再根据概率公式即可求出答案.【解答】解:(1)列表如下:),∴P(两数之积为负数)==.20.【分析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.【解答】(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.21.【分析】(1)利用待定系数法分别求一次函数和抛物线解析式;(2)过点D作DE∥y轴交直线BC于E,如图,先配方得到y=(x﹣2)2﹣1.则D(2,﹣1),再确定E(2,1),然后利用S△DBC=S△CDE+S△BDE进行计算.【解答】解:(1)设直线BC的解析式y=kx+b(k≠0)将点B(3,0)C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3.将B(3,0),C(0,3)代入抛物线的解析式得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)过点D作DE∥y轴交直线BC于E,如图,∵y=x2﹣4x+3=(x﹣2)2﹣1.∴D(2,﹣1),当x=2时,y=﹣x+3=1,则E(2,1),∴S△DBC=S△CDE+S△BDE=×3×DE=×3×(1+1)=3.22.【分析】(1)①利用每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),以及每份套餐售价不超过10元,每天可销售400份得出等式求出即可;②由题意得400(x﹣5)﹣600≥800,解出x的取值范围即可.(2)由题意可得y与x的函数关系式,再求出当y=1560时x的值即可.【解答】解:(1)①y=400(x﹣5)﹣600.(5<x≤10),②依题意得:400(x﹣5)﹣600≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣600,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣600=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.23.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.【解答】解:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===2;(2)①证明:如图3,连接OD,交CB于点F,连接BD,∵=,∴∠D BC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.。

相关文档
最新文档