长输管道阴极保护及阴极保护站维护基础知识

合集下载

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送油气、水等液体或气体的重要通道,其保护是关系到国家能源安全和环境安全的关键问题。

阴极保护是一种有效的管道保护方法,主要是通过施加电场,使管道表面电位负化,从而减少管道金属的腐蚀速率,延长管道使用寿命。

本文将阐述长输管道的阴极保护原理、方法及故障分析。

一、阴极保护原理由于土壤中存在着各种离子,例如水、氯离子等,这些离子会形成电池,导致管道金属表面出现电位差,这种现象称为自然电位。

如果管道的自然电位低于一定的电位(通常为-0.85V),则管道处于负电位,就会发生金属的电化学腐蚀。

阴极保护的主要原理是通过施加外加电场,将管道表面电位负化,使得管道处于负电位,在靠近管道表面的电场区域内,电子从管道金属表面流向土壤中的正离子,使其发生还原反应,从而减少管道金属腐蚀速率。

1、电位调节法:通过在管道两端安装钛阳极和铁/铜阴极,以及控制钛阳极输出的电流来调节管道表面的电位,从而达到保护作用。

2、电流输出法:在管道保护系统的控制下,直接将电流输出到管道端部的阳极或在管道上部固定钛阳极来保护管道。

3、均匀分散法:通过在管道上均匀分布一定数量的阳极,使得管道表面的电位均匀调整到负电位,从而保护整个管道。

1、偏移现象:阴极保护系统在使用过程中,由于地下水流的影响,土壤的化学组成及导电性不均匀等因素,易出现管道阴极保护区域偏移的现象。

一般采用分析安装阳极的位置是否正确,调整阴阳极之间的距离和电位来解决偏移问题。

2、极化过度:在保护过程中,如果管道阴极保护电位过于负化,反而会引起金属氢化、内应力等问题,从而导致管道的损坏。

应当合理调整阴极保护的电位,避免出现极化过度的情况。

3、外来干扰:阴极保护系统如果受到外部电源干扰(例如电力系统、通信设备等),会导致保护系统失效,出现管道腐蚀。

一般应在设计阴极保护系统时,选取合适的接地点,采取防雷、防电磁干扰等措施来预防外来干扰。

综上所述,长输管道阴极保护技术是一项重要的保护措施,可有效减少管道的金属腐蚀速率,延长管道寿命。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送石油、天然气等能源的重要设施,其安全运行需要关注防腐蚀和防止电化学腐蚀失效的问题。

阴极保护技术是一种保护长输管道金属的经济、有效的方法,本文将对长输管道阴极保护的原理、方法及故障的分析进行探讨。

一、阴极保护原理管道腐蚀的根本原因是电化学腐蚀,当管道作为阴极而周围环境当作阳极时,管道表面将出现金属的电子脱落,导致金属离子向外扩散,进而形成腐蚀。

阴极保护技术通过在管道表面制造负电位,使其成为静电阴极,从而减少或甚至消除电子脱落现象,从而防止或减缓管道腐蚀。

阴极保护主要包括直流阴极保护和交流阴极保护,其中直流阴极保护利用负电位防止管道腐蚀,交流阴极保护则通过改变管道表面的极性来防止腐蚀。

1. 阴极保护电流阴极保护电流是阴极保护的主要参数,它可以直接影响阴极保护的效果。

通常情况下,阴极保护电流的大小应该根据土壤电阻率和管道电流密度来确定,一般地说,管道的阴极保护电流应该保持在0.03~0.1A/m2之间。

阴极保护电源是阴极保护的核心,它通常包括直流阴极保护电源和交流阴极保护电源。

对于直流阴极保护电源,其一般需要提供相应的电流稳定性,可靠性以及有效的过流保护机制。

而对于交流阴极保护电源,其主要需要提供一定的非均匀电场分布能力,同时保证电源的电压和频率与管道周围环境相匹配。

3. 阴极保护绝缘节制阴极保护绝缘节制是一种保持管道电位稳定、减少腐蚀险情的技术。

阴极保护绝缘节制应能够有效地防止管道周围地下水的浸渍和电流干扰,同时保证管道电位的可靠性和稳定性。

一般地说,此类绝缘节制的材料应具备良好的腐蚀防护能力、良好的电绝缘性能以及耐高温、耐低温等特性。

阴极保护效果的检测是防止管道腐蚀以及其他电化学腐蚀失效的重要手段。

在阴极保护检测方面,根据管道的构造形式、使用环境以及技术特点等因素,在实际应用中常常采用电位测量、电阻率测量以及电流测量等多种检测手段。

这些检测手段在实际应用中的效果和精度均有相应的保障。

长输管道阴极保护基础知识交流

长输管道阴极保护基础知识交流
阳极(Fe):Fe - 2e = Fe2+ 阴极(C):2H2O + O2 + 4e = 4OH4Fe(OH)2+2H2O+O2=4Fe(OH)3(铁锈)
一、金属腐蚀与控制原理
6.埋地管道的外腐蚀 ➢腐蚀发生的不同类型
管线防腐层破损引起的腐蚀
金属成分、构造不同引起的腐蚀
一、金属腐蚀与控制原理
氧浓差引起的腐蚀: 在通气条件差(氧含量低)的环境下,钢结构对地电位较低。如埋设在
1.阴极保护的起源 其他科学家的研究工作
1890年,美国发明家爱迪生试验了外加电流法对船的保护方法,由于 没有合适的外加电源和阳极材料而未获成功。
1902年科恩采用直流电机首次实现了强制电流阴极保护的实际应用。 1906年盖波建立了第一个管道阴极保护系统,用一台容量为10V/12A的直流 发电机保护地下300m长的煤气管道,并获得专利。
➢正确选用耐腐蚀材料(供应、耐蚀、成本、强度、加工性、外观等因素) ➢合理的防腐设计(结构设计、工艺设计) ➢电化学保护(阴极保护、阳极保护) ➢改变环境 (脱硫、脱水、添加缓蚀剂、降温、降速、除氧、改变浓度) ➢金属表面覆盖层(金属与腐蚀性介质隔离) ➢腐蚀监/检测(间接手段)
一、金属腐蚀与控制原理
道路下的管道,对地电位较低,为阳极,首先发生腐蚀。对大直径管道,由 于其顶部相对干燥,通气较好,所以其底部通气较差,较容易腐蚀。
一、金属腐蚀与控制原理
硫酸盐还原菌腐蚀
我国大部分土壤中都含有硫酸盐还原菌,存在发生硫酸盐还原 菌腐蚀的风险。
一、金属腐蚀与控制原理
新旧管道腐蚀
一、金属腐蚀与控制原理
7.控制金属腐蚀的途径
腐蚀是一种化学过程,而且大多都是电化学过程,伴随着氧化还原反应的发生。 化学腐蚀:金属跟接触到的物质直接发生化学反应而引起的腐蚀。 电化学腐蚀:不纯的金属或合金与电解质溶液接触,会发生原电池反 应,比较活泼的金属失电子被氧化的腐蚀。腐蚀过程中有电流产生。

长输管道基础知识

长输管道基础知识

03
通过收发清管器来清除管道 中的积液、粉尘杂质和异物。
03
长输天然气管道的总体布置
首站 阀 室 分输站 阀 室
阴极保 护站
增压站
阀 室
清管站
末站
用户
储气库
长输管网--首站工艺流程
长输管网--末站工艺流程
长输管网--分输站工艺流程
长输管网--清管站工艺流程
站址选择要求
满足系统工艺设计的要求, 所选位置总体上服从输气 干线的大走向。
3
6
所选站址(含放空区)的占 地面积应使站内各建筑物 之间能留有符合防火规范 规定的安全间距。
站址选择要求
选择较有利的地形及 工程地质条件,应避 开易发生山洪、滑坡 等不良工程地质段及 其他不宜建站的地方。
1
2
站址应尽量避开湿陷 性黄土分布地区,或 选在湿陷量较小的地 段。
工程、水文地质要求 地耐力不小于150kPa。
Insert Header Topic Here
站场常见的设备--清管收发设备
站场常见的设备--分离设备
发送过程
接受过程
a.收发球筒 b.快开盲板 c.排污排空阀 d.e.f.与管径等径球阀
g排污池
站场常见的设备--计量设备
孔板流量计又称为差压式流量计,是由一次 检测件(节流件)和二次装置(差压变送器和流 量显示仪)组成。采用均压环、一体型结构。 涡轮流量计由涡轮和装于外部的检脉冲器构 成,液体流进涡轮,引起转子旋转,特定的 内径使转子转速直接与流量成比例。
地下水位较低,无侵 蚀性。
3
4
站址选择要求 布站要求 输气管道的沿线有许多种站场设施,将这些设施合建能减少占 地,降低投资,并且方便管理。因此在可能的情况下宜尽量将这些 站场设施合建:

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是石油、天然气、化工产品等重要能源和物质运输的主要途径之一。

在使用过程中,长输管道的阴极保护是非常重要的。

本文将从长输管道阴极保护的原理、方法、故障类型及其分析等方面进行介绍。

一、阴极保护原理阴极保护是一种经济、有效的金属防腐措施,通过在金属表面施加一个负电位,将金属的电位调整到阴极区,在物质和能量的作用下,使金属表面处于保护状态,从而防止金属的电化学腐蚀。

在长输管道中,阴极保护的主要目的是保证管道金属表面的电位低于其溶解电位,使其处于被保护状态,从而防止腐蚀。

1. 熔融热浸镀法熔融热浸镀法是将金属作为阳极,通过在其表面浸涂含有阴离子的熔态物质,在高温下将该物质还原成金属的一种阴极保护方法。

该方法的优点是保护效果好,缺点是操作复杂,成本较高。

2. 电化学阴极保护法电化学阴极保护法是将外部电源与被保护金属合成电池,通过从外部输入一个反向电流,使金属的电位降低到保护电位以下,从而达到防腐的目的。

该方法的优点是施工简单,成本低,但需要对金属进行严格的电位控制。

渗入阻抗阴极保护法是一种新型的阴极保护方法,通过将阻抗控制器引入管道,将介质中的电导率、温度、湿度等参数作为参量,根据管道的工作状态和防腐要求计算出合适的电位值,并通过介质的渗入作用对管道进行阴极保护。

该方法的优点是操作简便,防腐效果好,但需要对阴极保护设备进行严格监护。

三、故障分析阴极保护设备在工作过程中也会出现一些故障,主要包括以下几点:1. 阳极失效阳极失效是指金属阳极在使用过程中出现脱落、损坏等情况,从而导致被保护金属表面的电位增加,无法达到保护状态,最终导致金属的腐蚀。

防止阳极失效的方法包括定期检查和更换。

2. 阴极材料污染长输管道中的介质可能会对阴极保护材料产生腐蚀或污染,从而导致阴极材料的损坏和阴极保护效果的降低。

预防阴极材料污染的方法包括管道清洗、选择防腐能力强的阴极材料等。

3. 阴极保护电流过小或过大阴极保护电流过小或过大都会导致保护效果下降。

长输管道站场区域阴极保护-精选文档

长输管道站场区域阴极保护-精选文档
采用深井阳极与浅埋阳极相结合分散布置的方式,以 深井阳极为主,浅埋阳极为辅,深井阳极安装于站外, 浅埋阳极靠近被保护管道,以降低屏蔽和干扰。同时 对站内接地系统进行改造,将原来的角钢接地改为锌
合金。工程实施后,进行电位实测,总结了很多经验。
陕京线也先后在采育、永清、通州等站实施区域阴极 保护;西气东输也陆续在甪直和古浪开展了区域阴保 研究;
边水平浅埋阳极组方式,这两个站的设计和实施由泵
站管理单位完成,由于输油泵站区域较大,地下管网
较多,管道电绝缘几乎没有实施,因此,这两个站的 区域阴保除靠近阳极地床的区域配管外,相当一部分 由于地下管道的相互电屏蔽而没有达到保护电位,普 遍在-0.75-0.8V C.S.E。
进入新世纪初,区域阴极保护进入全面尝试应用
中国石油天然气管道工程有限公司
CHINA PETROLEUM PIPELINE ENGINEERING CORPORATION
多年来站场内部埋地管网的腐蚀破坏事故不 断的发生,如忠—武输气管线站场在扩建开挖 时发现,站内管线防腐层脱落严重,又没有阴 极保护措施,造成了较为严重的腐蚀;07年初 在西气东输轮南首站以及陕京输气管道站内开 挖过程中,也同样发现防腐层破损严重,使管 道遭受了腐蚀;另外,早些年在阿—赛线、濮-临复线
由于站内设备、仪表设施以及人员相对比较 集中,站内腐蚀泄露的危害要比干线严重的多。
中国石油天然气管道工程有限公司
CHINA PETROLEUM PIPELINE ENGINEERING CORPORATION
正因为如此,站内腐蚀在国外油气储运工程中一直
都很重视,美国腐蚀工程师协会NACE要求站内管道 必须采取阴极保护。中石油最近十多年来也陆续在 许多管道工程中,如忠武线、库鄯线、黄岛首站、 太阳升和林源等泵站、鄯乌线,陕京输气管道、以 及广东LNG等诸多工程的工艺站场实施了区域阴极 保护,取得了一定的效果。一些管道项目如西一线、 西部原油成油管道等都正在实施增设区域阴极保护。

长输管道阴极保护技术全解

长输管道阴极保护技术全解

精选可编辑ppt
4
三、长输管道阴极保护技术:
阴极保护的在我国的应用
我国埋地油气管道的阴极保护始于1958年,但仅限 于小规模试验。1965年大庆油田开展了牺牲阳极法管道 阴极保护的现场试验。1968年对全长80km/直径426mm的 外加沥青绝缘防腐层的螺纹钢管进行了外加电流阴极保 护的设计施工。70年代起,我国的长输管道开始推广应 用阴极保护技术。
➢ 牺牲阳级包裹前清理干净表面氧化物和污物
精选可编辑ppt
36
四、长输管道阴极保护施工技术:
2、阴级保护工程施工(牺牲阳级法): (2)牺牲阳级化学填包料的制作:
➢ 牺牲阳级化学填包料的制作 ——填包料的制作符合相关标准
——填包料的称重、混合包装在室内进行 填包料以干调振荡包装,保证阳级在填包料中间部位 填包料包裹袋不得用人造纤维织品制作 包裹后的阳级必须牢固,搬运时不产生位移 填包料中的膨润土部分不得用粘土代替
精选可编辑ppt
37
四、长输管道阴极保护施工技术:
2、阴级保护工程施工(牺牲阳级法):
(3)牺牲阳级的安装:
精选可编辑ppt
5
三、长输管道阴极保护技术: 金属的常见防护方法
(1).在金属表面覆盖保护层. (2).改变金属内部组成结构而增强抗腐蚀能力,如
制成不锈钢. (3).电化学保护法.
a.牺牲阳极的阴极保护法. b.外加电流的阴极保护法.
精选可编辑ppt
6
三、长输管道阴极保护技术:
腐蚀电位或自然电位对腐蚀的影响
➢ 电源电压与设备额定电压值相符 ➢ 根据接线图核对交直流电压关系,输出电源极性正确 ➢ 接线端子上注明“+”“-”极标志
精选可编辑ppt
26

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送天然气、石油等能源资源的重要设施,其安全运行对于国家经济发展具有至关重要的意义。

长输管道在运行过程中会受到各种外部环境和内部因素的影响,其中阴极保护系统的设计和故障分析是保障长输管道安全运行的关键问题之一。

本文将围绕长输管道的阴极保护及故障分析展开讨论,以期对长输管道的安全运行提供指导和保障。

一、长输管道阴极保护的作用长输管道在运行中常受到土壤电化学环境的影响,其中的电化学腐蚀是导致管道金属材料损坏的主要原因之一。

而阴极保护是一种有效的控制管道金属材料腐蚀的措施,其基本原理是通过外加电流使管道维持在一个负电位,从而抑制管道金属的腐蚀过程。

阴极保护系统主要由阳极、电源和控制系统三部分组成,其中阳极的材料一般选用锌、铝、镁等,电源一般选用直流电源,控制系统则根据管道的具体情况进行设计。

1.抑制金属腐蚀:阴极保护系统通过外加电流维持管道在负电位,使得管道金属处于稳定的电化学环境中,从而抑制了金属的腐蚀。

2.延长管道使用寿命:有效的阴极保护系统可以有效地延长长输管道的使用寿命,降低了管道的维护成本和更换频率。

3.提高管道安全性:良好的阴极保护系统可以有效地提高管道的安全性,减少因金属腐蚀引起的事故发生的概率,保障管道的安全运行。

二、阴极保护系统的故障分析尽管阴极保护系统可以有效地保护长输管道的金属材料不被腐蚀,但在实际运行中也会出现各种故障情况,这些故障如果得不到及时发现和处理,就会对长输管道的安全运行造成严重的影响。

下面我们将针对阴极保护系统的故障进行分析,并提出相应的处理措施。

1.阳极失效:阳极是阴极保护系统中最为关键的部件之一,一旦阳极失效,就会导致管道金属材料的腐蚀。

阳极失效的原因主要包括材料腐蚀、磨损、电流分布不均等,因此在实际运行中要定期对阳极进行检查,并根据检查结果进行维修或更换。

2.电源故障:阴极保护系统的电源是维持管道在负电位的关键组成部分,一旦电源出现故障就会导致管道金属处于阳极保护的状态,从而失去了有效的防腐功能。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道的阴极保护技术是一种常用的管道防腐蚀措施,它通过在管道表面施加阴极电流来抑制金属的电化学腐蚀。

在长输管道的使用中,阴极保护系统有可能出现故障,导致管道的腐蚀防护效果下降甚至失效。

阴极保护系统的故障主要表现为以下几个方面:电流输出不稳定、电流密度异常、电流输出中断、电流阴极化效果不明显、电流与电位关系异常等。

造成阴极保护系统故障的原因很多,常见的有阴极保护装置失灵、电源欠压或过压、电缆接头松动或断裂、阳极材料耗尽、导电性能差的涂层等。

这些原因可能单独或同时发生,造成管道的阴极保护系统故障。

当发现长输管道阴极保护系统存在故障时,需要进行故障分析,并采取相应的措施进行修复。

应检查阴极保护装置是否正常工作,包括检查电源电压、电流输出稳定性等。

如果发现装置失灵,应及时修复或更换。

需要检查电缆连接是否正常。

阴极保护系统中的电缆连接非常重要,如果松动或断裂,会影响电流的输出。

应检查电缆连接是否紧固,舒展长度是否正常。

如发现有问题,应进行修复或更换。

还需要检查阳极材料的情况。

阳极材料是阴极保护系统中的关键部件,如果阳极材料耗尽,会导致阴极保护效果变差。

应定期检查阳极材料,如发现阳极材料耗尽,应及时进行更换。

还需要检查涂层的导电性能。

涂层的导电性能直接影响阴极保护系统的效果。

如果涂层导电性能差,会导致阴极保护系统无法正常工作。

应定期检查涂层的导电性能,如果发现问题,应进行修复。

通过以上的故障分析和修复措施,可以及时解决长输管道阴极保护系统的故障问题,确保管道的腐蚀防护效果。

也需要认识到,阴极保护系统的故障不仅会影响腐蚀防护效果,还可能引发其他安全隐患,因此维护阴极保护系统的正常运行十分重要。

长输管道外加电流阴极保护及阴极保护站维护基础知识

长输管道外加电流阴极保护及阴极保护站维护基础知识

长输管道外加电流阴极保护及阴极保护站维护基础知识河南汇龙合金材料有限公司1.目的:随着国内长输管道的大规模建设,我国的天然气管网已初具规模,长输管道外加电流阴极保护技术也被大量广泛应用,为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。

一.防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。

通过炼制,被赋予能量,才从离子状态转变成原子状态。

然而,回归自然状态是金属固有本性。

我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。

金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。

二.防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。

我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。

2.阴极保护原理2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。

)。

通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。

2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。

阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是:(a)两电极电位不同的两电极;(b)两电极必须在同一电解质溶液里;(c)两电极间必须有导线连接。

管道阴极保护系统的运行与维护技术

管道阴极保护系统的运行与维护技术

管道阴极保护系统的运行与维护技术



2. 最小保护电位 为使腐蚀过程停止,金属经阴极极化后所必须达到的 绝对值最小的负电位值,称之为最小保护电位。最小保 护电位常是腐蚀原电池微阳极的起始电位或与之近似。 这是由于只有当阴极保护电源向受到腐蚀的阳极部位, 提供了足够的相反电流即极化电流,使之恰好抵消了腐 蚀电流后,腐蚀才能停止。 此时,阴极区(腐蚀电池发生地)的电位将被极化到阳极区 的管地电位,金属表面电位均一。金属受到阴极保护。 最小保护电位也与金属的种类、腐蚀介质的组成、温度、 浓度等有关。 最小保护电位值常是用来判断阴极保护是否充分的基准。 因此该电位值是监控阴极保护的重要参数。实验测定钢 在土壤及海水中的最小保护电位为-0.85V(相对饱和硫酸 铜参比电极)。
管道阴极保护系统的运行与维护技术



3. 最大保护电位 在阴极保护中,所允许施加的阴极极化的绝对值最大 值,在此电位下管道的防腐层不受到破坏。此电位值就 是最大保护电位。 阴极保护电位值,并不是愈负就愈有利于金属的防护。 过负的电位会产生不良作用,这就是阴极剥离。阴极剥 离是由于阴极极化电流过大,造成金属表面电位过负, 当此电位值达到析氢电位时,阴极表面的H+会在其表面 上得电子,产生氢原子,从而产生析氢反应。例如在碳 钢表面,当阴极极化电位达到-1.25V时,就会产生析氢。 这种现象将会造成金属表面的防腐层与管道的剥离,促 使防腐层加速老化。 因此,阴极保护中有最大保护电位的限制。而与之配合 使用的防腐绝缘层材料则有抗阴极剥离性能的要求。过 保护,还会形成过多的电能消耗。最大保护电位值的大 小通常通过试验确定。对于石油沥青防腐层取1.25V。

管道阴极保护系统的运行与维护技术

长输管道的阴极保护及故障探讨

长输管道的阴极保护及故障探讨

长输管道作为我国油气资源、供暖系统等重要的供应载体,其在用时间往往都比较长,在正常的环境条件下也较容易发生腐蚀等情况,而长输管道一旦出现腐蚀现象,不仅会使介质的正常供应带来不利影响,同时也极易造成安全事故和财产损失,因此必须重视长输管道的防腐蚀工作。

目前采用较多的有效防腐控腐手段有两种,即加涂防腐覆盖层和阴极保护技术,在这两项措施中,管道防腐涂层较为容易理解,也就是指在管道壁和管道连接等处涂覆防腐材料涂层,以达到防止有害物质与管路直接接触对管道进行侵蚀的目的。

而阴极保护技术在长输管道的防腐保护中则是一项更为关键的技术,已经成为了管道防腐保护的关键系统。

 1 长输管道阴极保护的概述1.1 牺牲阳极的阴极保护方式在长输管道的阴极保护系统中,牺牲阳极的阴极保护是最为基础的保护方案措施,其主要原理是,通过电解质这一过程,金属电子大量释放,负的电位得以形成,金属管道壁受相应催化而具备类似电池阴极的特性,从而实现其材料保护的目的。

在长输管道阴极保护技术中,牺牲阳极的保护方式是一种非常便捷的保护手段,该种保护方式省略了加装外部电源的过程,可操作性极强,对于保护电阻率低于周围环境的长输管道而言效果显著,发挥作用的空间较大。

虽然说牺牲阳极的阴极保护方式具备着便捷和可操作性强等诸多优势,但就目前而言,这种保护方式也存在着很多弊端和技术难题。

一般来说,采用此种保护方式的管道整体寿命普遍不高,究其原因,主要是受其阳极表面的不利影响较大,阳极表面附着层导电性极差甚至根本不导电,使得电阻率大大提高,反而会给长输管道的保护工作带来阻碍。

1.2 外加电流的阴极保护方式 对于长输管道阴极保护系统来讲,外加电流的阴极保护技术也是一项管道保护的重要手段。

此种保护方式指的是,通过外加强力的电流,促使金属材料的管道接触更多电子,最大限度避免电离现象,使长输管道金属材料的结构电位与其所处的环境条件相比有效降低。

与牺牲阳极的保护方式相反,此种保护方式所适应的环境条件电阻率都比较高,对于大型的管路设施保护效果十分显著,在长输管道中,其应用性也更加强。

长输管道阴保及阴极保护站维护基础知识

长输管道阴保及阴极保护站维护基础知识

长输管道阴极保护及阴极保护站维护基础知识1.目的为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。

一.防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。

通过炼制,被赋予能量,才从离子状态转变成原子状态。

然而,回归自然状态是金属固有本性。

我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。

金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。

二.防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。

我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。

2.阴极保护原理2.1所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。

)。

通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。

2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。

阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是:(a)两电极电位不同的两电极;(b)两电极必须在同一电解质溶液里;(c)两电极间必须有导线连接。

管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识管道阴极保护基本知识内容提要:◆ 阴极保护系统管理知识◆ 阴极保护系统测试方法◆ 恒电位仪的基本操作一、阴保护系统管理知识(一)阴极保护的原理自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。

我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。

每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。

腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。

阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。

阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。

有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。

1、牺牲阳极法将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V ;工业纯铝,其电位为-0.8V (相对于饱和硫酸铜参比电极)。

2、强制电流法(外加电流法)将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。

其方式有:恒电位、恒电流、恒电压、整流器等。

如图1-4 示。

图1-4 恒电位方式示意图外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。

长输管道站场区域阴极保护

长输管道站场区域阴极保护

• 多年来站场内部埋地管网的腐蚀破坏事故 不断的发生,如忠—武输气管线站场在扩建开 挖时发现,站内管线防腐层脱落严重,又没有 阴极保护措施,造成了较为严重的腐蚀;07年 初在西气东输轮南首站以及陕京输气管道站内 开挖过程中,也同样发现防腐层破损严重,使 管道遭受了腐蚀;另外,早些年在阿—赛线、 濮--临复线
• CPE西南分公司也在永唐秦输气管道站场中实施 了深井阳极地床区域阴极保。 在国内工程不断进行区 域阴保实验的同时,管道局也先后在科威特、俄罗斯 西伯利亚—太平洋等管道工程中实施区域阴保,同时 我们也在不断与我们的国际合作伙伴如美国克罗尼尔 、MACTOR、英国CP、德国SSS等专业公司广泛合作,对 国外的区域阴保也有比较多的了解和掌握。
•三、 区域性阴极保护技术特点
• 多年来,长输管道工程设计中,区域阴极保
护设计和实施之所以没有很好地全面开展,与其保护 对象的多样性、影响因素的多重性以及现场条件制约 的多方性有很大关系。通常来说,区域阴保具有如下 技术特点。
• --保护对象复杂性,站内区域性阴极保护是复杂 的系统,通常包括站内埋地工艺管网、站内消防管线 、排污管线、放空管线、热力管网等,这与站外单一 干线管道的保护完全不同,相互制约和影响因很多, 需要系统地统筹考虑。
• 这些因素都是区域阴保难以成功实施原因。
•边水平浅埋阳极组方式,这两个站的设计和实施由泵 站管理单位完成,由于输油泵站区域较大,地下管网 较多,管道电绝缘几乎没有实施,因此,这两个站的 区域阴保除靠近阳极地床的区域配管外,相当一部分 由于地下管道的相互电屏蔽而没有达到保护电位,普 遍在-0.75-0.8V C.S.E。
• 进入新世纪初,区域阴极保护进入全面尝试应用 阶段。2001年11月,管道公司在所属的鄯乌线对沿线 所有工艺站场实施区域阴极保护,这次阴极保护的实 施,充

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送液体或气体的重要设施,其安全运行和保护至关重要。

在长期运行中,长输管道会遭受来自地下水、土壤和大气环境等因素的腐蚀,因此需要采取阴极保护技术来延长管道的使用寿命。

本文将介绍长输管道的阴极保护原理和常见的故障分析。

一、阴极保护原理阴极保护是一种通过外加电流来保护金属表面免受腐蚀的技术。

其基本原理是通过在金属表面施加一个负电位,使金属成为阴极,从而减缓甚至停止金属的腐蚀。

对于长输管道来说,通常采用的阴极保护方法包括半保护和全保护两种。

半保护是指在管道的局部区域施加外加电流,通常适用于管道局部腐蚀严重的情况。

而全保护则是在整个管道表面均匀施加外加电流,适用于整个管道都需要保护的情况。

阴极保护系统通常由阳极、电源以及控制系统组成。

阳极通常采用铝、镁或锌等阳极材料,阳极和管道通过导线连接到电源上。

电源可以是直流电源或者是取自交流电源的整流装置,用来产生外加电流。

而控制系统则用来监测管道的电位和电流,保证管道的阴极保护效果。

二、阴极保护故障分析尽管阴极保护可以有效地延长长输管道的使用寿命,但是在实际运行中还是会出现一些故障,主要包括阳极失效、外加电流失效和控制系统失效等。

1. 阳极失效阳极失效是阴极保护系统的常见故障之一。

阳极失效可能是由于阳极材料本身腐蚀或者损坏导致的。

在这种情况下,阳极需要及时更换,以保证阴极保护系统的正常运行。

阳极的布置位置也需要考虑,不同位置的阳极需要采取不同的保护措施,比如对于埋地管道需要采用深埋和广埋的方式来安装阳极。

2. 外加电流失效外加电流失效是指外加电流未能在管道表面均匀分布或者未能达到设计要求。

这可能是由于电源故障或者导线连接不良导致的。

对于这种情况,需要及时对电源和导线进行检修和更换,以保证管道的阴极保护效果。

3. 控制系统失效控制系统失效是指用来监测管道电位和电流的设备出现故障。

控制系统失效可能是由于传感器损坏、连接线路故障或者控制器故障等原因导致的。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送液体或气体的重要设施,其安全稳定运行对于保障能源供应和社会发展具有重要意义。

长输管道在运行过程中面临着一系列的问题和挑战,其中包括阴极保护和故障分析。

阴极保护技术是长输管道保护的一种重要手段,而对于管道阴极保护系统的故障分析则是确保管道安全运行的关键关注点。

一、长输管道的阴极保护阴极保护技术是一种通过在金属结构表面施加一定电流密度,使其表面保持在阳极极化区以防止腐蚀的技术。

在长输管道运行过程中,经常遇到的问题是管道金属材料的腐蚀,特别是在土壤、水下等介质中,腐蚀速度更为迅速。

阴极保护技术便是通过施加外电源,在管道金属结构表面形成一层保护膜,降低金属的腐蚀速率,延长管道的使用寿命。

阴极保护技术的原理可以用简单的电化学理论来解释。

当金属处于阳极极化区时,金属表面会生成一层保护膜,从而减少金属的氧化和腐蚀速度。

通过在金属结构外部施加一定电流密度,使金属表面保持在阳极极化区,从而达到防止腐蚀的目的。

在长输管道的阴极保护系统中,通常采用的是外加电流的方式来实现。

通过在管道周围埋设一定数量和间距的阳极,利用外部设备施加一定电流,使管道保持在阳极极化区,从而达到防腐的效果。

除了外加电流的方式,还可以采用别的方式,比如对管道进行镀锌处理,利用阴极保护的效果来延长管道的使用寿命。

在长输管道的阴极保护系统中,经常会出现一些故障问题,这些问题可能来自于系统设计不当、设备老化、操作不当等多方面的原因。

故障的发生对于管道的安全运行构成了严重的威胁,因此对于阴极保护系统的故障分析显得尤为重要。

1. 设备老化长输管道的阴极保护系统通常需要配备一些外部设备,比如电源设备、阳极等,这些设备的老化是导致阴极保护系统故障的重要原因之一。

设备老化可能导致设备性能下降,甚至完全失效,从而使得阴极保护系统无法正常工作,加速了管道的腐蚀速度。

为了避免设备老化导致的故障,需要对阴极保护系统的设备定期进行检查和维护,并及时更换老化设备,以保证阴极保护系统的正常运行。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析【摘要】长输管道是重要的能源运输设施,对其进行有效的阴极保护是确保管道安全运行的关键措施。

本文从阴极保护原理与方法、在长输管道中的应用等方面进行探讨,并分析了阴极保护故障的常见方法和处理措施。

通过对长输管道阴极保护故障案例的深入分析,强调了故障分析对管道安全的重要性。

结合实际案例,提出了未来长输管道阴极保护故障分析的发展方向,以期为管道运营和维护提供更为科学的参考。

阐明了阴极保护在长输管道中的重要性,为管道安全运行提供了有效保障,同时也指出了故障分析在管道安全中的关键作用。

通过本文的研究,可以进一步完善长输管道阴极保护及故障分析的相关技术和应用,推动长输管道行业的发展。

【关键词】长输管道、阴极保护、故障分析、原理、方法、应用、案例分析、故障处理、预防措施、安全、发展方向。

1. 引言1.1 长输管道的重要性长输管道作为输送能源和化工产品的重要设施,在现代工业中扮演着不可或缺的角色。

长输管道的建设和运行不仅关系到国民经济发展,也直接关系到人民生活和国家安全。

长输管道能够将原油、天然气、煤炭等能源资源快速、高效地输送到各地,满足各行各业的能源需求,促进经济发展。

长输管道也承担着环境保护的责任,通过输送管道将能源产品输送至目的地,减少了运输过程中的尾气排放和能源浪费,有利于环境保护和可持续发展。

1.2 阴极保护的定义阴极保护是一种利用电化学原理保护金属结构免受腐蚀的技术。

该技术通过在金属表面施加一个外加电流,使金属表面形成一个保护性的电化学反应层,从而延缓或阻止金属结构的腐蚀。

阴极保护主要分为被动阴极保护和主动阴极保护两种类型。

被动阴极保护是通过让金属结构成为阴极,从而使金属结构保持在不发生腐蚀的状态。

而主动阴极保护则是通过在金属结构周围引入外部电流,使金属结构成为阴极,从而形成保护性的电化学反应层。

阴极保护技术被广泛应用于长输管道等金属结构的腐蚀防护中,可以有效延长金属结构的使用寿命,提高设施的可靠性和安全性。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送天然气、石油等能源的重要设施,其安全运行关乎整个能源系统的稳定和安全。

而长输管道在运行过程中,由于环境、介质和其它外部因素的影响,会造成管道金属材料的腐蚀,进而引发管道的阴极保护故障。

本文将对长输管道的阴极保护原理及故障分析进行深入探讨。

一、长输管道的阴极保护原理长输管道在运行过程中,常常受到外部环境因素的影响,比如土壤中的化学物质、水分等,这些因素可能会导致管道金属材料发生腐蚀,进而产生安全隐患。

为了保障长输管道的安全运行,阴极保护技术被应用到了管道的防腐蚀措施中。

阴极保护是利用外部电源或阳极材料,通过在金属表面形成一定电位的保护电位,使金属处于保护状态,从而防止腐蚀的一种技术手段。

在长输管道中,通常采用对管道金属材料进行控制极化的方式,产生一定的负电位,从而将金属表面转变为保护状态,避免腐蚀的发生。

具体而言,长输管道的阴极保护原理可以归纳为以下几点:1. 构建阴极保护系统在长输管道周围埋设一定数量和一定深度的阳极材料,通过这些阳极材料释放的电流,来建立管道金属材料的阴极保护状态。

2. 控制管道金属材料的电位通过外部电源或者阳极材料,控制管道金属的电位,使其保持在一定的负电位范围内,这样可以有效地避免金属处于腐蚀的状态。

3. 监测阴极保护效果定期对长输管道的阴极保护系统进行监测,检测管道金属材料的电位和腐蚀情况,及时发现问题并进行调整和修复。

通过以上措施,长输管道可以有效地实现阴极保护,从而保障管道金属材料的安全和防腐蚀。

阴极保护系统也存在一定的故障和问题,下面将对长输管道阴极保护的故障进行分析。

阴极保护系统的电流不足,会导致管道金属材料无法形成良好的阴极保护状态,从而出现腐蚀问题。

造成电流不足的原因可能是阳极材料的损坏、电源设备的故障或者管道系统的电阻增加等。

解决方法:及时对阴极保护系统进行检测和维护,修复阳极材料或者更换电源设备,降低管道系统的电阻等。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是国家能源和基础设施的重要组成部分,用于输送石油、天然气和其他液体或气体。

长输管道在长期运行过程中会面临腐蚀和损坏的风险,因此需要采取阴极保护来延长其使用寿命并保证其安全运行。

阴极保护是一种常用的管道保护措施,通过使管道表面处于负电位,使其成为阴极,以减少或防止管道的腐蚀。

阴极保护包括两种主要方法:外部阴极保护和内部阴极保护。

外部阴极保护是指在管道表面施加电流以形成负电位,通常采用在管道周围埋设的阳极来提供电流。

常用的的阳极包括铅合金阳极、镁合金阳极和铝合金阳极等。

外部阴极保护的关键是确保阳极与管道之间的电阻低。

常用的外部阴极保护系统包括串联系统和平行系统。

串联系统适用于管道长度较短的情况,而平行系统适用于管道长度较长、电流分布不均匀的情况。

内部阴极保护是指在管道内部注入一种阴极保护剂,使其在管道内部形成保护膜,从而抑制腐蚀。

常用的阴极保护剂有铜阳极剂、锌阳极剂和铝阳极剂等。

内部阴极保护的关键是保持阴极保护剂的浓度和一致性,并确保其能够覆盖整个管道内部表面。

尽管采取了阴极保护的措施,长输管道仍然可能出现故障。

常见的管道故障包括阳极故障、缺陷电流产生、外电源干扰和电阻变化等。

阳极故障是指阳极与管道之间的电阻增加或阳极失效。

阳极故障可能导致管道表面处于阳极状态,从而加速腐蚀。

阳极故障的检测方法包括原子吸收法、电化学法和电流-电位法等。

缺陷电流产生是指管道或管道涂层的缺陷引起的局部腐蚀,产生电流。

缺陷电流的大小和分布对管道的腐蚀速率有很大影响。

常用的检测方法包括电化学腐蚀测量和超声波检测等。

外电源干扰是指外部电源(如真正阴保电位、铁路电流和直流输电架空线路)对管道的干扰,使其电位偏离设计要求。

外电源干扰可能导致管道腐蚀加剧或产生其它安全隐患。

常用的解决方法包括隔离干扰源和增加阴极保护措施。

电阻变化是指管道的电阻发生变化,可能是由于管道锈蚀、磨损、温度变化或应力变化引起的。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南汇龙合金材料有限公司一家合金材料多元化延伸产品深加工、电气技术研发、工程承包为一体的高新企业。

长输管道阴极保护及阴极保护站维护基础知识河南汇龙合金材料有限公司2018年版1.目的:为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。

一.防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。

通过炼制,被赋予能量,才从离子状态转变成原子状态。

然而,回归自然状态是金属固有本性。

我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。

金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。

二.防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。

我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。

2.阴极保护原理2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。

)。

通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。

2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。

阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是:(a)两电极电位不同的两电极;(b)两电极必须在同一电解质溶液里;(c)两电极间必须有导线连接。

该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培)或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。

如,城市管网、小型储罐等。

根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3 年,最多5 年。

牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。

本人认为,产生该问题的主要原因通常是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。

因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。

强制电流保护原理:由外部的直流电源向被保护金属构筑物通以保护电流,使之阴极极化,达到阴极保护的一种方法。

该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。

强制电流保护原理图;图1图23.阴极保护参数测试3.1 要判定管道是否得到了保护,则须通过测得管道所在处的管地电位来判定。

为了便于实际应用,通过多年的实践与研究,得出了以下几个判断结构是否得到充分保护得判断准则。

1. NACE RP 0169 建议“在通电的情况下,埋地钢铁结构最小保护电位为-0.85V CSE 或更负, 在有硫酸盐还原菌存在的情况下,最小保护电位为-0.95V CSE ,该电位不含土壤中电压降(IR 降)”。

实际测量时,应根据瞬时断电电位进行判断。

目前流行的通电电位测量方法简便易行,但对测量中IR 降的含量没有给予足够重视。

其后果是很多认为阴极保护良好的管道发生腐蚀穿孔。

这方面的教训是很多的。

如:四川气田南干线,认为阴极保护良好,但实际内检测发现腐蚀深度在壁厚的10-19% 的点多达410 处;个别位置的点蚀深度达到50%。

进行断电电位测量发现,很多点保护电位(断电电位)没有达到-0.85V CSE 。

有效的方法是实际测量几点的IR 降,保护电位按0.85 + IR 降来确定。

IR 降可以通过通电电位减去瞬时断电电位来获得,也可以用瞬时通电电位减去结构自然电位来获得。

2.瞬时断电电位与自然电位电位之差不得小于100mV 。

在有些情况下,在断开电源0.2-0.5 秒内测量断电电位,待结构去极化后(24 或48 小时后)再测量结构电位(自然电位),其差值应不小于100mV。

也可以用通电电位(极化后)减去瞬时通电电位来计算极化电位。

3.最大保护电位的限制应根据覆盖层及环境确定,以不损坏覆盖层的粘结力为准,一般瞬时断电电位不得低于-1.10V CSE 。

由于受旧规范的影响,很多人还认为阴极保护最大电位不能低于-1.5V CSE 。

事实上这种观念使错误的,造成的危害也是巨大的。

判断阴极保护电位是否过大应以断电电位为判断基础,只要断电电位不低于-1.1V CSE (西欧为-1.15V CSE),通电电位再大也没有关系。

3.2 管地电位是管道与其相邻土壤的电位差。

3.3 管地电位的测试方法:(1)当采用数字万用表测管地电位时,应将电压表的负接线柱(COM)与硫酸铜参比电极连接(硫酸铜参比电极应安放在管道的正上方并确保与大地土壤接触良好),正接线柱(V)与管道连接,仪表值指示的是管道相对于参比电极的电位值,正常情况下显示负值;(2)当采用直流指针式电压表测量管地电位时,应将直流指针式电压表的负接线柱(COM)与管道连接,正极接线柱(V)与硫酸铜参比电极连接(硫酸铜参比电极应安放在管道的正上方并确保与大地土壤接触良好),在指针发生反转的情况下,所记录的数据应该加负号。

3.4管地电位的组成(1)IR降:即电流流经涂层管子和土壤接触的界面以及和参比电极之间的土壤时产生的IR降;(2)由管地界面处的电化学变化引起的极化电位;(3)最初的或静态的管地电位,也称自然电位,即无外部电流影响的腐蚀电位;(在进行阴极保护之前,管子在土壤中所处的平衡电位就是腐蚀电位)所以最初用数字万用表测得的管地电位不是管道的真正保护电位,而是含有几种因素所组成的电位,所以要排出几种因素后,才能得道的真正阴极保护电位,就要采取进一步的测量。

3.5 极化探头使用方法最有效排除IR降的方法是采用极化探头测试,极化探头是一种长效、高稳定、消除IR降的埋地钢质管道阴极保护电位测量探头,主要适用于埋地及水下钢质管道腐蚀控制工程阴极保护电位的检测与监测,并能同时测量自腐蚀电位。

具有长效性、高稳定性特点,并能通过探头的特殊结构,消除土壤中90%左右的IR降。

极化探头具有三根接线(1号线为红色是参比电极,2号线为绿色是连接到极化试片,3号线为黄色是连接到自腐蚀试片)。

在测量管地电位时,首先把探头插入被测体附近的土壤中,如果土壤干燥,应在探头周围的土壤中浇入纯净水湿润。

在用2号绿色接线进行与管道的极化,当极化完全后,再将1 号参比电极线接到万用表的地线,把万用表的正极接到2号线同时接到被测体,待电位值稳定后,读取被测量体阴极保护电位值。

将2号线换为3号线接到万用表的正极,同时不要与被测量体相连接,待电位稳定后,即测量到自腐蚀电位。

如果要对管道进行长期监测时,就要把电位测量探头作为监测电极长期埋入地下,首先把探头装入牺牲阳极用在填料包内再埋入土壤中,并在探头周围的土壤中浇入纯净水湿润;再把1 号红色接线接到万用表的地线,2号接线接万用表的正极,同时与被测体固定连接,待电位稳定后,读取测量阴极保护电位值。

将2号接线换3号接线接到万用表的正极,同时不要与被测量体连接,待电位稳定后,即测量到自腐蚀电位。

3.6 测试桩之间阴极保护状况检测防腐层与阴极保护装置是埋地钢质管道的联合保护,保护效果的好坏直接关系到管道的使用寿命,因此对阴极保护系统运行状况的检测与评价也是非常重要的一项内容。

管道阴极保护系统有效性检测采用CIPS(密间隔电位)法按标准规定间距对管道ON/OFF电位进行测试。

在埋地管道的阴极保护系统中,被保护的管道每间隔一定的距离(例如一公里)有一个管地电位测试桩,是用导线与管体金属联结,然后引到地面上,并做好与地的绝缘。

阴极保护站的工作人员定期用毫伏表沿管线逐个在桩上测量该点的管对地电位,从阴极保护站的加电点开始观察所施加的电压沿管道的衰减情况,用以了解保护的范围和异常衰减的区段。

但是这种测量的结果是很粗糙的,只能对阴极保护状况做个大致的观察。

由于IR降的存在,在每个桩上所测得的管对地电位并不是直接加在破损点管道金属表面与土壤接触界面之间的电位,并不能准确判断对管道保护的效果。

图3CIPS测量成果图在消除IR降的诸多方法之中,断流法被普遍采用。

就是在中断阴极保护电流后的一瞬间,测量管体与土壤界面之间极化电位。

这个电位才是阴极保护对破损处金属所施加的起保护作用的电位。

通常我们把断流前所测的电位叫做ON 电位,断流后所测的电位叫做OFF电位。

CIPS的含义是近间距管对地电位测量。

测量时,在阴极保护电源输出线上串接断流器,断流器以一定的周期断开或接通阴极保护电流。

例如在一秒周期中1/3秒断开,2/3秒接通。

测量从一个阴极保护测试桩开始,将尾线接在桩上,与管道连通,操作员手持探杖,沿管顶每间隔一定距离测量一个点,记录下每个点的ON/OFF电位。

这样就可以得到沿管道的管对地电位的两条曲线,如前所述,OFF电位值是代表实际对金属表面施加的真实保护电位,看它相对-850毫伏的变化,可知某处阴极保护的实际效果。

根据NACE(美国腐蚀工程师协会)相应的解释标准对CIPS结果曲线进行解释。

CIPS的应用在对管道阴极保护的有效性评价及发现防腐层失效范围方面比以前前进了一大步。

首先,它的OFF电位曲线是基本消除了IR降的结果,更真实的描述了管道阴极保护的有效性。

其次,它可以反映出防腐层失效范围。

给出管道上阴极保护和防腐效果的具体的详细的描述。

因此CIPS系统一经问世,便被各管道公司广泛采用。

4.阴极保护站内维护与测试阴极保护站场内的主要是对恒电位仪仪器的自检和对仪器接线的测试,还有就是对绝缘接头(法兰)的漏电电阻、长效参比电极进行测试,并测试出辅助阳极接地电阻,判断它的接地性能;图54.1 恒电位仪的特点恒电位仪的特点具体如下:——具有数字显示输出电压、输出电流、电位测量值;——机上装有假负载,便于仪器的自检,便于对仪器的维修;——仪器具有软起动功能、能防止雷击余波、可以阻抗50Hz的工频干扰,还可以进行限流、进行误差的报警等功能;——仪器具有运行状态自动切换的功能,当在无法进行恒电位控制的时候(如参比电极回路开路),变压整流器将会自动从恒电位工作状态切换到恒电流工作状态,并恒定在预先设定的电流值上;当远控给定信号输入时,变压整流器将会受到远控给定控制。

相关文档
最新文档