高中物理竞赛复赛模拟试题二(有答案)

合集下载

高中生物理竞赛复赛试题及答案

高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。

一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。

平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。

若让其继续作等温膨胀,使体积再次加倍。

试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。

假定空气和水蒸气均可以当作理想气体处理。

二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。

1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。

三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。

圆环处于超导状态,环内电流为100A 。

经过一年,经检测发现,圆环内电流的变化量小于610A -。

试估算该超导材料电阻率数量级的上限。

提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。

四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。

双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。

一般双星系统距离其他星体很远,可以当作孤立系统处理。

现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。

他们正绕两者连线的中点作圆周运动。

1. 试计算该双星系统的运动周期T 计算。

2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。

为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。

物理竞赛复赛试题

物理竞赛复赛试题

物理竞赛复赛试题一、选择题(每题3分,共30分)1. 一个物体在水平面上以恒定速度运动,其动能的变化情况是:A. 逐渐增加B. 逐渐减少C. 不变D. 先增加后减少2. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力可以是不同性质的力C. 作用力和反作用力作用在同一个物体上D. 作用力和反作用力可以同时消失3. 一个理想气体在等压过程中,其温度和体积的关系是:A. 温度和体积成正比B. 温度和体积成反比C. 温度和体积无关D. 温度随体积的增加而减少4. 根据麦克斯韦方程组,以下描述正确的是:A. 电场总是由电荷产生B. 磁场可以由变化的电场产生C. 电场和磁场总是相互独立D. 电荷的存在必然伴随着磁场5. 一个物体从静止开始自由下落,其下落过程中的加速度是:A. 恒定的B. 逐渐增加C. 逐渐减少D. 先增加后减少6. 光的双缝干涉实验中,相邻明条纹之间的距离与以下哪个因素无关?A. 双缝间距B. 光的波长C. 观察屏与双缝的距离D. 光源的强度7. 根据热力学第一定律,以下说法正确的是:A. 能量可以在不同形式之间转换,但总量不变B. 能量守恒定律只适用于封闭系统C. 能量守恒定律不适用于开放系统D. 能量可以被创造或消失8. 一个物体在斜面上下滑,摩擦力对其做功的情况是:A. 总是做正功B. 总是做负功C. 有时做正功,有时做负功D. 从不对外做功9. 根据相对论,以下说法正确的是:A. 时间是绝对的B. 质量随着速度的增加而增加C. 长度随着速度的增加而增加D. 光速在所有惯性参考系中都是相同的10. 在电路中,欧姆定律描述的是:A. 电流与电压成正比,与电阻成反比B. 电流与电阻成正比,与电压成反比C. 电压与电流成正比,与电阻无关D. 电阻与电流成正比,与电压无关二、填空题(每题2分,共20分)11. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的________成反比。

高中物理竞赛复赛模拟试题(有答案)

高中物理竞赛复赛模拟试题(有答案)

复赛模拟试题一1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。

要求火箭在25年(火箭时间)后到达目的地。

引力影响不计。

1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少?分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。

求解第1问,可先将火箭时间a 250=τ(年)变换成地球时间τ,然后由距离R 求出所需的火箭速度。

火箭到达目的地时,比值00M M '是不定的,所谓最小比值是指火箭刚好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。

利用上题(本章题11)的结果即可求解第2问。

解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为a 250=τ(年)。

利用时间膨胀公式,相应的地球时间为221c υττ-=因υτR=故221c Rυτυ-=解出()10220222021096.0111-⨯-=⎪⎪⎭⎫ ⎝⎛-≈+=c R c c Rc c ττυ可见,火箭几乎应以光速飞行。

(2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火箭质量不变。

最后火箭作减速运动,比值00M M '最小时,到达目的地时的终速刚好为零,火箭质量从M 变为最终质量0M '。

加速阶段的质量变化可应用上题(本章题11)的(3)式求出。

因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有21011⎪⎪⎭⎫⎝⎛+-=ββM M (1)c βυ=为加速阶段的终速度,也是减速阶段性的初速度。

对减速阶段,可应用上题(本章题11)的(4)式,式中的m 0以减速阶段的初质量M 代入。

又因减速时必须向前辐射光子,故u=-c ,即有21011⎪⎪⎭⎫⎝⎛+-=ββM M (2) 由(1)、(2)式,得1020222022010441411⨯=≈-=-+='ττββc R c R M M2.如图52-1所示,地面上的观察者认为在地面上同时发生的两个事件A 和B ,在相对地面以速度u (u 平行于x 轴,且与正方向同向)运动的火箭上的观察者的判断正确的是( )A 、A 早于B B 、B 早于AC 、A 、B 同时发生D 、无法判断解:在地面(S 系)上,,A B x x x -=∆0=-=∆A B t t t ,在火箭(S '系)中,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-='-'='∆22c ux t r c ux t r t t t A A B B A B ()()B A A A B x x c uxt t r -+-=2()B A A x x c ux-=2因0>r ,0>u ,0<-B Ax x ,故0<'∆t 。

第30届全国中学生高中物理竞赛复赛试题含答案

第30届全国中学生高中物理竞赛复赛试题含答案

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00¹v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度分解成纬线切向球面内侧运动时,可将其速度分解成纬线切向(水平方向)分量j v 及经线切向分量q v . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为q . 由机械能守恒得由机械能守恒得2220111s i n 222m m g R m m j q q =-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故量守恒,故0cos m R m R j q=v v .(2)由 (1) 式,最大速率应与q 的最大值相对应的最大值相对应max max ()q =v v .(3)而由而由(2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0q =v 相对应,即相对应,即max ()0q q =v .(4)式也可用下述方法得到:由式也可用下述方法得到:由 (1)、(2) 式得式得22202sin tan 0gR qq q -=³v v .若sin 0q ¹,由上式得,由上式得220sin 2cos gRq q £v .实际上,sin =0q 也满足上式。

由上式可知也满足上式。

由上式可知max 22max0sin 2cos gRq q =v .v OqP由(3)式有式有222max max 0max ()2sin tan 0gR q q q q =-=v v .(4’)]将max ()0q q =v 代入式(1),并与式(2)联立,得联立,得()2220maxmaxmaxsin 2sin 1sin 0gR qqq--=v . (5)以max sin q 为未知量,为未知量,方程方程(5)的一个根是sin q =0,即q =0,这表示初态,,这表示初态,其速率为最小其速率为最小值,不是所求的解. 于是max sin 0q ¹. 约去max sin q ,方程(5)变为变为22max 0max 2sin sin 20gR gR q q +-=v .(6)其解为其解为2220max40sin 11614g R gRqæö=+-ç÷ç÷èøv v . (7)注意到本题中sin 0q ³,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当maxq q =时,时,()22422001162g R j =++v v v , (8)考虑到(4)式有式有 ()22422max 001162g R j ==++v v v v . (9)评分标准:本题15分. (1)式3分,分, (2) 式3分,(3) 式1分,(4) 式3分,分, (5) 式1分,(6) 式1分,(7) 式1分,分,(9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m a (a 为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞时滑块C 恰好静止在距轴为(r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t D 很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有,显然有D C2lr =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t D 很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得式解得2200022222248,,888C D A lr l r l r l r l r ===-+++v v v v v v (4) 代替代替 (3) 式,可利用弹性碰撞特点式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ¢,对A 用动量定理有用动量定理有221A 0022428l r F t m m m l r +¢D =-=-+v v v,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为的冲量为221022428l r F t m l r+D =+v(6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为,则为系统,设其质心离转轴的距离为,则22(2)2mr m ll r x m a a ++==++.(7)质心在碰后瞬间的速度为质心在碰后瞬间的速度为C0224(2)(2)(8)l l r x rl r a +==++v v v . (8)轴与杆的作用时间也为t D ,设轴对杆的作用力为2F ,由质心运动定理有,由质心运动定理有()210224(2)28l l r F t F t m m l r a +D +D =+=+v v .(9)由此得由此得2022(2)28r l r F t m l r -D =+v .(10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为因而,轴受到杆的作用力的冲量为 2022(2)28r l r F t m l r -¢D =-+v , (11)方向与0v 方向相反方向相反. .注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴程中还有与向心力有关的力作用于轴. .但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略已忽略. .代替代替 (7)-(9) 式,可利用对于系统的动量定理式,可利用对于系统的动量定理21C D F t F t m m D +D =+v v .] 也可由对质心的角动量定理代替也可由对质心的角动量定理代替(7)-(9) 式. ] 2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+ v v(12)则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件的条件()220(8)4k r l r l mr -+=v(13) 可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分,分, (2) 式2分,(3) 式2分,(4) 式2分,分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分;分;第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆,杆在水平状态由静止开始下摆, 1. 令mLl =表示细杆质量线密度. 当杆以角速度w 绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为内转动时,其转动动能可表示为k E k L a b g l w = 式中,为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出a 、b 和的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数的值.3. 试求当杆摆至与水平方向成q 角时在杆上距O 点为处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对的导数为对的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t q 对自变量的导数为对自变量的导数为dcos ()dcos d d d d t t tq q q q =参考解答:1. 当杆以角速度w 绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量、w 和的函数,按题意的函数,按题意 可表示为可表示为k E k L a b g l w = (1)式中,为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则、w 、和k E 的单位分别为的单位分别为1122[][][],[][],[][],[][][][]kM L T L L E M L T l w ---====(2)在一般情形下,若[]q 表示物理量的单位,则物理量可写为表示物理量的单位,则物理量可写为()[]q q q =(3)式中,()q 表示物理量在取单位[]q 时的数值. 这样,(1) 式可写为式可写为()[]()()()[][][]k kE E k L L a b g a b g l w l w =(4)在由(2)表示的同一单位制下,上式即表示的同一单位制下,上式即()()()()k E k L a b g l w = (5)[][][][]k E L a b g l w =(6)将 (2)中第四中第四 式代入式代入 (6) 式得式得22[][][][][][]M L T M L T a g ab---=(7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是均成立,于是1,2,3a b g === (8) 所以所以23k E k L lw = (9)2. 由题意,杆的动能为由题意,杆的动能为,c ,r k k k E E E =+ (10)其中,其中,22,c c 11()222k L E m L l w æö==ç÷èøv(11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r2(,,)222k k L L E E k l wlw æö==ç÷èø(12) 将(9)、 (11)、 (12)式代入(10)式得式得2323212222L L k L L k lw l w lw æöæö=+ç÷ç÷èøèø(13)由此解得由此解得 16k =(14) 于是于是E k =16lw 2L 3.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg q æö=ç÷èø(16)由(15)、(16)式得式得w =3g sin q L.(17)以在杆上距O 点为处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r l -,其质心速度为其质心速度为22c L r L r r w w-+æö¢=+=ç÷èøv .(18)设另一段对该段的切向力为T (以q 增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得,由质心运动定理得()()cos t T L r g L r a l q l +-=- (19) ()()s i n n N L r g L r a l q l --=-(20)式中,t a 为质心的切向加速度的大小为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4c t L r g L r L r a t t Lq w w q q +¢++====v(21)而n a 为质心的法向加速度的大小为质心的法向加速度的大小()23sin 22n L r g L r a Lq w ++==.(22)由(19)、(20)、(21)、(22)式解得式解得 ()()23cos 4L r r L T mg Lq--=(23)()()253sin 2L r L r N mg L q-+=(24)评分标准:本题25分.第1问5分,分, (2) 式1分,分, (6) 式2分,(7) 式1分,(8) 式1分;分;第2问7分,分, (10) 式1分,(11) 式2分,(12) 式2分,分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为. 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为. 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有根据能量守恒有2122Qq Qqmgh k m mgR k h R R +=++-v . (1)式中,为液滴在容器口的速率,是静电力常量. 由此得液滴的动能为由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R -=---v .(2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有,则有 max (2)(2)0()Q q h R mg h R k h R R---=-. (3)由此得由此得max ()mg h R RQ kq-=.(4)容器的最高电势为容器的最高电势为maxmax Q V kR=(5)由(4) 和 (5)式得式得max()mg h R V q-=(6)评分标准:本题20分. (1)式6分,分, (2) 式2分,(3) 式4分,(4) 式2分,分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2d z =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿轴负方向,如图所示.1. 在电容器参考系中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、、0,以下类似)以下类似)相对于电容器运动的参相对于电容器运动的参考系S ¢中,可能既有电场(,,)xyzE E E ¢¢¢又有磁场(,,)xyzB B B ¢¢¢. 试在非相对论情形下,从伽利略速度变换,度变换,求出在参考系求出在参考系S ¢中电场(,,)xyzE E E ¢¢¢和磁场(,,)xyzB B B ¢¢¢的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为,方向沿轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S ¢中,由于液体处在第1问所述的电场(,,)xyzE E E ¢¢¢中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)x y z E E E ¢¢¢,而是0(,,)x y z E E E e e ¢¢¢,这里0e 是真空的介电常数. 这将导致在电容器参考系中电场不再为零. 试求电容器参考系中电场的强度以及电容器上、下极板之间的电势差. (结果用0e 、、、B 或(和)表出. )参考解答:1. 一个带电量为的点电荷在电容器参考系中的速度为(,,)x y zu u u ,在运动的参考系S ¢中的速度为(,,)x y z u u u ¢¢¢. 在参考系中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系中所受磁场的作用力为所受磁场的作用力为0,,x y z z y F F qu B F qu B==-=(1)在参考系S ¢中可能既有电场(,,)xyzE E E ¢¢¢又有磁场(,,)xyzB B B ¢¢¢,因此点电荷在S ¢参考系中所受电场和磁场的作用力的合力为受电场和磁场的作用力的合力为(),(),()x x y zz y y y x z z x z z x y y xF q E u B u B F q E u B u B F q E u B u B ¢¢¢¢¢¢¢=+-¢¢¢¢¢¢¢=-+¢¢¢¢¢¢¢=+-(2)两参考系中电荷、合力和速度的变换关系为两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y zx y z q q F F F F F F u u u u u u ¢=¢¢¢=¢¢¢=-v(3) 由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B E u B u B u B¢¢¢+--=¢¢¢-+=-¢¢¢+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故都成立,故(,,)(0,0,),(,,)(,0,0)xy z x y z E E E B B B B B ¢¢¢=¢¢¢=-v(5)可见两参考系中的磁场相同,但在运动的参考系S ¢中却出现了沿z 方向的匀强电场. 2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系中的磁场会在液体参考系S ¢中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为使得液体中的电场为0(,,)(0,0,)xyzE E E B e e¢¢¢=v .(6)为了求出电容器参考系中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S ¢中的电场和磁场来确定电容器参考系中的电场和磁场. 考虑一带电量为的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S ¢中,这力(,,)xyzF F F ¢¢¢如(2)式所示. 它在电容器参考系中的形式为它在电容器参考系中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B B E u B u B u Be e+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故都成立,故0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B ee=-=-v (9)可见,在电容器参考系中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得式得01V Bd e e æö=-ç÷èøv . (11)评分标准:本题25分.第1问12分,分, (1) 式1分,分, (2) 式3分,分, (3) 式3分,(4) 式3分,(5) 式2分;分; 第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C °时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-´/度和52.010-´/度. 当温度升高到120C °时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为,金属片原长为,圆弧所对的圆心角为,钢和青铜的线膨胀系数分别为1a和2a ,钢片和青铜片温度由120C T =°升高到2120C T =°时的伸长量分别为1l D 和2l D . 对于钢片1()2dr l l f -=+D(1)1121()l l T T a D =- (2)式中,0.20 mm d =. 对于青铜片对于青铜片2()2d r l l f +=+D(3)2221()l l T T a D =- (4)联立以上各式得联立以上各式得2122121212()() 2.010 mm 2()()T T r d T T a a a a ++-==´--(5)评分标准:本题15分. (1)式3分,分, (2) 式3分,(3) 式3分,(4) 式3分,分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为q ,高为. 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随而变化,()1n x bx =+,其中常数0b >. 一束波长为l 的单色平行光沿轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y d . 将该光线在介质中的光程记为1d ,在空气中的光程记为2d . 介质的折射率是不均匀的,光入射到介hxyzOqh xyqlO质表面时,在0x = 处,该处介质的折射率()01n =;射到处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1d 与光通过折射率等于平均折射率与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+éùëû (1)的均匀介质的光程相同,即的均匀介质的光程相同,即2111112nh h bh d ==+(2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有,光线透过劈尖后其传播方向保持不变,因而有21h h d =-(3)于是于是()212112y h b h d dd =+=+.(4)由几何关系有由几何关系有1tan h y q =.(5)故()22tan 2by h y d q=+.(6)从介质出来的光经过狭缝后仍平行于轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得处,由上式得d 0()=h .(7)处与0y =处的光线的光程差为处的光线的光程差为()()220tan 2b y y d d q-=.(8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2by k k q l ==.(9)由此得由此得22cot ,cot k y A k A bb l l q q===.(10)除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为坐标依次为,2,3,4,A A A A.(11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m = ,其中m 为任意正整数,则为任意正整数,则49,2,3,m m m y mA y mA y mA === .(12)这些狭缝显然彼此等间距,且相邻狭缝的间距均为mA ,光线在焦点处依然相互加强而形成亮纹.评分标准:本题20分.第1问16分,分, (1) 式2分,分, (2) 式2分,分, (3) 式1分,(4) 式1分,(5) 式2分,分, (6) 式1分,(7) 式1分,(8) 式1分,分, (9) 式2分,分, (10) 式1分,(11) 式2分;分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为. 若能量为e E 的电子与能量为E g 的光子相向对碰,的光子相向对碰, 1. 求散射后光子的能量;求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<,有1-x »1-12x . 参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p g (0p g <),碰撞后电子、光子的能量、 动量分别为,,,eeE p E p g g¢¢¢¢. 由能量守恒有由能量守恒有E e +E g =¢E e+¢E g. (1)由动量守恒有由动量守恒有c o s c o s s i n s i n .e e e p p p p p p g g g aq a q¢¢+=+¢¢=. (2)式中,a 和分别是散射后的电子和光子相对于碰撞前电子的夹角和分别是散射后的电子和光子相对于碰撞前电子的夹角. . 光子的能量和动量满足光子的能量和动量满足E g=p gc ,¢E g=¢p gc .(3)电子的能量和动量满足电子的能量和动量满足22224e e e E p c m c -=,22224e e eE p c m c ¢¢-=(4)由(1)、(2)、(3)、(4)式解得式解得()()224224cos e e e e e eE E E m cE E E EE m c g g ggq+-¢=++-- (5)由(2)式得式得22222()2()cos e e e p c p c p c p c p c p c p c g g g gq ¢¢¢=++-+此即动量p ¢、e p ¢和e p p g +满足三角形法则满足三角形法则. . 将(3)、(4)式代入上式,并利用(1)式,得式,得 22224224(2)()22cos 2cos e e e e e e e E E E E E E E E E m c E E E E m c g g g g g g g g q q ¢¢¢+-+=+--+-- 此即(5)式.] 当0q ®时有时有()()2242242e e e e e e E E E m c E E E m c E g g g+-¢=--+(6)2. 为使能量从电子转移到光子,要求¢E g>E g .由(5)式可见,需有式可见,需有()2242242242242()(1cos )cos 2()(1cos )cos (1cos )e ee e e e e e eeE E m c E E E E E E E m c E E m c E E E m c E g g g g g g g g g q qq q q --+¢-=++----+=>--++ 此即此即224e e E m c E g -> 或e p p g > (7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E g >>,因而e p p p g g +>>,由(5)(5)式可知式可知p p g g¢>>,因此有0q ». 又242242e e e e em cE m c E E -»-. (8)将(8)式代入(6)式得式得¢E g »2E e Eg 2E g+m e 2c 42E e .(9)代入数据,得代入数据,得 ¢E g»29.7´106eV .(10)评分标准:本题20分.第1问10分,分, (1) 式2分,分, (2) 式2分,分, (3) 式2分,(4) 式2分,(5) 或(6)式2分;分; 第2问5分,(7) 式5分;分;第3问5分,(8) 式2分,分, (9) 式1分,分, (10) 式2分.。

2024物理竞赛复赛试题

2024物理竞赛复赛试题

选择题一质点做简谐运动,下列说法中正确的是:A. 质点通过平衡位置时,速度最大B. 质点通过平衡位置时,加速度最大(正确答案)C. 质点离平衡位置越远,机械能越大D. 质点离平衡位置越远,振动频率越大关于光的本性,下列说法中正确的是:A. 光的波粒二象性是指光既具有波动性,又具有粒子性(正确答案)B. 光的波粒二象性是指光就是波和粒子的结合体C. 光的干涉和衍射现象说明光是横波D. 光电效应现象说明光是纵波在电磁感应现象中,下列说法正确的是:A. 感应电流的磁场总是阻碍原磁通量的变化B. 感应电流的磁场总是与原磁场方向相反C. 感应电动势的大小跟线圈的匝数成正比(正确答案)D. 感应电动势的大小跟穿过线圈的磁通量变化率无关在相对论中,下列说法正确的是:A. 高速运动的物体,其长度会沿运动方向收缩(正确答案)B. 高速运动的物体,其质量会随速度的增加而减小C. 时间的流逝是绝对的,与观察者的运动状态无关D. 光速在不同惯性参考系中是不同的关于热力学定律,下列说法正确的是:A. 热量不能自发地从低温物体传到高温物体B. 一定质量的理想气体,如果压强不变,体积增大,那么它一定从外界吸热(正确答案)C. 物体的内能与物体的速度有关D. 第二类永动机违反了能量守恒定律在量子物理中,下列说法正确的是:A. 电子的波动性是其固有的属性,与观察方式无关(正确答案)B. 电子的轨道半径是确定的,可以精确测量C. 氢原子的能级是连续的D. 光电效应中,光电子的最大初动能与入射光的频率无关关于电磁场和电磁波,下列说法正确的是:A. 变化的电场一定产生变化的磁场B. 均匀变化的电场产生恒定的磁场(正确答案)C. 电磁波在真空中不能传播D. 电磁波在介质中的传播速度比在真空中大在力学中,关于牛顿运动定律的应用,下列说法正确的是:A. 跳绳时,绳对人的拉力大于人对绳的拉力B. 物体所受的合外力不为零时,其速度一定不为零C. 物体所受的合外力方向改变,其加速度方向一定改变(正确答案)D. 物体所受的合外力大小不变,其加速度大小一定不变(忽略物体质量变化)。

宝应县中学高中物理竞赛复赛模拟卷(二)答案与分析

宝应县中学高中物理竞赛复赛模拟卷(二)答案与分析

高中物理竞赛复赛模拟试题(二)答案与分析第一题(25分)本题中,物体受耗散力的作用,做减幅振动。

物体在水平方向仅受弹性力x F 20-=和摩擦力、合力为: mg x F μ±-=20合物体向左运动时,第二项取正号,向右运动取负号,设弹性力与滑动摩擦力平衡时的位置为a.ma m g a 2.0020±==±-μ显然,物体速度为零时的位置在m x 2.00≤≤区间时,静摩擦力能与弹性力平衡,物体将静止。

1、开始时,物体从x 0向左运动,受力为:)(2020a x mg x F --=+-=μ合由此可知,物体从00→x 是作平衡点为x=a 的简谐振动的一部分,振幅和周期分别为:m a x A 9.001=-= s k m T 4.1/2==π从00→x 运动时间为1t ∆,如图所示,物体在x=0处反弹,速度大小不变,方向相反。

2、物体向右运动受力为:)(2020a x mg F +-=--=μ合所以物体向右运动可看成是平衡点为x=-a 的简谐振动的一部分,周期不变: s k m x T 4.1/2==3、由于在x=0,振动的总能量对于平衡点为a 和-a 的振动是相等的,所以两振动的振幅一样,即物体从x=0向右运动到m a x a A x 7.02011=-=-=处再向左运动,时间为2t ∆(如图)。

显然,2/21T t t =∆+∆①同理,物体从x 1=0.7m 处向左运动(振幅m a x A 5.012=-=)经碰撞后向右运动至.3.0212m a x x =-=时间仍为半个周期②从x 2=0.3m 再向左运动,其振幅为m a x A 1.023=-=,以m a x 2.0==为平衡点,所以运动至x=0.1m 处物体停止,这一段时间也是半个周期。

③所以物体运动的时间为: )(1.2)2/(3s T t =⨯=∆④物体克服摩擦力做功为: )(122/)(2/)(220J kx kx A =-⑤评分标准:结果①、8分;②、4分;③、4分;④、4分;⑤、5分。

全国高中物理竞赛复赛试题及答案

全国高中物理竞赛复赛试题及答案

全国高中物理竞赛复赛试题及答案第二十届全国中学生物理竞赛复赛试卷一、(15分)给定一个半径为R的均匀带电球体a,球心为O。

已知球表面处的电势为U=1000V,取无限远处的电势为零。

一个动能为2000eV的质子b以与O O平行的方向射向a。

设b与O O线之间的垂直距离为l,求l的最大值,使得质子b能够与带电球体a的表面相碰。

再将质子换成电子,求l的最大值。

二、(15分)一个U形管包含两支管A、B和水平管C,它们都是由内径均匀的细玻璃管制成的。

三部分的截面积分别为SA=1.0×10^-2 cm^2,SB=3.0×10^-2 cm^2,SC=2.0×10^-2cm^2.在C管中有一段空气柱,两侧被水银封闭。

当温度为t1=27℃时,空气柱长为l=30cm,C中气柱两侧的水银柱长分别为a=2.0cm和b=3.0cm,A、B两支管都很长,其中的水银柱高均为h=12cm。

大气压强保持为p=76cmHg不变。

不考虑温度变化时管和水银的热膨胀。

试求气柱中空气温度缓慢升高到t=97℃时空气的体积。

三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想。

其设想如下:沿地球的一条弦挖一通道,在通道的两个出口处A 和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放。

只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道。

设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小。

这样待发卫星便有可能绕地心运动,成为一个人造卫星。

若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?已知M=20m,地球半径R=6400km。

假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的。

四、(20分)一个半径为R、折射率为n的玻璃半球放在空气中,平表面中央半径为h的区域被涂黑。

高中物理竞赛复赛

高中物理竞赛复赛

高中物理竞赛复赛
题目一:动力学之争
背景:小明和小红参加了一场物理竞赛的复赛,他们将在以下几个问题中展开较量。

问题一:速度的计算(10分)
小明骑着一辆自行车,经过10秒钟,行驶了100米。

请问小明的平均速度是多少?
问题二:斜抛运动(15分)
小红用一个角度为45°的斜抛将一块石头抛出,石块的起始速度为20m/s。

请问石块从抛出到重新着地所用的时间是多少?(忽略空气阻力)
问题三:动量守恒(20分)
小明和小红在光滑水平桌面上进行了一次弹性碰撞实验。

小明的质量是40kg,速度为2m/s;小红的质量是50kg,速度为-1m/s。

请问碰撞后两人的速度分别是多少?
问题四:电磁感应(25分)
小红持续将一根长度为1m的磁铁棒快速入射进小明手中的线圈,变化的磁通量大小为1.5×10^-3 Wb/s。

线圈中的导线电阻为4 Ω。

请问线圈中将产生多大的感应电动势?
问题五:声音传播(30分)
小红正在做一道实验,她发出一个频率为400 Hz的声音,传播在空气中速度为340 m/s。

请问,该声音在空气中的波长是多少?
注意:本竞赛真实性为虚构,其中的人物和情景纯属虚构。

第二十四届全国高中生物理竞赛复赛试题及答案

第二十四届全国高中生物理竞赛复赛试题及答案

第24届全国中学生物理竞赛复赛试卷一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。

平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。

平板与弹簧构成的振动系统的振动周期s T 00.2=。

一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。

平板静止在其平衡位置。

水球B 与平板PQ 的质量相等。

现给小球一水平向右的速度0μ,使它从水平台面抛出。

已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。

要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。

AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。

BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。

当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。

BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。

求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。

容器、隔板、活塞及活门都是绝热的。

隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。

整个容器置于压强为P 0、温度为T 0的大气中。

初始时将活塞B 用销钉固定在图示的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。

此时,b 室真空,a 室装有一定量的空气(容器内外气体种类相同,且均可视为理想气体),其压强为4P 0/5,温度为T 0。

全国高中生物理竞赛复赛试题含答案

全国高中生物理竞赛复赛试题含答案

全国中学生物理竞赛复赛试卷、参考答案全卷共六题,总分140分。

一、(22分)有一放在空气中的玻璃棒,折射率n= 1.5 ,中心轴线长L= 45cm,一端是半径为R1= 10cm的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度φ1时,从棒射出的平行光束与主光轴成小角度φ2,求φ2/φ1(此比值等于此玻璃棒望远系统的视角放大率).解:1.对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图18-2-6所示,图中C1为左端球面的球心.图18-2-6由正弦定理、折射定律和小角度近似得(-R1)/R1=sinr1/sin(i1-r1)≈r1/(i1-r1)=1/((i1/r1)-1)≈1/(n-1),...①即..(/R1)-1=1/(n-1)....②光线PF1射到另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心C2一定在端面顶点B的左方,C2B等于球面的半径R2,如图18-2-6所示.仿照上面对左端球面上折射的关系可得(/R2)-1=1/(n-1),...③又有=L-,④由②、③、④式并代入数值可得R2=5cm.则右端为半径等于5cm的向外凸的球面.图18-2-7.设从无限远处物点射入的平行光线用①、②表示,令①过C1,②过A,如图18-2-7所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点.现在求M点的位置,在△AC1M中,有/sin(π-φ1)=/sinφ1=R1/sin(φ1-φ1′),又..nsinφ1′=sinφ1,已知φ1、φ1′均为小角度,则有/φ1=R1/φ1(1-(1/n)).与②式比较可知,≈,即M位于过F1垂直于主光轴的平面上.上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线.容易看出,从M射出C2的光线将沿原方向射出,这也就是过M点的任意光线(包括光线①、②)从玻璃棒射出的平行光线的方向,此方向与主光轴的夹角即为φ2,由图18-2-7可得/φ1=/=(-R1)/(-R2),由②、③式可得(-R1)/(-R2)=R1/R2,则φ2/φ1=R1/R2=2.二、(22分)正确使用压力锅的方法是:将已盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气已全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度).现有一压力锅,在海平面处加热能达到的预期温度为120℃,某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀,此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.已知:水的饱和蒸气压pW(t)与温度t的关系图线如图18-2-2所示.大气压强p(z)与高度z的关系的简化图线如图18-2-3所示.当t=27℃时,pW(27°)=3.6×103Pa;z= 0处,p(0)= 1.013×105Pa.解:1.由图18-2-8知在海平面处,大气压强p(0)=101.3×103Pa.在z=5000m时,大气压强为p(5000)=53×103Pa.图18-2-8图18-2-9此处水沸腾时的饱和蒸气压pW应等于此值.由图18-2-9可知,对应的温度即沸点为t2=82℃.达到此温度时,锅内水开始沸腾,温度不再升高,故在5000m高山上,若不加盖压力锅,锅内温度最高可达82℃..由图18-2-9可知,在t=120℃时,水的饱和蒸气压pW(120°)=198×103Pa,而在海平面处,大气压强p(0)=101×103Pa.可见压力阀的附加压强为pS=pW(120°)-p(0)=(198×103-101.3×103)Pa=96.7×103Pa.在5000m高山上,大气压强与压力阀的附加压强之和为p′=pS+p(5000)=(96.7×103+53×103)Pa=149.7×103Pa.若在t=t2时阀被顶起,则此时的pW应等于p′,即pW=p′,由图18-2-9可知t2=112℃.此时锅内水开始沸腾,温度不再升高,故按正确方法使用此压力锅,在5000m高山上锅内水的温度最高可达112℃..在未按正确方法使用压力锅时,锅内有空气,设加压力阀时,内部水蒸汽已饱和.由图18-2-9可知,在t=27℃时,题中已给出水的饱和蒸气压pW(27°)=3.6×103Pa,这时锅内空气的压强(用pa表示)为pa(27°)=p(5000)-pW(27°)=(53×103-3.6×103)Pa=49.4×103Pa.当温度升高时,锅内空气的压强也随之升高,设在温度为t(℃)时,锅内空气压强为pa(t),则有pa(t)/(273+t)=pa(27℃)/(273+27),pa(t)=(164.7t+45.0×103)Pa.若在t=t′时压力阀刚好开始被顶起,则有pW(t′)+pa(t′)=p′,由此得pW(t′)=p′-pa(t′)=(105×103-164.7t′)Pa,画出函数p′-pa(t′)的图线,取t=0℃,有..p′-pa(0℃)=105×103Pa,取t=100℃,有.p′-pa(100℃)=88.6×103Pa.由此二点便可在图18-2-9上画出此直线,此直线与图18-2-9中的pW(t)-t曲线的交点为A,A即为所求的满足上式的点,由图可看出与A点对应的温度为t′=97℃.即在压力阀刚开始被顶起时,锅内水的温度是97℃,若继续加热,压力阀被顶起后,锅内空气随水蒸汽一起被排出,最终空气排净,锅内水温仍可达112℃.三、(22分)有两个处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.已知:碰撞后二者的速度vA和vB在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度v0至少需要多大(以m/s表示)?已知电子电量e= 1.602×10-19C,质子质量为mp= 1.673×10-27kg,电子质量为me= 0.911×10-31kg,氢原子的基态能量为E1=-13.58eV.解:为使氢原子从基态跃迁到激发态,需要能量最小的激发态是n=2的第一激发态.已知氢原子的能量与其主量子数的平方成反比.即En=k1/n2,...①又知基态(n=1)的能量为-13.58eV,即E1=k1/12=-13.58eV,所以..k=-13.58eV.n=2的第一激发态的能量为E2=k1/22=-13.58×(1/4)=-3.39eV....②为使基态的氢原子激发到第一激发态所需能量为E内=E2-E1=(-3.39+13.58)eV=10.19eV....③这就是氢原子从第一激发态跃迁到基态时发出的光子的能量,即hν=E内=10.19eV=10.19×1.602×10-19J=1.632×10-18J....④式中ν为光子的频率,从开始碰到发射出光子,根据动量和能量守恒定律有mv0=mvA+mvB+光子的动量,...⑤(1/2)mv02=(1/2)m(vA2+vB2)+hν,...⑥光子的动量pν=hν/c.由⑥式可推得mv0>2hν/v0,因为v0<<c,所以mv0>>hν/c,故⑤式中光子的动量与mv0相比较可忽略不计.⑤式变为mv0=mvA+mvB=m(vA+vB),⑦符合⑥、⑦两式的v0的最小值可推求如下:由⑥式及⑦式可推得(1/2)mv02=(1/2)m(vA+vB)2-mvAvB+hν=(1/2)mv02-mvA(v0-vA)+hν,mvA2-mvAv0+hν=0,经配方得m(vA-(1/2)v0)2-(1/4)mv02+hν=0,(1/4)mv02=hν+m(vA-(1/2)v0)2,...⑧由⑧式可看出,当vA=(1/2)v0时,v0达到最小值v0min,此时vA=vB,v0min=2,代入有关数值,得v0min=6.25×104m/s.答:B原子的速度至少应为6.25×104m/s.四、(22分)如图18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B随时间t变化,B=B0-kt(k为大于零的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内.圆环的半径为R,电阻为r,相交点的电接触良好,两个环的接触点A与C间的劣弧对圆心O的张角为60°,求t=t0时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.解:1.求网络各支路的电流.因磁感应强度大小随时间减少,考虑到电路的对称性,可设两环各支路的感应电流I1、I2的方向如图18-2-10所示,对左环电路ADCFA,有图18-2-10.E=I1rCFA+I2rADC,因..rCFA=5r/6,rADC=r/6,E=kπR2,故..kπR2=I1(5r/6)+I2(r/6)....①因回路ADCEA所围的面积为((2π-3)/12)R2,故对该回路有k[2((2π-3)/12)R2]=2I2(r/6),解得..I2=((2π-3)R2/2r)k,代入①式,得.I1=((10π+3)R2/10r)k..求每个圆环所受的力.图18-2-11先求左环所受的力,如图18-2-11所示,将圆环分割成很多小圆弧,由左手定则可知,每段圆弧所受的力的方向均为径向,根据对称性分析,因圆弧PMA与圆弧CNQ中的电流方向相反,所以在磁场中受的安培力相互抵消,而弧PQ与弧AC的电流相对x轴上下是对称的,因而每段载流导体所受的安培力在y方向的合力为零,以载流导体弧PQ上的线段Δl′为例,安培力ΔF为径向,其x分量的大小表示为|ΔFx|=I1BΔl′cosα,因..Δl′cosα=Δl,故..|ΔFx|=I1BΔl,|Fx|=ΣI1BΔl=I1B=I1BR.由于导体弧PQ在y方向的合力为零,所以在t0时刻所受安培力的合力F1仅有x分量,即F1=|Fx|=I1BR=((10π+3)R2/10r)kBR=((10π+3)R2/10r)k(B0-kt0)R,方向向左.同理,载流导体弧AC在t0时刻所受的安培力为F2=I2BR=((2π-3)R2/2r)kBR=((2π-3)R2/2r)k(B0-kt0)R,方向向右.左环所受的合力大小为F=F1-F2=(9/5r)k(B0-kt0)R3.方向向左.五、(25分)如图18-5所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压U= 90V的电池的正极相连,电池负极接地.在球壳外A点有一电量为q1=10×10-9C的点电荷,B点有一电量为q2=16×10-9C的点电荷.点O、A之间的距离d1= 20cm,点O、B之间的距离d2= 40cm.现设想球壳的半径从a= 10cm开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?已知静电力常量k=9×109N·m2/C2.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触..解:分以下几个阶段讨论:.由于球壳外空间点电荷q1、q2的存在,球壳外壁的电荷分布不均匀,用σ表示面电荷密度.设球壳半径a=10cm时球壳外壁带的电量为Q1,因为电荷q1、q2与球壳外壁的电量Q1在球壳内产生的合场强为零,球壳内为电势等于U的等势区,在导体表面上的面元ΔS所带的电量为σΔS,它在球壳的球心O处产生的电势为ΔU1=kσΔS/a,球壳外壁所有电荷在球心O产生的电势U1为U1=ΣΔU1=kΣσΔS/α=kQ1/a.点电荷q1、q2在球壳的球心O处产生的电势分别为kq1/d1与kq2/d2,因球心O处的电势等于球壳的电势,按电势叠加原理,即有(kq1/d1)+(kq2/d2)+(kQ1/a)=U,代入数值后可解得球壳外壁的电量Q1为Q1=(aU/k)-a((q1/d1)+(q2/d2))=-8×10-9C.因球壳内壁无电荷,所以球壳的电量QⅠ等于球壳外壁的电量Q1,即QⅠ=Q1=-8×10-9C..当球壳半径趋于d1时(点电荷仍在球壳外),设球壳外壁的电量变为Q2,球壳外的电荷q1、q2与球壳外壁的电量Q2在壳内产生的合场强仍为零,因球壳内仍无电荷,球壳内仍保持电势值为U的等势区,则有(kq1/d1)+(kq2/d2)+(kQ2/d1)=U,解得球壳外壁的电量Q2=(d1U/k)-(d1(q1/d1+q2/d2))=-16×10-9C.因为此时球壳内壁的电量仍为零,所以球壳的电量就等于球壳外壁的电量,即QⅡ=Q2=-16×10-9C,在a=10cm到趋于d1的过程中,大地流向球壳的电量为ΔQⅠ=QⅡ-Q1=-8×10-9C..当点电荷q1穿过球壳,刚进入球壳内(导体半径仍为d1),点电荷q1在球壳内壁感应出电量-q1,因球壳的静电屏蔽,球壳内电荷q1与球壳内壁电荷-q1在球壳外产生的合电场为零,表明球壳外电场仅由球壳外电荷q2与球壳外壁的电荷Q3所决定.由于球壳的静电屏蔽,球壳外电荷q2与球壳外壁的电荷Q3在球壳内产生的合电场为零,表明对电荷q2与Q3产生的合电场而言,球壳内空间是电势值为U的等势区.q2与Q3在球心O处产生的电势等于球壳的电势,即(kq2/d2)+(kQ3/d1)=U,解得球壳外壁电量Q3=(d1U/k)-(d1q2/d2)=-6×10-9C,球壳外壁和内壁带的总电量应为QⅢ=Q3+(-q1)=-16×10-9C,在这过程中,大地流向球壳的电量为ΔQⅡ=QⅢ-QⅡ=0.这个结果表明:电荷q1由球壳外极近处的位置进入壳内,只是将它在球壳外壁感应的电荷转至球壳内壁,整个球壳与大地没有电荷交换..当球壳半径趋于d2时(点电荷q2仍在球壳外),令Q4表示此时球壳外壁的电量,类似前面第3阶段中的分析,可得(kq2/d2)+(kQ4/d2)=U,由此得Q4=(d2U/k)-(d2(q2/d2))=-12×10-9C,球壳的电量QⅣ等于球壳内外壁电量的和,即QⅣ=Q4+(-q1)=-22×10-9C,大地流向球壳的电量为ΔQⅢ=QⅣ-QⅢ=-6×10-9C..当点电荷q2穿过球壳,刚进入球壳内时(球壳半径仍为d2),球壳内壁的感应电荷变为-(q1+q2),由于球壳的静电屏蔽,类似前面的分析可知,球壳外电场仅由球壳外壁的电量Q5决定,即kQ5/d2=U,可得..Q5=d2U/k=4×10-9C,球壳的总电量是QⅤ=Q5-(q1+q2)=-22×10-9C,..(15)在这个过程中,大地流向球壳的电量是ΔQⅣ=QⅤ-QⅣ=0...(16).当球壳的半径由d2增至a1=50cm时,令Q6表示此时球壳外壁的电量,有k(Q6/a1)=U,..(17)可得..Q6=a1(U/k)=5×10-9C,球壳的总电量为QⅥ=Q6-(q1+q2)=-21×10-9C,大地流向球壳的电量为ΔQⅤ=QⅥ-QⅤ=1×10-9C.六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分G1的质量为m1,下部分G2的质量为m2,弹簧夹在G1与G2之间,与二者接触而不固连.让G1、G2压紧弹簧,并将它们锁定,此时弹簧的弹性势能为已知的定值E0.通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这一释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分G1升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h的时刻解除锁定.1.在第一种方案中,玩具的上部分G1升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化而来的?2.在第二种方案中,玩具的上部分G1升空可能达到的最大高度(亦从井口算起)为多少?并定量讨论其能量可能是从何种形式的能量转化而来的.解:.1.在弹簧刚伸长至原长的时刻,设G1的速度的大小为v,方向向上,G2的速度大小为v1,方向向下,则有m1v1-m2v2=0,...①(1/2)m1v12+(1/2)m2v22=E0,...②解①、②两式,得v1=,...③v2=....④设G1升空到达的最高点到井口的距离为H1,则H1=v12/2g=((m2/m1g(m1+m2))E0,...⑤G1上升到最高点的重力势能为Ep1=m1gH1=(m2/(m1+m2))E0....⑥它来自弹簧的弹性势能,且仅为弹性势能的一部分..在玩具自井底反弹向上运动至离井口的深度为h时,玩具向上的速度为u=....⑦设解除锁定后,弹簧刚伸长至原长时,G1的速度大小为v1′,方向向上,G2的速度大小为v,方向向下,则有m1v1′-m2v2′=(m1+m2)u,...⑧(1/2)m1v1′+(1/2)m2v2′=(1/2)(m1+m2)u2+E0,...⑨消去⑧、⑨两式中的v2′,得v1′的方程式为m1(1+(m1/m2))v1′-2m1(1+(m1/m2))uv1′+m1(1+m1/m2)u2-2E0=0,由此可求得弹簧刚伸长至原长时,G1和G2的速度分别为v1′=u+,v2′=-u+,设G1从解除锁定处向上运动到达的最大高度为H2′,则有H2′=v1′/2g=(1/2g)(u+)2=h+(m2E0/m1g(m1+m2))+2,从井口算起,G1上升的最大高度为H2=H2′-h=(m2E0/m1g(m1+m2))+2.讨论:可以看出,在第二方案中,G1上升的最大高度H2大于第一方案中的最大高度H1,超出的高度与解除锁定处到井口的深度h有关.到达H2时,其重力势能为Ep2=m1gH2=(m2E0/(m1+m2))+2,(i)若Ep2<E0,即..2<m1E0/(m1+m2),这要求..h<E0m1/4m2g(m1+m2).这时,G1升至最高处的重力势能来自压紧的弹性势能,但仅是弹性势能的一部分.在这一条件下上升的最大高度为H2<E0/m1g.(ii)若Ep2=E0,2=m1E0/(m1+m2),这要求..h=E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能来自压紧的弹簧的弹性势能,且等于全部弹性势能.在这一条件下,G1上升的高度为H2=E0/m1g.(iii)若Ep2>E0,2>m1E0/(m1+m2),这要求..h>E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能大于压紧的弹簧的弹性势能,超出部分的能量只能来自G2的机械能.在这个条件下,G1上升的最大高度为H2>E0/m1g.。

物理竞赛高中试题及答案

物理竞赛高中试题及答案

物理竞赛高中试题及答案一、选择题(每题4分,共40分)1. 光在真空中的传播速度是()。

A. 3×10^8 m/sB. 2×10^8 m/sC. 3×10^5 m/sD. 2×10^5 m/s答案:A2. 根据牛顿第二定律,一个物体的加速度与作用力成正比,与物体的质量成反比。

如果一个物体的质量增加一倍,而作用力保持不变,那么它的加速度将()。

A. 增加一倍B. 减少一半C. 保持不变D. 增加两倍答案:B3. 一个物体从静止开始自由下落,不计空气阻力,其下落过程中的加速度是()。

A. 9.8 m/s²B. 10 m/s²C. 9.8 km/h²D. 10 km/h²答案:A4. 以下哪个选项是正确的能量守恒定律的表述?()A. 能量不能被创造或销毁,但可以改变形式。

B. 能量可以被创造或销毁,但不能改变形式。

C. 能量不能被创造或销毁,也不能改变形式。

D. 能量可以被创造或销毁,也可以改变形式。

答案:A5. 一个电子在电场中受到的电场力是()。

A. 与电子的电荷成正比B. 与电子的电荷成反比C. 与电场强度成正比D. 与电场强度成反比答案:A6. 根据热力学第一定律,在一个封闭系统中,能量()。

A. 可以被创造或销毁B. 可以被转移但不能被创造或销毁C. 既不能被创造也不能被销毁D. 可以被创造但不能被销毁答案:C7. 一个物体在水平面上以恒定速度运动,其动能()。

A. 保持不变B. 增加C. 减少D. 先增加后减少答案:A8. 光的折射定律表明,入射角和折射角之间的关系是()。

A. 入射角越大,折射角越大B. 入射角越大,折射角越小C. 入射角和折射角成正比D. 入射角和折射角成反比答案:A9. 根据电磁学理论,一个闭合电路中的感应电动势与()。

A. 磁通量的变化率成正比B. 磁通量的变化率成反比C. 磁通量的大小成正比D. 磁通量的大小成反比答案:A10. 一个物体在竖直方向上受到的重力是50 N,若要使其保持静止状态,需要施加的力是()。

高中物理竞赛题(含答案)

高中物理竞赛题(含答案)

高中物理竞赛题(含答案)高中物理竞赛题(含答案)一、选择题1. 以下哪个量纲与能量相同?A. 动量B. 功C. 功率D. 力答案:B. 功2. 以下哪个力不属于保守力?A. 弹簧力B. 重力C. 摩擦力D. 电场力答案:C. 摩擦力3. 一块物体在重力作用下自由下落,下列哪个物理量不随时间变化?A. 动能B. 动量C. 速度D. 位移答案:B. 动量4. 在以下哪个条件下,物体落地时速度为零?A. 重力作用下自由下落B. 匀加速直线运动C. 抛体运动D. 飞机减速降落答案:B. 匀加速直线运动5. 下列哪个现象可以说明动量守恒定律?A. 质点在外力作用下保持做直线运动B. 物体上升时速度减小C. 原地旋转的溜冰运动员脚迅速收回臂伸直D. 跳板跳高运动员下降时肌肉突然放松答案:C. 原地旋转的溜冰运动员脚迅速收回臂伸直二、填空题1. 单个质点的能量守恒定律表达式为________。

答案:E1 + K1 + U1 = E2 + K2 + U22. 一个质量为2.0 kg的物体从静止开始下滑,下滑的最后速度为4.0 m/s,物体下滑的高度为5.0 m,重力加速度为9.8 m/s²,摩擦力大小为2.0 N,那么物体所受到的摩擦力的摩擦因数为________。

答案:0.53. 在太阳系中,地球和太阳之间的引力为F,地球和月球之间的引力为f。

已知太阳质量为地球质量的300000倍,月球质量为地球质量的0.012倍。

下列哪个关系式成立?A. F = 300,000fB. F = 0.012fC. F = 300,000²fD. F = 0.012²f答案:A. F = 300,000f4. 一个质点从A点沿一固定的能量守恒定律表达式为E1 + K1 + U1 = E2 + K2 + U2路径运动到B点,以下哪个表达式正确?A. E1 + K1 + U1 = E2 + K2 + U2 + WB. E1 + K1 + U1 = E2 + K2 + U2 - WC. K1 + U1 = K2 + U2D. E1 - E2 = U2 - U1答案:D. E1 - E2 = U2 - U1三、解答题1. 一个木块沿水平面内的光滑竖直墙壁从静止开始下滑,当木块下滑一段距离后,由于摩擦力的作用,木块的速度减小。

物理竞赛复赛试题及答案

物理竞赛复赛试题及答案

物理竞赛复赛试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是()A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h2. 根据牛顿第三定律,作用力和反作用力的大小()A. 相等B. 不相等C. 相等但方向相反D. 相等且方向相同3. 一个物体的动能与其速度的关系是()A. 正比B. 反比C. 无关D. 正比且平方关系4. 电场中某点的电势与该点到参考点的电势差成正比()A. 正确B. 错误二、填空题(每题5分,共20分)1. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成______。

2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为______。

3. 根据欧姆定律,电阻R、电流I和电压V之间的关系是V = ______。

4. 光的折射定律表明,入射角和折射角的正弦值之比等于两种介质的折射率之比,即sinθ1/sinθ2 = ______。

三、计算题(每题10分,共40分)1. 一辆汽车以20 m/s的速度行驶,突然刹车,刹车时的加速度为-5m/s²。

求汽车完全停止所需的时间。

2. 一个质量为2 kg的物体从10 m的高度自由落体,忽略空气阻力,求物体落地时的速度。

3. 一个电路中包含一个5 Ω的电阻和一个9 V的电池,求电路中的电流。

4. 一个光波的波长为600 nm,求其频率。

四、实验题(每题20分,共20分)1. 描述如何使用弹簧秤测量物体的重力,并解释实验原理。

答案:一、选择题1. A2. A3. D4. B二、填空题1. 反比2. at3. IR4. n1/n2三、计算题1. 4 s2. √(2gh) = √(2*9.8*10) m/s ≈ 14.1 m/s3. I = V/R = 9/5 A = 1.8 A4. f = c/λ = (299,792,458)/(600*10^-9) Hz ≈ 5*10^14 Hz四、实验题1. 将物体挂在弹簧秤的挂钩上,读取弹簧秤的示数即为物体的重力。

第全国高中物理竞赛复赛题试卷及参考解答

第全国高中物理竞赛复赛题试卷及参考解答

额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。

物理竞赛复赛模拟卷及答案

物理竞赛复赛模拟卷及答案

物理竞赛复赛模拟卷1.试证明:物体的相对论能量E 与相对论动量P 的量值之间有如下关系:20222E c p E +=2. 在用质子)(11P 轰击固定锂)(73Li 靶的核反应中,(1)计算放出α粒子的反应能。

(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量有多大?有关原子核的质量如下:H11,1.007825;He42,4.002603;Li 73,7.015999.3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。

问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。

问这种光的频率与简正频率相差多少?氢原子的质量为1.67×10-27kg ,电离能J eV E 181018.26.13-⨯==。

4. 如图11-136所示,光滑无底圆筒重W ,内放两个重量均为G 的光滑球,圆筒半径为R ,球半径为r ,且r<R<2r ,试求圆筒发生倾倒的条件。

1p 图51-21图11-1365. 两个完全相同的木板,长均为L ,重力均为G ,彼此以光滑铰链A 相连,并通过光滑铰链与竖直墙相连,如图(甲)所示。

为使两木板达水平状态保持平衡,问应在何处施加外力?所施加的最小外力为多大?6. 如图11-505所示,屋架由同在竖直面内的多根无重杆绞接而成,各绞接点依次为1、2……9,其中绞接点8、2、5、7、9位于同一水平直线上,且9可以无摩擦地水平滑动。

各绞接点间沿水平方向上的间距和沿竖直方向上的间距如图所示,绞接点3承受有竖直向下的压力P/2,点1承受有竖直向下的压力P ,求绞接点3和4间杆的内力。

7. 一平直的传送带以速度v=2m/s 匀速运行,传送带把A 点处的零件运送到B 点处,A 、B 两点之间相距L=10m ,从A 点把零件轻轻地放到传送带上,经过时间t=6s ,能送到B 点,如果提高传送带的运动速率,零件能较快地传送到B 点,要让零件用最短的时间从A 点传送到B 点处,说明并计算传送带的运动速率至少应多大?如要把求得的速率再提高一倍,则零件传送时间为多少(2/10s m g )?8. 一物体以某一初速度v 0开始做匀减速直线运动直至停止,其总位移为s ,当其位移为2/3s 时,所用时间为t 1;当其速度为1/3v 0时,所用时间为t 2,则t 1、t 2有什么样的关系?图11-505v12v31 图12-311F (乙)(丙)9.一根长为1m具有小内截面的玻璃管,两端开口,一半埋在水中。

高中物理竞赛复赛模拟试题(有答案)

高中物理竞赛复赛模拟试题(有答案)

高中物理竞赛模拟试题〔复赛〕一、某一构件由两个菱形组成,AB 和DE 是两根硬杆,各焦点都用铰链连接,大菱形的边长是2l ,小菱形的边长是l ,现设法使顶点F 以加速度a 水平向右运动,求: 〔1〕C 点的加速度多大?〔2〕当两个菱形都是正方形,F 点的速度为ν时,A 点的加速度的大小和方向。

二、长为L 的杆AO 用铰链固定在O 点,以角速度ω围绕O 点转动,在O 点的正上方有一个定滑轮B ,一轻绳绕过B 滑轮的一端固定在杆的A 端,另一端悬挂一质量为M 的重物C ,O 、B 之间的距离为h ,求:〔1〕当AB 绳与竖直方向成θ角时,重物的运动速度; 〔2〕此时绳上的张力为多少?三、一对半径为r 的轻轮安装在一根细轴上它们共同以某一速度ν沿图示的平面向右滚动。

斜面与平面接触的顶角A 处足够粗糙〔即轮不会产生滑动〕,斜面与水平面成α角,要求轮从平面滚动到斜面时不要离开顶角,问ν的最大值为多少?四、一架大型民航飞机在降落到机场前撞上一只正在飞行的天鹅,试估算,天鹅转击飞机的力为多少〔只要数量级正确即可〕?五、有一汽缸,除底部外都是绝热的。

上面是一个不计重量的活塞,中间是固定的导热隔板,把汽缸分成相等的两局部A 和B ,上下各有1mol 氮气,现从底部将350J 的热量传送给气体,求:〔1〕A 、B 内的气体温度各改变了多少? 〔2〕它们各吸收了多少热量?假设是将中间的隔板变成一个导热的活塞其他条件不变,如此A 、B 的温度又是多少?〔不计一切摩擦〕A六、两个绝缘的相距较远的球形导体,半径分别为r 1、r 2,带电后电势分别为ν1和ν2,假设用细导线将两个球连接起来,求在导线上放出的电量。

七、一个正方形的导线框ABCD ,边长为l ,每边的电阻为R ,在它中点处内接一个小一些的正方形线框EFGH ,然后在各边中点在内接一个更小的正方形导线框 一直下去,直至无穷。

如果所有正方形导线框用的导线都是一样的,所有接触点接触良好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q。今在相对于环不动的参照系中设法让这些
小球均以匀速 u 沿环边运动,各边上相邻两球的间距均为
a,且 L 远大于 a(参见图 52-2 ),
环是用不导电的线制作的,在相对于环不动的参照系中它有均匀的电荷线密度,正好把全部
小球的电荷完全抵消掉。 考虑相对论效应, 在一个从其上看环的运动速度为
照系上计算以下各量:
轴与 v 同向, y 沿着 DA边的方向, z 轴则垂直于环路所在平面) 。S 系各轴平行于 S 系各对
应轴, S 与 S 系的坐标原点在 t=0 时重合。
(1) AB边
建立与 AB边上的小球一起运动的参照系 S ,它的各坐标轴与 S,S 系的坐标轴平行。 S
相对 S 具有速度 u。
据洛仑兹收缩, S 测得的 AB边上相邻两个小球之间的距离 ar 为
(3) DA边
v2
a CD
1 c2 a uv
1 c2
( 7)
在 S 系中,令 DA边上的某一小球在 t 0 时刻位于 x1 y1 z1 0 处。在同一时刻邻近的
一个小球应位于 x2 0, y2 a , z2 0 处。
各球相对于 S 系的空—时坐标可由洛仑兹变换式给出
1
x
(x
v2
1 c2
y y ,z z ,
a
ar
u2
1 c2 ,
(1)
(只要 ar 是在相对小球静止的参照系中测得的相邻两球间距,上式对任何一条边均成
立。) 据相对论速度求和公式, S 系中的观察者认为 AB边上诸球具有的速度为
uv
u AB
, uv
1 c2
再据洛仑兹收缩,此观察者将测得
( 2) AB边上相邻两球的间距为
a AB
1
u
2 AB
c2
各边线电荷量也为此值。
(1) AB边
在实验室参照系中, AB边上各球电荷量之和为
S 中测得的
Q AB .b
v2 1 c2 L q a AB
( 15)
此式系由 AB边上小球数乘以每一小球电荷量(运动不变量)来获得。
的分子为 S 系中观察者测得的运动收缩边长,分母则为相邻小球的间距。
将( 4)式代入到( 15)式中,可得:
( 21.2 )
L uv
F AB
Q AB E
a
c2
qE

作用在 CD边上的电场力为
( 22)
CE
L uv
FCD QCD E
a
c2
qE

( 23)
B
FAB 与 FCD 形成一力偶。据力偶的力矩表达式,可得(参见图
M
最后可表达成
M
FAB L sin uv L2 c 2 a q E sin
( 24) ( 25)
30

P1
6 32
5.6( cmHg )
70cm
实际气压
p p1 68 73.6(cmHg)
(2)因体积不变,有
p0 / T0 P2 / T2 , T0 273 27
300(K )
T2 273 3 270(K ) , p0 6cmHg

P2 6 270 / 300 5.4(cmHg )
L0
实际气压
P P2 70 75.4(cmHg)
52-3 )
R U0
图 52-4
4、令 U AB 和 U CD 分别为 AB边上各点和 CD边上各点的静电势(指场强为
电势——注) ,那么有
E 的外电场的
W U ABQAB U CD QCD ,
( 26)
将电势零位( U=0)选在与 E 垂直的一个平面上,此平面与 图 52-4 ),于是
AB 边的间距为某一任意量 R(见
a1a2t a1 a2

B 气 L0


L 4L0

5.如图 24-29 所示,截面均匀,下端 A 封闭的细长试管 AB竖直放置,管下端 A

L0
内封有长为 L0 的空气, 管中间是长为 4L0 的水银柱, 管上端 B 有长为 L0 的空气。 管中间
有长为 L=4L0 的水银柱管上端 B 有长为 L0 的空气。开始时,管上端 B 与大气连通,大气
图 52-2
注意:物体的电荷量与测量参照系的选择无关。
图 52-2 只画出了各矢量之间的相对方向。
略去电磁辐射。
有关的相对论公式如下:
(1)设惯性参照系 S 以匀速度 v 相对另一参照系 S 运动。 两参照系对应的坐标轴彼此平
行, t=0 时坐标原点重合,速度 v 沿 x 轴正方向。
若在 S 系测得一个质点以速度 u 沿 x 轴运动,那么在 S 系测得该质点的速度应为
LA LA ,
求得
L A 1.05L 0 , L B 1.55L 0 。
6.某水银气压计的玻璃管顶端高出水银槽液面
1m。如图 24-33 所示,因上部混入少量空
气,使其读数不准。 当气温为 27oC,标准气压计读数仍为 76cmHg时,该气压计读数为 70cmHg。
(1)在相同气温下,若用该气压计测量气压,测得读数为
设倒转过程均在大气环境下进行,温度不变。
解:( 1)倒转前后,对于 A、B 气体有 pAL A p0 gL L0 , pB L B p0L0 pA
gL LB

L A L B 2L0 , p0 2 gL, L 4L0 ,
所以求得
L A 1.37L0 , LB 0.63L0 .
(2)设倒转后水银不外泄,对于 A 端空气柱有
2
a1 a 2t
2
2
2
2 2(a1 a2 )
解法二: 作出质点运动过程中的速度 - 时间图像如图 12-32 所示,由图像的物理意义可知,
tg
a1
vm t1
tg
a2
vm t2
t1 t 2 vm vm t
vm
a1 a2
图像所围的面积就是质点的位移
s vm t 2
a1 a2 t 2 2( a1 a2 )
QCD
(3) BC边和 DA边
L uv a c2 q
(19)
S 系中观察者测得这两条边的边长均为 L,相邻两球的间距也均为 a,因此
Q BC .b QDA .b
L q
a,
(20)
将( 14)和( 20)式相加,可得
FCD
L sin
图 52-3
QBC 0 ,
( 21.1 )
QDA 0 。
3、作用在 AB边上的电场力为
ar

将( 1),( 2)式代入到( 3)式,可得:
( 3)
a AB
(2) CD边 对 S 系中的观察者而言,
v2 1 c2 a
uv 1 c2 。
CD边上小球的速度为
( 4)
再据洛仑兹收缩有
vu
uCD
uv
1 c2 ,
( 5)
a CD
1
uC2D c2
ar

将( 1),( 5)式代入到( 6)式,便得
( 6)
复赛模拟试题二
1. 设法使边长为 L 的正方形环在任何情况下均以匀速度 v 沿着它的 AB 边方向运动,在其运动
的空间区域内有一匀强电场,场强 E 垂直于环的运动速度。运动期间,环始终在同一平面上,
电场 E 相对于环平面的倾角为 θ 。设环上串有大量小球,这些小球象珠子串在项链上那样被
串在环上。小球的大小可忽略,各球都带有电量
p0 gL L0 p0 gL L A ,
求得
L A 3L0 ,
说明水银外泄一部分。设倒转后,剩下水银柱长度为
L , A 端长度为 LA,则有
p0 gL L0 p0 gL LA ,
L A L 2L0 L 6L0 ,
解得
LA
回转过程中,有
2.61L0 , L
3.39L0 。
p0 gL L0 p0 gL L A p0 gL L A , LB
68cmHg,则实际气压应为多少
厘米汞柱?
(2)若在气温为 -3 oC 时,用该气压计测得气压读数仍为 70cmHg,则实际气压应为多少
厘米汞柱?
解:(1)以混入气压计内气体为研究对象,因温度不变,有
p0V0 P1V1, p0 76 70 6(cmHg )
V0 (100 70)S 30S , V1 (100 68)S 32 S
解法一:质点作匀加速直线运动的末速度为
vm ,由题意可知
vm a1t1 a2t 2 t1 : t2 a2 : a1
( 1)
t1 t2 t
由( 1)、( 2)两式解得
( 2)
t
a2t
a1 a2
vm a1t1 a1a2t a1 a2
质点的总位移为
s (0 vm ) t1 ( vm 0)t 2 vm (t 1 t 2 ) vmt
( 15)式右边第一项中
Q AB .b
L uv
1 a
c2 q
将( 14)式和( 16)式相加,便得 AB边上总电荷量
( 16)
(2) CD边 用相同的方法可得
L uv
Q AB
a
c2
q

( 17)
E C
F AB B
QCD.b
v2 1 c2 L q
aCD
L uv
1 a
c2 q
(18)
将( 14)和( 18)式相加,可得
7.如图 24-61 所示,有一个直立的气缸,气缸底到气缸口的距离为
L0cm,用一厚
z1 )2 ]1/ 2 ,
( 11)
a DA a 。
相关文档
最新文档