生理学实验家兔呼吸运动的调节

合集下载

生理学高分实验报告家兔呼吸运动的调节

生理学高分实验报告家兔呼吸运动的调节
化学感受器位于颈动脉体和主动脉 体中,可感受血液中氧分压和二氧 化碳分压的变化。
肺牵张感受器位于肺泡壁和支气管 平滑肌中,可感受肺部的扩张和缩 小。
呼吸肌感受器位于呼吸肌中,可感 受呼吸肌的收缩和舒张。
中枢和外周感受器的相互作用
中枢和外周感受器之间存在复杂的相 互作用,共同维持呼吸运动的稳定性 和适应性。
02
给实验组家兔分别注射不同浓度的呼吸兴奋剂和呼 吸抑制剂。
03
观察并记录注射药物后家兔呼吸运动的变化情况, 包括呼吸频率、呼吸深度的改变。
实验步骤与操作
• 在药物作用高峰期,再次测定家兔的血气指标,以评估药物对呼吸功能的影响。
实验步骤与操作
4. 数据分析与统计
对实验数据进行整理和分析,比较对照组和实验组家兔在呼吸运动参数和 血气指标上的差异。
体液调节与神经调节的相互作用
协同作用
在某些情况下,体液调节和神经调节可协同作用,共同调节呼吸运动。例如,当机体处 于缺氧状态时,外周化学感受器和中枢化学感受器同时受到刺激,引起呼吸加深加快。
拮抗作用
在某些情况下,体液调节和神经调节可相互拮抗,共同维持呼吸运动的平衡。例如,当 机体处于过度通气状态时,动脉血氧分压升高可抑制外周化学感受器的活动,而中枢化 学感受器则继续受到刺激,引起呼吸减慢变浅。这种拮抗作用有助于防止过度通气对机
证了呼吸运动的调节机制。
04
本实验为深入研究呼吸运动的调节机制提供了有价 值的参考数据,有助于进一步揭示呼吸生理学的奥
秘。
对未来研究的展望和建议
0标1题
进••一文文步研字字究内内不容容同物种 之•间文呼吸字运内动容调节机 制•的文异同字,内以容更全面
地了解呼吸生理学的 普遍规律。

生理科学实验设计家兔呼吸运动调节

生理科学实验设计家兔呼吸运动调节

生理科学实验设计——家兔呼吸运动的调节09级31班第四小组麦华浩莫世杰刘文荣罗国华王辉赵宏伟一:实验目的:(1)熟悉家兔耳缘静脉注射法、家兔颈部手术操作、神经血管分离、气管插管技术。

(2)记录家兔呼吸曲线观察一氧化碳(CO)、纯氧,走神经对呼吸运动的调节及了解其机理。

(3)熟悉Medlab生物信号处理系统、保护电极、氧气瓶,张力换能器在实验中的作用及使用注意事项。

二:立题依据:一氧化碳中毒机理是一氧化碳与血红蛋白的亲合力比氧与血红蛋白的亲合力高200~300倍,它进入人体后会和血液中的血红蛋白结合,使血红蛋白不能与氧气结合,从而造成人体组织缺氧。

急性中毒时,轻者会出现头痛、头晕、耳鸣、心悸、恶心、呕吐、无力,重者会出现心肌损害、脑椎体系损害、昏迷、休克甚至死亡。

及时强制吸氧,置换一氧化碳,能避免死亡。

临床表现主要为缺氧,其严重程度与HbCO的饱和度呈比例关系。

轻者有头痛、无力、眩晕、劳动时呼吸困难,HbCO饱和度达10%—20%。

症状加重,患者口唇呈樱桃红色,可有恶心、呕吐、意识模糊、虚脱或昏迷,HbCO饱和度达30%—40%。

重者呈深度昏迷,伴有高热、四肢肌张力增强和阵发性或强直性痉挛,HbCO饱和度>50%。

患者多有脑水肿、肺水肿、心肌损害、心律失常和呼吸抑制,可造成死亡。

二氧化碳(CO2)是调节呼吸运动最重要的生理性化学因素。

很早就知道,在麻痹的动物或人,当动物血液Pco2降到很低水平时,可出现呼吸暂停。

因此,一定水平的Pco2对维持呼吸中枢的基本活动是必需的。

CO2刺激呼吸运动是用过两条途径实现的:一是通过刺激中枢化学感受器再兴奋呼吸中枢;二是刺激外周化学感受器,冲动经窦神经和迷走神经传入延髓,反射性地使呼吸加深﹑加快,肺通气量增加。

CO2在呼吸调节中经常起作用,动脉血Pco2在一定范围内升高,可加强对呼吸的刺激作用氧中毒机理当吸入性PO2过高时,活性氧产生增加,反可引起组织,细胞损伤,称为氧中毒。

家兔呼吸运动的调节实验报告

家兔呼吸运动的调节实验报告

一、实验目的1. 观察家兔呼吸运动的生理变化,了解呼吸运动的调节机制。

2. 分析血液中化学因素(PCO2、PO2、[H])对家兔呼吸频率、节律、通气量的影响及调节机制。

3. 探讨迷走神经在家兔呼吸运动调节中的作用。

二、实验原理呼吸运动是呼吸肌在神经系统控制下进行的有节律的收缩和舒张造成的。

呼吸中枢分布于大脑皮层、间脑、桥脑、延髓、脊髓等部位,各级部位相互配合,共同完成呼吸节律性运动。

呼吸运动受体内、外各种因素影响,如血液中CO2分压、PO2、[H]等化学因素,以及迷走神经、肺牵张反射等神经调节机制。

三、实验材料与仪器1. 实验动物:家兔2. 实验仪器:兔体手术台、常用手术器械、张力传感器、引导电极、计算机采集系统、气管插管、注射器、橡皮管、20%氨基甲酸乙酯、生理盐水3. 实验试剂:20%氨基甲酸乙酯、生理盐水四、实验方法与步骤1. 麻醉与固定:将家兔置于兔体手术台上,用20%氨基甲酸乙酯进行麻醉。

待家兔麻醉后,将其背位固定在手术台上。

2. 气管插管:在颈部切开皮肤,分离气管,插入气管插管,连接呼吸传感器。

3. 分离迷走神经:在颈部分离双侧迷走神经,穿线备用。

4. 记录呼吸运动:启动计算机采集系统,记录家兔呼吸频率、节律、通气量。

5. 观察血液中化学因素对呼吸运动的影响:a. 向气管插管内注入一定量的CO2,观察呼吸运动的变化;b. 向气管插管内注入一定量的生理盐水,观察呼吸运动的变化;c. 向气管插管内注入一定量的[H],观察呼吸运动的变化。

6. 观察迷走神经对呼吸运动的影响:a. 切断双侧迷走神经,观察呼吸运动的变化;b. 重新连接双侧迷走神经,观察呼吸运动的变化。

五、实验结果与分析1. 观察到在注入CO2后,家兔呼吸频率、节律、通气量均增加,表明CO2对呼吸运动具有促进作用。

2. 观察到在注入生理盐水后,家兔呼吸运动无明显变化,表明生理盐水对呼吸运动无明显影响。

3. 观察到在注入[H]后,家兔呼吸频率、节律、通气量均降低,表明[H]对呼吸运动具有抑制作用。

兔呼吸运动的调节实验报告

兔呼吸运动的调节实验报告

兔呼吸运动的调节实验报告实验目的,通过对兔呼吸运动的调节实验,探究兔呼吸运动的调节机制,加深对呼吸调节的认识。

实验原理,呼吸是机体维持生命活动所必需的生理功能,呼吸运动的调节是由中枢神经系统和周围化学和机械感受器共同完成的。

在实验中,我们将通过控制呼吸气体成分、呼吸频率和呼吸深度等因素,来研究兔呼吸运动的调节机制。

实验材料,实验所需的材料包括兔、呼吸气体混合器、呼吸频率和深度监测仪、呼吸气体成分分析仪等。

实验步骤:1. 准备工作,将兔置于实验台上,接入呼吸气体混合器,并将呼吸频率和深度监测仪、呼吸气体成分分析仪连接到兔的呼吸系统上。

2. 控制呼吸气体成分,首先,我们改变呼吸气体中氧气和二氧化碳的浓度,观察兔的呼吸频率和深度的变化。

通过调节呼吸气体成分,我们可以模拟高原低氧环境或呼吸系统疾病等情况,从而研究兔呼吸运动的调节机制。

3. 控制呼吸频率和深度,接着,我们通过调节呼吸频率和深度监测仪,改变兔的呼吸模式,观察其对呼吸气体成分的调节响应。

这可以帮助我们了解兔呼吸运动的调节机制在不同呼吸模式下的变化。

实验结果与分析:通过实验,我们观察到在不同呼吸气体成分下,兔的呼吸频率和深度会有不同的变化。

当呼吸气体中氧气浓度降低或二氧化碳浓度升高时,兔的呼吸频率会增加,呼吸深度会减小。

这表明兔可以通过调节呼吸频率和深度来适应不同的呼吸气体成分,以维持机体内部环境的稳定。

此外,我们还观察到当我们改变兔的呼吸模式时,其对呼吸气体成分的调节响应也会有所不同。

在不同呼吸模式下,兔对呼吸气体成分的调节敏感度不同,这说明兔呼吸运动的调节机制在不同呼吸模式下会发生变化。

结论,通过本次实验,我们深入了解了兔呼吸运动的调节机制。

兔可以通过调节呼吸频率和深度来适应不同的呼吸气体成分,以维持机体内部环境的稳定。

此外,兔呼吸运动的调节机制在不同呼吸模式下会发生变化,这为我们进一步研究呼吸调节提供了新的思路。

实验总结,本次实验通过对兔呼吸运动的调节进行了深入研究,为我们理解呼吸调节的机制提供了重要的实验数据。

家兔呼吸运动的调节实验报告

家兔呼吸运动的调节实验报告

家兔呼吸运动的调节实验报告本实验旨在探究家兔呼吸运动的调节机制,通过实验观察和数据分析,深入了解家兔呼吸运动的调节规律,为相关生理学研究提供理论依据和实验数据支持。

实验材料与方法。

1. 实验材料,健康的家兔若干只,呼吸频率计、呼吸深度计、心率监测仪等实验设备。

2. 实验方法,将家兔置于实验箱内,记录其正常呼吸状态下的呼吸频率和呼吸深度,并监测其心率。

接着通过不同方式的刺激(如运动、音响刺激等)观察家兔呼吸频率、呼吸深度和心率的变化情况。

实验结果。

1. 正常状态下,家兔的呼吸频率约为每分钟40-60次,呼吸深度约为每次10-15毫升,心率约为每分钟120-150次。

2. 运动刺激后,家兔的呼吸频率明显增加,呼吸深度也有所增加,心率也随之加快。

3. 音响刺激后,家兔的呼吸频率和呼吸深度均有所增加,但心率的变化不明显。

实验分析。

1. 家兔呼吸运动受到外界刺激的调节,运动刺激和音响刺激都能引起家兔呼吸频率和呼吸深度的变化,说明家兔呼吸运动受到外界刺激的调节。

2. 家兔呼吸运动调节具有一定的灵活性,家兔对不同刺激的呼吸反应不同,表明其呼吸运动调节具有一定的灵活性,能够根据外界环境变化做出相应调整。

实验结论。

家兔呼吸运动的调节受到外界刺激的影响,具有一定的灵活性,这为家兔在不同环境下适应生存提供了生理基础。

同时,本实验结果也为相关呼吸生理学研究提供了重要的实验数据支持。

结语。

通过本次实验,我们对家兔呼吸运动的调节机制有了更深入的了解,同时也为今后的相关研究提供了重要的实验基础。

希望本实验结果能够为相关领域的科研工作者提供参考,推动相关领域的研究进展。

家兔肺部呼吸实验报告

家兔肺部呼吸实验报告

一、实验目的1. 观察家兔呼吸运动的基本过程,了解呼吸运动的调节机制。

2. 研究不同因素对家兔呼吸运动的影响,如二氧化碳浓度、氧气浓度、无效腔等。

3. 掌握呼吸运动实验的基本操作技能。

二、实验原理呼吸运动是指在中枢神经系统控制下,通过呼吸肌节律性的运动使胸廓节律性地扩大或缩小,从而实现气体的交换。

呼吸运动的调节主要涉及呼吸中枢、化学感受器、肺牵张反射等因素。

三、实验材料与仪器1. 实验动物:家兔一只2. 实验仪器:手术台、常用手术器械、生理信号采集处理系统、呼吸传感器、止血钳、气管插管、20ml及1ml注射器、橡皮管、刺激电极、20%氨基甲酸乙酯、CO2、乳酸、生理盐水、棉线、纱布四、实验步骤1. 家兔的麻醉与固定:取一只家兔,称重后,用20ml注射器由耳缘静脉缓慢推注25%氨基甲酸乙酯(1g/kg体重)进行麻醉。

待兔麻醉后,仰卧位固定于兔手术台上。

2. 颈部手术:作颈正中切口,气管插管,用于观察呼吸运动。

3. 胸部手术:在兔右侧胸部测量胸内压,观察肺脏体积和呼吸运动的影响。

4. 上腹部手术:作上腹正中切口,观察膈肌及其运动情况,并透过膈肌观察肺的情况。

5. 观察正常呼吸曲线:记录家兔正常的呼吸曲线,分析呼吸频率、节律、幅度等指标。

6. 影响因素观察:a. 增加无效腔:观察增加无效腔后呼吸运动曲线的变化,分析呼吸频率、幅度等指标。

b. 改变二氧化碳浓度:观察二氧化碳浓度改变对呼吸运动的影响,分析呼吸频率、幅度等指标。

c. 改变氧气浓度:观察氧气浓度改变对呼吸运动的影响,分析呼吸频率、幅度等指标。

d. 改变乳酸浓度:观察乳酸浓度改变对呼吸运动的影响,分析呼吸频率、幅度等指标。

7. 实验结束:实验结束后,对家兔进行全身麻醉,等待其自然恢复。

五、实验结果与分析1. 正常呼吸曲线:家兔的呼吸频率约为48次/分,呼吸幅度适中。

2. 增加无效腔:增加无效腔后,家兔的呼吸频率和呼吸幅度均有所增加,表明呼吸运动对无效腔的变化具有一定的调节能力。

兔子呼吸调节实验报告(3篇)

兔子呼吸调节实验报告(3篇)

第1篇一、实验目的1. 观察兔子呼吸运动的基本规律,包括呼吸频率、节律和幅度。

2. 探讨影响兔子呼吸运动的各种因素,如无效腔、二氧化碳浓度、缺氧等。

3. 分析迷走神经在兔子呼吸运动调节中的作用。

4. 掌握气管插管术和神经血管分离术等基本操作。

二、实验原理呼吸运动是呼吸中枢节律性活动的反映。

在不同生理状态下,呼吸运动所发生的适应性变化有赖于神经系统的反射性调节,其中较为重要的有呼吸中枢、肺牵张反射以及外周化学感受器的反射性调节。

因此,体内外各种刺激,可以直接作用于中枢部位或通过不同的感受器反射性地影响呼吸运动。

三、实验材料与器材1. 实验动物:家兔2. 实验器材:生物信号采集处理系统、呼吸流量换能器、CO2气囊、哺乳类动物手术器具一套、兔手术台、气管插管、注射器(10ml、20ml各一只)、橡胶管、纱布、玻钩、手术丝线、麻醉剂、生理盐水等。

四、实验步骤1. 实验动物准备:选择健康成年家兔,称重后进行麻醉。

2. 麻醉与固定:按照2ml/kg取麻醉剂戊巴比妥钠,从兔耳缘静脉缓慢注入麻醉,然后将家兔固定在手术台上。

3. 颈部手术:颈部剪毛,于颈部正中切开皮肤,钝性分离肌肉组织,暴露并分离气管。

在3-4气管环之间切开气管,做一倒T形切口,气管插管后用手术丝线固定,两侧迷走神经穿线备用。

4. 连接仪器:将呼吸流量换能器连接在气管插管上,并连接生物信号采集处理系统。

5. 记录正常呼吸曲线:打开计算机,启动生物信号采集处理系统,点击菜单,进入实验/实验项目”,按计算机提示逐步进入呼吸运动”实验项目,记录家兔正常呼吸曲线。

6. 增加无效腔:通过改变气管插管长度,增加无效腔,观察呼吸曲线的变化。

7. 增加二氧化碳浓度:使用CO2气囊,向气管插管中注入一定浓度的二氧化碳,观察呼吸曲线的变化。

8. 轻度缺氧实验:使用低氧气体,向气管插管中注入一定浓度的氧气,观察呼吸曲线的变化。

9. 剪短迷走神经:剪断一侧迷走神经,观察呼吸曲线的变化。

呼吸运动调节实验报告(五篇)

呼吸运动调节实验报告(五篇)

呼吸运动调节实验报告(五篇)第一篇:呼吸运动调节实验报告呼吸运动的调节【实验目的】1、学习呼吸运动的记录方法2、观察血液理化因素改变对家兔呼吸运动的影响3、了解肺牵张反射在呼吸运动调节中的作用【实验对象】家兔重量:1.9kg【实验器材和药品】哺乳动物手术器械(主要用到手术刀、组织剪、止血钳、玻璃分针、),兔手术台,生物信号采集处理系统,呼吸换能器,气管插管,20%氨基甲酸乙酯溶液,生理盐水,橡皮管,N 2 气囊,CO 2 气囊等。

【实验方法与步骤】1.取家兔并称重,由家兔腹腔缓慢注入20%氨基甲酸乙酯溶液10ml,(因注射过程中出现差错,后补注入20%氨基甲酸乙酯溶液8ml)待家兔麻醉后,仰卧用绳子固定于手术台上。

2.剪去颈前部兔毛,颈前正中用手术刀切开皮肤5-7cm,少量出血,用纱布蘸取生理盐水擦拭。

分离气管并穿线备用。

分离颈部双侧迷走神经,穿线备用。

以倒T 型剪开气管,有少量出血,止血后用镊子清理其中异物,做气管插管。

手术完毕后,用温生理盐水纱布覆盖手术范围。

3.实验装置(1)将呼吸换能器与生物信号采集处理系统的相应通道相连接,橡皮管连接气管插管和呼吸换能器。

(2)打开计算机,启动生物信号采集处理系统,设置好参数,开始采样。

(3)采样项目①缺氧对呼吸运动的影响:方法同上,将氮气气囊管口与气管插管的通气管用手掌罩住,打开气囊,使吸入气中含较多的氮气,造成缺氧,观察呼吸运动的变化,移开气囊和手掌,待呼吸恢复正常后进行下一步实验。

②CO 2 对呼吸运动的影响:将二氧化碳气囊管口与气管插管的通气管用手掌罩住,打开气囊,使吸入气中含较多的二氧化碳,观察呼吸运动的变化,移开气囊和手掌,待呼吸恢复正常后进行下一步实验。

③增大无效腔对呼吸运动的影响:将橡皮管连接于气管插管的一个侧管上,观察此时呼吸运动的变化。

变化明显后,去掉橡皮管,观察呼吸运动的恢复过程。

④迷走神经在呼吸运动调节中的作用:先剪断一侧迷走神经,观察呼吸运动的变化,再剪断另一侧迷走神经,观察呼吸运动又有何变化。

生理学实验:家兔呼吸运动的调节

生理学实验:家兔呼吸运动的调节

实验数据分析1、正常得家兔呼吸曲线图1、正常得家兔呼吸曲线曲线由图可知,本组选取得家兔自身呼吸频率较快,幅度加大,后续增强呼吸得因素作用不就是十分明显。

2、接空气气囊得家兔呼吸曲线图2、接空气气囊得家兔呼吸曲线曲线由图可知,改接空气气囊后,家兔呼吸幅度与频率均未出现太大变化。

3、接CO2气囊得家兔呼吸曲线图3、接CO2气囊得家兔呼吸曲线由图可知,接CO2气囊后,家兔呼吸曲线幅度增大,频率加快。

这就是因为CO2就是调节呼吸运动最重要得生理性因素,不但对呼吸有很强得刺激作用,而且对维持延髓呼吸中枢正常兴奋活动就是必须得。

当呼入气体中CO2浓度升高,血液中CO2浓度随之升高,CO2透过血脑屏障使脑脊液得CO2浓度也升高。

CO2与水反应生成H2CO3,随后水解成HCO3-与H+,由H+刺激延髓化学感受器,间接作用于CO2呼吸中枢,通过一系列调控使得呼吸作用加强。

此外,当CO2浓度增高时,还刺激主动脉体与颈动脉体得外周化学感受器,反射性地使呼吸加深加快。

4、接N2气囊得家兔呼吸曲线图4、接N2气囊得家兔呼吸曲线由图可知,接N2气囊后,家兔呼吸曲线幅度略有增大。

这就是因为吸入纯N 2时,因吸入气体中缺乏O2,肺泡气O2浓度下降,导致动脉血中O2浓度下降;而CO2浓度却基本不变(CO2扩散速度较快)。

随着动脉血中O2浓度下降,通过刺激主动脉体与颈动脉体外周化学感受器延髓得呼吸中枢兴奋,隔肌与肋间外肌活动加强,反射性引起呼吸运动增加。

5.增长解剖无效腔得家兔呼吸曲线图5、增长解剖无效腔得家兔呼吸曲线由图可知,增长解剖无效腔后,家兔呼吸幅度略有下降,而呼吸频率则稍稍上升,这就是因为实验中通过插管得方式增大无效腔,也就就是减小了进入肺泡得潮气量,即每次得有效气体更新变小。

结果促使O2分压下降,CO2分压上升,使其反射性得调节使呼吸加深加快。

所以膈肌放电得变化幅度加大,频率有微量增大。

反映到膈肌得收缩曲线,由于收缩频率得增大,为了维持正常得肺部通气量,所以收缩强度减弱。

家兔呼吸运动调节病理生理学机能实验

家兔呼吸运动调节病理生理学机能实验

家兔呼吸运动调节病理生理学机能实验呼吸运动的正常调节对于维持机体氧合是非常重要的,但在一些疾病条件下,这种调节机制可能会受到影响。

为了更好地了解家兔呼吸运动调节的病理生理学机能,我们进行了一项实验。

以下是实验的详细步骤和结果。

实验材料和方法我们选择了成年健康的家兔进行实验,实验过程在动物实验伦理委员会的监督下进行,以确保符合伦理和法律要求。

1. 实验动物选择从已经适应实验环境的成年健康家兔中随机选择10只作为实验对象。

2. 实验设备准备准备好呼吸监测仪、呼吸气体混合器和呼吸阻力装置。

3. 实验组和对照组设置将10只家兔随机分为实验组和对照组,每组各5只。

4. 实验操作将实验组家兔接入呼吸监测仪,通过呼吸气体混合器给予一定浓度的二氧化碳(CO2)呼吸气体,观察家兔呼吸频率、呼吸深度等指标的变化。

对照组家兔接受相同的操作,但呼吸气体中不含CO2。

结果与讨论实验结果显示,在实验组中,家兔接受CO2刺激后,呼吸频率和呼吸深度均明显增加。

与此相比,在对照组中,家兔呼吸指标的变化没有明显的趋势。

这一结果表明,CO2对家兔呼吸运动有明显的刺激作用。

呼吸中枢感知到体内二氧化碳增加后,通过增加呼吸频率和深度来实现氧气的吸入量增加,进而改善机体氧合状况。

在病理生理学的角度来看,呼吸运动的调节机制在某些疾病状态下可能会发生改变。

例如,在呼吸中枢损伤、呼吸肌肌无力等情况下,呼吸运动的调节能力会受到影响,可能导致呼吸频率和深度的异常变化。

通过这个实验,我们可以更好地理解呼吸运动调节的病理生理学机能,并为相关疾病的治疗提供一定的理论基础。

进一步研究这些机制,有助于开发更有效的治疗方法,提高疾病患者的生存质量。

结论通过本实验,我们发现家兔呼吸运动能够受到CO2刺激的调节。

这一病理生理学机能可以帮助机体维持正常的氧合状态。

进一步的研究将有助于揭示呼吸运动调节的更多细节,并为相关疾病的治疗提供理论支持。

这对于改善呼吸系统疾病患者的生活质量具有重要意义。

实验 11-1 家兔呼吸运动的调节

实验 11-1 家兔呼吸运动的调节
本实验主要探究家兔呼吸运动的调节机制。首先,我们明确实验目的,即学习如何记录家兔的呼吸运动,并深入观察分析肺牵张反射以及不同因素对呼吸运动的具体影响。为了达成这一目标,我们精心准备了家兔、兔体手术台、手术器械、张力传感器、计算机信号采集系统等一系列专业器材,以及多种试剂如20%或25%的氨基甲酸乙酯、生理盐水等。在实验过程此分析各种因素对呼吸的影响。此外,实验还包括对家兔胸内负压的调节的探究,旨在了解胸内负压在呼吸周期中的变化规律。这一部分的实验同样需要准备相应的器材和试剂,通过实验观察和记录数据来分析胸内负压与呼吸运动的关系。通过这一系列精心设计的实验步骤,我们能够更深入地理解家兔呼吸运动的调节机制,为呼吸生理学的研究提供有力支持。

兔子呼吸运动的调节实验报告

兔子呼吸运动的调节实验报告

Lab #10 Control of Respiratory Movement(模拟实验)I、 Introduction、呼吸幅度与频率受到体内O2分压CO2分压以及H+浓度这些化学因素的反射性调节,以适应机体代谢的需要。

神经传导也影响呼吸幅度与频率。

实验目的:分析化学因素及神经传导对呼吸运动的影响。

II、 Experimental procedures、1.鼠标器压下左右移动浏览实验场景2、移动鼠标器,熟悉实验设施3、点击拖动器械盘中塑胶气管至流量头,增加无效腔4、点击气体考克,增加兔吸入气中氮气或二氧化碳的浓度5、点击拖动器械盘中注射器至兔耳注射乳酸6、点击拖动手术刀至兔颈部切断双侧迷走神经7、实验完成后,按停止按钮进行数据测量III、 Result1、将塑胶气管插入流量头处,增大无效腔。

图1 增大无效腔后家兔呼吸信号变化增大无效腔后呼吸加深,频率加快。

无效腔就是指未进行气体交换的一部分肺泡容量,包括解剖无效腔与肺泡无效腔。

且肺泡通气量 =(潮气量﹣无效腔气量)×呼吸频率,所以当给家兔气管插管的侧管连接50cm长的胶管时,增大了解剖无效腔,使肺泡通气量减少,因此家兔通过调节增大潮气量即呼吸加深,增加呼吸频率就是肺泡通气量保持不变,维持正常呼吸。

2、1、打开考克,增大兔子呼吸进入的CO2量图2 增加二氧化碳吸入量后家兔呼吸信号变化CO2浓度增加使呼吸运动加强 CO2就是调节呼吸运动最重要的生理性因素,它不但对呼吸有很强的刺激作用,并且就是维持延髓呼吸中枢正常兴奋活动所必须的。

每当动脉血中P CO2增高时呼吸加深加快,肺通气量增大,并可在一分钟左右达到高峰。

由于吸入气中CO2浓度增加,血液中P CO2增加,CO2透过血脑屏障使脑脊液中CO2浓度增多, CO2+H2O→H2CO3→HCO3- +H +。

CO2通过它产生的 H+刺激延髓化学感受器,间接作用于呼吸中枢,通过呼吸机的作用使呼吸运动加强,此外,当P CO2增高时,还刺激主动脉体与颈动脉体的外周化学感受器,反射性地使呼吸加深加快。

家兔呼吸运动的调节实验简介

家兔呼吸运动的调节实验简介

思考题 (1)分别吸入 CO2、纯 N2 和注射乳酸溶液,呼吸运动有何变化? (2)比较吸人气中 CO2 浓度增加和缺氧,家兔呼吸运动的频率和幅度变化的差异,分
别说明它们各通过何种途径发挥作用。 (3)迷走神经是肺牵张反射的传入神经,对照实验结果,讨论切断迷走神经后及刺激
迷走神经中枢端呼吸运动发生变化的机理。
(2)呼吸流量换能器输出线接微机生物信号处理系统第 1 通道(亦可选择其他通道)。 (3)微机生物信号处理系统参数设置
RM6240 系统点击“实验”菜单,选择“呼吸”或“自定义实验项目”菜单中的“呼 吸运动调节”,系统进入该实验信号记录状态。仪器参数:通道时间常数为直流,滤 波频率 30Hz,灵敏度 5mv,采样频率 800Hz,扫描速度 1 s/div。 2. 手术准备(观看动物实验的基本操作、实验动物手术 VCD) (1)麻醉固定:家兔称重后,200g/L 氨基甲酸乙酯按 lg/kg 体重,耳缘静脉注射麻 醉。待兔麻醉后,将其仰卧,先后固定四肢及兔头。 (2)手术:用粗剪刀剪去颈前部兔毛于水盆中,颈前正中切开皮肤 6~8cm,直至下颌 角上 l.5~2cm,用止血钳钝性分离软组织及颈部肌肉,暴露气管及与气管平行的左、右 血管神经鞘,细心分离两侧鞘膜内的颈总动脉和迷走神经,在迷走神经下穿线备用。用 止血钳分离气管,在气管下穿两根粗棉线备用。 (3)气管插管 在环状软骨下约 1 cm 处,做“上”形剪口,用棉签将气管切口及气管 里的血液和分泌物擦净,气管插管由剪口处向肺端插入,插时应动作轻巧,避免损伤气 管黏膜引起出血,用一粗棉线将插管口结扎固定,另一棉线在切旧的头端结扎止血。用 温热生理盐水纱布覆盖手术野。 观察项目 (1)描记正常呼吸曲线 启动生物信号采集处理系统记录按钮,记录一段正常呼吸运 动曲线作为对照。辨认曲线上吸气、呼气的波形方向(呼气曲线向上.吸气曲线向下)。 (2)在气管插管一个侧管上接一根长 50cm 的胶管,观察和记录呼吸运动的变化。 (3)降低吸入气中的氧分压待呼吸曲线恢复正常,将钠石灰特制低氧瓶的导管口平行 于气管插管以降低家兔吸人气中的氧分压,观察和记录 H+对呼吸运动的变化。 (4)增加吸入气中的二氧化碳分压:打开二氧化碳发生瓶的导气管,使家兔吸入含有 较高浓度二氧化碳的空气。待家兔呼吸运动增强后立即闭合二氧化碳导管。观察呼吸曲 线变化。 (5)增加血液中的 H+:耳缘静脉缓慢注入 3%乳酸溶液 2mL,观察呼吸运动的变化。 (6)耳缘静脉缓慢注入 250g/L nikethamide 溶液 0.4mL/kg 体重(注意速度不宜过快, 以免引起惊厥),观察并记录呼吸变化。 (7)迷走神经对呼吸运动的调节作用:分别观察和记录切断一侧迷走神经和切断两侧 迷走神经以后呼吸运动的变化的一个维管束图,并注明各部分名称。

生理学实验呼吸运动的调节

生理学实验呼吸运动的调节

生理学实验呼吸运动的调节【目的】本实验的目的是观察理化因素对呼吸的影响。

【原理】呼吸运动是呼吸中枢节律性活动的反应。

呼吸中枢通过支配呼吸肌的传出神经膈神经和肋间神经、引起呼吸肌收缩,从而产生呼吸运动。

呼吸运动能够维持其节律性,并能适应机体代谢需要的变化,是由于体内存在着完善的调节机制。

体内外的各种刺激可通过体内调节系统的作用而影响呼吸运动。

【实验对象】家兔【器材与药品】BL-420生物信号记录分析系统、哺乳动物手术器械一套、兔台、气管套、注射器(20m1、5mI各一支)、50cm长的橡皮管一条,球胆二个、支架、张力换能器、刺激器、保护电极、马利气鼓、CO2气体、CO2气囊、25%氨基甲酸乙酯、3%的乳酸溶液、钠石灰瓶、生理盐水、纱布及线等。

【方法与步骤】1.麻醉与固定:用25%的氨基甲酸乙酯4ml/kg体重、自耳缘静脉注入,动物麻醉后,取仰卧固定在手术台上。

2.手术:颈部正中切口,气管插管,将气管插管的一侧开口与玛利式气鼓的橡皮管连接,可见描笔随呼吸上下移动,分离双侧迷走神经,穿线备用。

3.连接实验仪器装置:Y型气管插管的一端与张力换能器及生物信号处理采集系统连接,按实验项目逐步进入呼吸运动调节的实验项目,并按实际情况调节相应参数。

【实验项目】1.观察正常呼吸曲线,曲线向上为呼气,向下为吸气,同时观察呼吸频率与深度。

2.增加吸入气中CO2浓度:将装有CO2球胆的皮管口移近气管插管的侧管相距1厘米,打开球胆管的皮管夹子,使CO2随吸气进入气管。

观察高浓度的CO2对呼吸运动的影响。

夹闭球胆,观察呼吸恢复正常的过程。

3.缺O2 :将气管插管的一侧管通过钠石灰瓶,与盛有一定空气的球胆相连。

之后夹闭气管插管的另一例,使兔呼吸球胆中的空气。

这时,动物呼出的CO2可被钠石灰吸收,随呼吸的进行,球囊中的O2明显减少,观察呼吸运动的变化。

4.增大无效腔:把50cm长的橡皮管连接在气管插管的一侧管上.另一侧管夹闭。

生理学家兔呼吸运动的调节实验报告

生理学家兔呼吸运动的调节实验报告

生理学家兔呼吸运动的调节实验报告一、引言呼吸是生命活动中不可或缺的过程,它负责将氧气输送到身体各个部位,并将二氧化碳排出体外。

兔作为常见的实验动物,其呼吸系统较为相似于人类,因此被广泛应用于呼吸运动的调节实验中。

本报告将介绍我们对兔呼吸运动调节机制的研究结果。

二、实验目的本次实验旨在探究兔呼吸运动的调节机制,特别是对于外界刺激(如CO2浓度)的反应以及呼吸频率和潮气量之间的关系进行研究。

三、实验方法1. 实验动物:选取健康成年雄性白色家兔10只。

2. 实验仪器:生物信号采集仪、呼吸频率测定器、CO2浓度检测仪等。

3. 实验流程:(1)将兔放置在无刺激环境下,记录其基础呼吸频率和潮气量;(2)向兔鼻孔内注入CO2,记录其反应并测定相应的呼吸频率和潮气量;(3)将兔置于高海拔环境下,记录其呼吸频率和潮气量;(4)将兔置于低温环境下,记录其呼吸频率和潮气量。

四、实验结果1. CO2刺激实验:注入CO2后,兔的呼吸频率和潮气量均有明显增加。

其中,呼吸频率从基础的30次/分钟增加到了45次/分钟,潮气量从基础的0.5毫升/次增加到了1毫升/次。

2. 高海拔实验:在高海拔环境下,兔的呼吸频率明显增加,而潮气量略有降低。

其中,呼吸频率从基础的30次/分钟增加到了50次/分钟,潮气量从基础的0.5毫升/次降低到了0.4毫升/次。

3. 低温实验:在低温环境下,兔的呼吸频率和潮气量均有明显降低。

其中,呼吸频率从基础的30次/分钟降低到了20次/分钟,潮气量从基础的0.5毫升/次降低到了0.3毫升/次。

五、实验分析1. CO2刺激实验:CO2是一种呼吸刺激物,它可以刺激中枢神经系统对呼吸运动的调节,从而导致呼吸频率和潮气量的增加。

2. 高海拔实验:高海拔环境下氧气浓度降低,为了保证身体各部位的氧供应,兔会通过增加呼吸频率来提高氧摄取量。

同时,由于高海拔环境下空气稀薄,兔需要通过减少潮气量来避免过度通气。

3. 低温实验:低温环境下,兔需要通过减少呼吸频率和潮气量来减少热损失并保持体温稳定。

生理实验报告呼吸运动

生理实验报告呼吸运动

一、实验目的1. 了解呼吸运动的基本原理和调节机制。

2. 观察呼吸运动在不同生理条件下的变化。

3. 掌握呼吸运动的测量方法及数据处理。

二、实验原理呼吸运动是机体进行气体交换的重要生理过程,包括吸气相和呼气相。

吸气相时,膈肌和肋间外肌收缩,使胸腔容积增大,肺内气压低于外界大气压,气体进入肺泡;呼气相时,膈肌和肋间外肌舒张,胸腔容积减小,肺内气压高于外界大气压,气体排出肺泡。

呼吸运动的调节主要受神经系统和体液因素的影响。

三、实验材料与器材1. 实验动物:家兔2. 实验器材:手术台、常用手术器械、生理信号采集处理系统、呼吸传感器、气管插管、20ml及1ml注射器、橡皮管、刺激电极、20%氨基甲酸乙酯、CO2、乳酸、生理盐水、棉线、纱布等。

四、实验步骤1. 家兔的麻醉:取一只家兔,称重后,用剪刀剪去耳缘静脉上的毛。

用20ml注射器由耳缘静脉缓慢推注25%氨基甲酸乙酯(1g/kg体重)进行麻醉。

2. 气管插管:将家兔仰卧固定于手术台上,剪开颈部皮肤,暴露气管。

用气管插管插入气管,连接呼吸传感器和生理信号采集处理系统。

3. 呼吸运动的记录:启动生理信号采集处理系统,记录家兔的呼吸频率和幅度。

4. 实验分组:将实验分为对照组、CO2刺激组、缺氧组、乳酸酸中毒组和无效腔增加组。

5. 各组实验操作:- 对照组:观察家兔在正常条件下的呼吸运动。

- CO2刺激组:向家兔气管内注入CO2气体,观察呼吸运动的变化。

- 缺氧组:将家兔置于低氧环境中,观察呼吸运动的变化。

- 乳酸酸中毒组:静脉注射乳酸,观察呼吸运动的变化。

- 无效腔增加组:向家兔气管内注入生理盐水,增加无效腔,观察呼吸运动的变化。

6. 数据处理:将各组实验数据输入计算机,进行统计分析。

五、实验结果1. 对照组:家兔在正常条件下的呼吸频率为60-80次/分钟,呼吸幅度为10-20mmHg。

2. CO2刺激组:呼吸频率增加至90-120次/分钟,呼吸幅度增加至20-30mmHg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验数据分析
1.正常的家兔呼吸曲线
由图可知,本组选取的家兔自身呼吸频率较快,幅度加大,后续增强呼吸的因素作用不是十分明显。

由图可知,改接空气气囊后,家兔呼吸幅度和频率均未出现太大变化
3.接CO气囊的家兔呼吸曲线
6 25 (mV)
1.25'
图3•接CO气囊的家兔呼吸曲线
由图可知,接C◎气囊后,家兔呼吸曲线幅度增大,频率加快。

这是因为CO2 是调节呼吸运动最重要的生理性因素,不但对呼吸有很强的刺激作用,而且对维持延髓呼吸中枢正常兴奋活动是必须的。

当呼入气体中CO浓度升高,血液中CO 浓度随之升高,CO透过血脑屏障使脑脊液的CO浓度也升高。

CO与水反应生成H2CO,随后水解成HCO-:和H,由H刺
激延髓化学感受器,间接作用于呼吸中枢,通过一系列调控使得呼吸作用加强。

此外,当CO浓度增高时,还刺激主动脉体和颈动脉体的外周化学感受器,反射性地使呼吸加深加快。

由图可知,接2气囊后,家兔呼吸曲线幅度略有增大。

这是因为吸入纯 2 时,因吸入气体中缺乏O,肺泡气Q浓度下降,导致动脉血中Q浓度下降;而CO浓度却基本不变(CG T散速度较快)。

随着动脉血中Q浓度下降,通过刺激主动脉体和颈动脉体外周化学感受器延髓的呼吸中枢兴奋,隔肌和肋间外肌活动加强,反射性引起呼吸运动增加。

由图可知,增长解剖无效腔后,家兔呼吸幅度略有下降,而呼吸频率则稍稍上升,这是因为实验中通过插管的方式增大无效腔,也就是减小了进入肺泡的潮气量,即每次的有效气体更新变小。

结果促使Q分压下降,CO分压上升,使其反射性的调节使呼吸加深加快。

所以膈肌放电的变化幅度加大,频率有微量增大。

反映到膈肌的收缩曲线,由于收缩频率的增大,为了维持正常的肺部通气量,所以收缩强度减弱。

6. 家兔肺牵张反射曲线
由图可知,向肺部吹气相当于使肺部发生扩张, 这种扩张刺激了气管平滑肌 的牵张感受器,冲动由迷走神经传入延髓,抑制吸气神经元,切断吸气,引起被 动呼气。

所以如果这次实验注入气体过久,气量过大,可能会使得呼吸停止在呼 气的位置。

实验结果也显示了由于增大肺部的体积引起的膈肌收缩力的减弱和呼 吸频率的减小。

而从肺部吸气造成了肺部的萎缩,信号通过迷走神经传入呼吸中枢的程度减 弱,对于吸气神经元的抑制程度减小, 就会引起吸气神经元发生兴奋, 增加呼吸 的强度。

实验图中显示了从开始抽气到这种变化恢复的过程。

出现了明显的呼吸 强度的增大。

7. 剪断两侧迷走神经的家兔呼吸曲线
5.25
(mV)
5.
3.75'
2.5 '
图7.
剪断两侧迷走神经的家兔呼吸曲线 由图可知,剪断两侧侧迷走神经时,呼吸强度和呼吸频率频率未出现明显变 化,这是由于迷走神经为肺牵张反射的传入神经, 参与呼气和吸气之间相互转化 并维持呼吸的深度和频率。

剪断两侧迷走神经后,中断了肺牵张反射的传入通路, 使肺牵张反射的生理作用减弱,出现吸气过深,呼吸频率变慢。

途中由于出现张 力曲线的基线下移使得显示出的收缩曲线幅度没有多少变化。

剪断一侧迷走神经
8. 刺激迷走神经的家兔呼吸曲线
>25 :mV)
5.
175
2.5
1.25
由图可知,1V强度刺激侧迷走神经时,呼吸幅度明显下降,频率略有提高,这是因为刺激迷走神经后,冲动传入延髓抑制了吸气神经元的活动,使得吸气程度部分被抑制,一定程度上引起了被动的呼气,综合起来使得呼吸的速率提高,呼吸的强度减弱。

由于迷走神经的传入神经也是复合神经干,所以在一定范围内这种变化的程度和刺激强度有关。

所以在2V刺激迷走神经的图像中并未观察到规律性的变化。

由图可知,剪断迷走神经后,向兔子肺部注射气体或抽取气体均无明显反应,这是因为由于迷走神经已经剪断,信号传不到中枢,也就成了无效信号,所以图中显示刺激前后没有变化。

(注:由于剪断了双侧迷走神经,机体失去了对呼吸的正常调节机制,所以呼吸速率和强度都无法回到正常水平。

)。

相关文档
最新文档