NGW行星齿轮减速器轴的设计
NGW型行星齿轮减速器——行星轮的设计 (1).
目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW型行星齿轮减速器设计
本科毕业论文(设计)题目 NGW型行星齿轮减速器设计学院工程技术学院专业机械设计制造及其自动化年级 2011级学号姓名指导教师(副教授)成绩 ____________________年月日目录摘要 (1)ABSTRACT. (2)0文献综述 (3)0.1行星轮的特点 (3)0.2发展概况 (4)1 传动方案的确定 (6)1.2行星机构的类型选择 (6)1.2.1行星机构的类型及特点 (6)1.1.2确定行星齿轮传动类型 (9)2 齿轮的设计计算 (10)2.1 配齿计算 (10)2.1.1确定各齿轮的齿数 (10)2.1.2初算中心距和模数 (11)2.2几何尺寸计算 (12)2.3 装配条件验算 (14)2.3.1 邻接条件 (14)2.3.2同心条件 (15)2.3.3安装条件 (15)2.4 齿轮强度校核 (16)2.4.1 a-c传动强度校核 (16)2.4.2 c-b传动强度校核 (20)3 轴的设计计算 (24)3.1行星轴设计 (24)3.2 转轴的设计 (26)3.2.1 输入轴设计 (26)3.2.2 输出轴设计 (27)4 行星架及相关部件 (29)4.1 行星架的设计与行星轮的支撑 (29)4.2行星架变形的计算和校核 (30)4.3浮动齿式联轴器的设计与计算 (30)4.4减速器的润滑 (31)4.4.1减速器润滑方式的选择 (31)4.4.2行星齿轮减速器润滑油的选择 (32)附录 (35)参考文献 (36)致谢 (38)NGW型行星齿轮减速器设计摘要:本文介绍了NGW型行星齿轮减速器的设计过程。
它具有行星齿轮传动的通用的优点,比如:质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点。
因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织等工业部门均获得了广泛的应用。
首先介绍了行星齿轮减速器的应用背景及发展趋势。
接下来是选定型号的行星齿轮减速器的具体设计过程,包括行星机构的类型选择,齿轮齿数的确定,齿轮强度的校核,轴和键的尺寸及强度校核,行星齿轮减速器的结构设计等组成部分。
NGW型行星齿轮减速器-行星轮设计要点
目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW型行星齿轮减速器——行星轮的设计要点
目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGWN(III)型行星轮减速器设计
NGWN(III)型行星轮减速器设计1 前言随着现代化工业的发展,机械化和自动化水平不断地提高,各工业部门需要大量的减速器,并要求减速器的体积小、重量轻、传动比大、效率高、承载能力大、运转可靠和寿命长等。
而行星齿轮传动具有减速比大、传动效率高、结构小巧、承载能力强等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,因此行星轮减速器被广泛应用于各个方面。
行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得广泛的应用,所以目前行星传动技术已成为世界各国机械传动重点之一。
目前国外的减速器,以德国、丹麦和日本处于领先地位,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。
行星轮减速装置经过一个多世纪的发展设计理论及制造技术有了很大的进步,而且与新技术革命的发展紧密结合。
当今世界行星轮减速装置总的发展趋势是向着大功率、大传动比、小体积、高机械效率、高的承载能力以及利用寿命长的目标发展,而且其重量更轻,噪声更低,效率更高,可靠性也更高。
目前世界各国由工业化信息化时代正在进入知识化时代,行星轮在设计上的研究也趋于完善,制造技术也不断改进。
行星齿轮传动类型很多,行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。
若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW 型、NGWN型和N型等。
我所研究的NGWN(III)行星齿轮属于3Z型行星齿轮传动的一种。
本文主要对NGWN(III)齿轮减速器设计方法进行了探讨,主要内容包括齿轮传动比的分配计算,主要零部件参数设计,标准零部件的选用,以及减速器中零件三维模型的设计。
2 选题背景2.1 题目来源生产实际2.2 研究的目的与意义由于行星轮齿轮减速器具有质量小、体积小、传动比大以及效率高等优点,因此行星轮减速器被广泛应用于工程机械、矿山机械、冶金机械、起重运输机械、飞机、轮船等各个方面。
NGWN型行星减速器的优化设计
3.1.2 建立配齿目标函数 行星轮系配齿优化设计应在满足同心条件、
邻接条件、装配条件下, 求出各轮齿数和传动比误 差, 使传动比误差满足传动精度要求, 则目标函数 可表示为:
第一步根据行星轮系传动比的取值范围, 在
满足同心条件、邻接条件、装配条件下, 进行配齿
优化设计, 求出各轮齿数和传动比误差, 使传动比
4.2.2 齿宽约束
4.2.3 轮齿弯曲强度约束
对 NGWN 行星减速器, 当齿面硬度 HB>350
时, 只计算齿轮的齿弯曲强度。根据对直齿圆柱齿
轮的齿弯曲强度要求
得[1]:
然 后 计 算 齿 宽 系 数 Φd=bmin/d, (d 为 齿 轮 的 分 度圆直径)。齿宽系数在许用范围内就行, 否则应加 大模数。根据式( 5) 计算出行星轮最小齿宽 b1、b2, 然后计算出齿宽系数 Φd, 齿宽系数在 0.3- 0.6 的范 围内即满足要求。整个计算过程可用 C++语言编 成了计算程序, 在计算机上可顺利运行。经强度优 化计算后, 模数必须为标准值, 齿宽也应圆整为整 数, 故需将最优解圆整到符合工程要求的值。最后 得到符合工程要求的值。
误差满足传动精度要求作为目标函数。
第二步调用第一步可行的齿数组合方案, 对
行星齿轮减速器各齿轮进行强度优化设计, 使行
星齿轮减速器体积最小作为目标函数。
图 1 NGWN 型行星齿轮减速器传动简图
3.2 确定配齿计算约束条件 3.2.1 同心条件
根据行星齿轮传动中, 各对相互啮合齿轮的中 心距应相等的同心条件, 即由行星减速器三个啮合 齿轮副 a- g、g- b、f- e 的中心距: 关系可换为:
- 49 -
《机 电 技 术 》2007 年 第 3 期
行星齿轮减速器的优化设计
图1.1 为2K-H 型行星轮系机构简图。
已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45—55HRC ,行星轮个数c=3,要求以重量最轻为目标,对其进行优化设计。
1、目标函数和设计变量的确定行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替,因此目标函数可简化为:()()⎡⎤⎣⎦2221f x =0.19635m z b 4+u -2c式中:1z — 中心轮1的齿数;m — 模数,单位为(mm); b — 齿宽,单位为(mm); c — 行星轮2的个数; u — 轮系的传动比。
影响目标函数的独立参数应列为设计变量,即[]1TT⎡⎤=⎣⎦x z b m c 1234=x x x x在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为:[]1TT⎡⎤=⎣⎦x z b m123=x x x目标函数为:()()⎡⎤⎣⎦x 222312f x =0.19635x x 4+u -2c 2.约束条件的建立1)小齿轮1z 不根切,得:()≤11gx =17-x 02)限制齿宽最小值,得:()≤22g x =10-x 03)限制模数最小值,得:()-≤33gx =2x 04)限制齿宽系数b/m 的范围:≤≤5b/m 17,得:()-≤432g x =5x x 0()17-≤523g x =x x 05)满足接触强度要求,得:()[]H σ-≤61g x =750937.3/(x x 0式中:[]Hσ — 许用接触应力。
6)满足弯曲强度要求,得:())[]F σ-≤27F S 123g x =1482000y y /(x x x 0式中:Fy 、Sy — 齿轮的齿形系数和应力校正系数;[]F σ — 许用弯曲应力。
,案。
1.目标函数和设计变量在大批量生产压力容器时,以螺栓总成本最小作为追求的设计目标很有意义,一台压力容器的螺栓总成本W n 取决于螺栓的个数n 和单价W ,即W n =n WW=0.0205d-0.1518 于是,可对这种螺栓组写出如下目标函数f(x)=n(0.0205d-0.1518)显然,可取设计变量为X=[x1,x2]T=[d,n]T则目标函数f(x)= x2 (0.0205 x1-0.1518)2.约束函数设计压力容器螺栓组时,螺栓数量的确定既要考虑密封性要求,又要兼顾装拆工具的工作空间。
NGW二级行星齿轮减速器设计图纸
42CrMo 技术要求1、装配前应用煤油将各零部件清洗干净,机体内不得有杂质。
2、装配验收按YZB100.9-88规定。
3、齿轮接触斑点:沿齿长不少于80%,沿齿高不少于60%。
4、啮合侧隙jmin=0.14。
5、在工作转数下空负荷试车正反各一小时,运行应平稳不得有冲击、振动现象,各密封处不得漏油。
6、装配时在油标上划最高、最低油位两条红线。
7、各机盖、端盖在装配时涂以密封胶。
8、外表面涂苹果绿.Ø60r 6300130228170337.5443.5811163630050653.5137750Ø65k 6Ø220H 7r 6Ø300k 6Ø100k 6Ø60k 62222Ø260k 6Ø400H 7Ø120H 7Ø900H 7Ø560H 7Ø845H 7Ø800H 7400-0.0622000-0.2R321H7/m65200-0.52058084010804-Ø4660540.01035.5R51028620油位刻度线R432.5H7/m6序号名称代号数量材料单件总计重量备注43444546474849505152535455565758键40×280145输出轴1输出轴透盖1HT200GB/T1096-2003键40×180145轴承60521Ø260×Ø400×65GB/T 276-1994GB/T 1096-2003后机盖1HT200键50×160145GB/T1096-2003低速级行星架1ZG40CrMn 低速级内齿轮1后机体1HT200轴承160601Ø300×Ø460×50GB/T 276-1994前机体1HT200键16×80145GB/T1096-2003高速级内齿轮11ZG40CrMn 高速级行星架1HT200前机盖轴承6213245Ø65×Ø120×23GB/T 276-19941HT200输入轴透盖序号代号名称数量材料重量单件总计备注123456789101112131415161718192021222324252627282930313233343536373839404142毡圈1201JB12Q 4606-1986键16×100145GB/T1096-2003142CrMo 输入轴挡圈65165Mn GB/T 894.1-1986轴套65×74×1001铜合金GB/T 2509-1981高速级行星轮轴142CrMo 套筒6铜合金轴承NF2126454545Ø60×Ø110×22GB/T 283-1994套筒铜合金3高速级行星轮3GB/T 119.1-2000圆柱销Ø8×503奥氏体不锈钢通气器M27×1.5145齿轮联轴器1球顶445太阳轮142CrMo 42CrMo 42CrMo 42CrMo 42CrMo 套筒3铜合金吊环145645轴承NF220Ø100×Ø180×34GB/T 283-1994低速级行星轮342CrMo 套筒铜合金6GB/T 119.1-2000奥氏体不锈钢3圆柱销Ø12×60142CrMo 低速级行星轮轴顶块445螺栓M24×100123565Mn 1212Q235平垫圈24弹簧垫圈24GB/T 97.1-2002GB/T 93-1987GB/T 5780-2000GB/T 5780-200035GB/T 93-1987GB/T 97.1-2002Q23565Mn 888平垫圈20弹簧垫圈20螺栓M20×80油塞1Q235-A M42×2GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35平垫圈20弹簧垫圈20螺栓M20×80GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35平垫圈20弹簧垫圈20681266881212螺栓M16×65弹簧垫圈16平垫圈16螺栓M20×120DDCCD-DAABBA-AB-B160-0.043530-0.2C-C润滑方式啮合特性参数太阳轮行星轮内齿轮太阳轮行星轮级别高速级低速级a i zmα精度等级啮合轴承油池飞溅8-7-7FH 8-7-7FH 油池飞溅3720°16212.517891992228164620°110内齿轮标记设计处数分区更改文件号签名年、月、日阶段标记重量比例共张第张标准化批准审核工艺斗轮减速器总装图1:51156575853545550515249464748434445424140393837363534333231302928272625242322212019181716151413121110987654321405808401080712572AA4×Ø46(锪平Ø70)C-C5200-0.51035201080882.5+0.12R 475R 510R 470M 148612015°15°3.23.250+0.0453.232C12-M24R25R20R20C60305.560112.5100367.5622-M19R35134.51506.37210405072×4=288R3120020026820443.5Ø845+0.046601429160151403×45°3×45°Ø865+0.052Ø880Ø901+0.0523.23.23.23.23.2H3.20.06H3.20.06HBBA-AR10R20R20R20R20R16R16Ø0.06H其余ⅡⅠ301072R5221022Ⅱ2:1M3012Ø50R82:1ⅠDDB-B50500305.5143.520020035540R20R20R20R203.26.3D-D1、铸件不得有夹砂,裂纹和缩孔等影响强度的铸造缺陷。
NGW行星齿轮减速器的设计
NGW行星齿轮减速器的设计首先,我们需要确定NGW行星齿轮减速器的传动比。
传动比是指输入轴转速与输出轴转速之间的比值,通常由齿轮的齿数比确定。
在确定传动比时,需要考虑到被传动装置的工作条件和要求,以及NGW行星齿轮减速器的结构特点和制造工艺。
一般而言,NGW行星齿轮减速器的传动比可以根据工作条件和设计要求进行选择。
接下来,我们需要进行NGW行星齿轮减速器的齿轮参数设计。
齿轮的参数设计包括齿轮的模数、齿数、齿轮啮合角等。
模数决定了齿轮的尺寸和齿面接触强度,一般通过强度计算来确定。
齿数决定了齿轮的传动比,并且齿数的选择还需要满足齿轮传动的平滑性要求。
齿轮啮合角则决定了齿轮的啮合性能和传动效率,一般通过减速器的运动试验来确定。
在设计NGW行星齿轮减速器时,还需要考虑到齿轮的材料选择和热处理工艺。
齿轮的材料应具有良好的力学性能和疲劳强度,一般选择高强度合金钢或工程塑料。
齿轮的热处理工艺包括淬火和回火等,可以提高齿轮的强度和硬度,延长使用寿命。
此外,NGW行星齿轮减速器还需要进行结构设计和强度计算。
结构设计包括减速器的内部组成部分、外部壳体和密封装置等。
强度计算主要包括齿轮的强度计算和轴的强度计算等,以确保减速器在工作过程中能够承受所需的工作载荷和传动力矩。
最后,需要进行NGW行星齿轮减速器的动力学分析和传动效率计算。
动力学分析可以通过数值模拟或实验来进行,以研究减速器在工作过程中的振动和噪声情况。
传动效率计算可以通过减速器的理论计算和实际测试来进行,以评估减速器的传动效率和能量损耗情况。
综上所述,NGW行星齿轮减速器的设计涉及传动比的选择、齿轮参数设计、材料选择、热处理工艺、结构设计、强度计算、动力学分析和传动效率计算等多个方面。
通过合理的设计和优化,可以实现减速器的高精度、高扭矩传动,并满足各种机械设备的要求。
NGW行星齿轮减速器--轴设计
目录第一章绪论 (2)1.1 行星齿轮传动的特点 (2)1.2 本文的主要内容 (3)第二章NGW行星齿轮减速器结构设计 (3)2.1 设计技术参数 (3)2.2 机构简图确定 (3)2.3 齿形与精度 (4)2.4 齿轮材料及其性能 (4)第三章齿轮的优化设计 (4)3.1 齿轮的设计 (4)3.11配齿数 (4)3.12初步计算齿轮主要参数 (5)3.13几何尺寸计算 (6)3.2 重合度计算 (7)3.2 齿轮啮合效率计算 (7)3.4 疲劳强度校核 (8)3.41外啮合 (8)3.42内啮合 (13)第四章其他零件的设计 (14)4.1 轴承的设计 (14)4.2 行星架的设计 (15)第五章输入轴的优化设计 (15)5.1 装配方案的选择 (15)5.2 尺寸设计 (16)5.21初步确定轴的最小直径 (16)5.22根据轴向定位要求确定轴的各段直径和长度 (17)5.23轴上零件轴向定位 (17)5.24确定轴上圆角和倒角尺寸 (18)5.3 输入轴的受力分析 (18)5.31求输入轴上的功率P、转速n和转矩T (18)5.32求作用在太阳轮上的力 (18)5.33求轴上的载荷 (19)5.4按弯扭合成应力校核轴的强度 (21)5.5精确校核轴的疲劳强度 (22)5.6 按静强度条件进行校核 (28)第六章Solidworks出图 (30)参考文献 (34)第一章绪论渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW行星轮减速器设计
NGW行星减速器的设计摘要本文完成了对一级行星齿轮减速器的结构设计。
该减速器具有较小的传动比,而且,它具有结构紧凑、传动效率高、外廓尺寸小和重量轻、承载能力大、运动平稳、抗冲击和震动的能力较强、噪声低的特点,适用于化工、轻工业以及机器人等领域。
这些功用对于现代机械传动的发展有着较重要的意义。
首先简要介绍了课题的背景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动结构,从而确定了传动的基本类型。
论文主体部分是对传动机构主要构件包括太阳轮、行星轮、内齿圈及行星架的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致结构之后,对其进行了整体结构的设计计算和主要零部件的强度校核计算。
其中该减速器的设计与其他减速器的结构设计相比有三大特点:其一,为了使三个行星轮的载荷均匀分配,采用了齿式浮动机构,即太阳轮与高速轴通过齿式联轴器将二者连接在一起,从而实现了太阳轮的浮动;其二,该减速器的箱体采用的是法兰式箱体,上下箱体分别铸造而成;其三,内齿圈与箱体采用分离式,通过螺栓和圆锥销将其与上下箱体固定在一起。
最后对整个设计过程进行了总结,基本上完成了对该减速器的整体结构设计。
关键词:行星齿轮,传动机构,结构设计,校核计算The design of NGW planetary gear reducerABSTRACTThis completed a single-stage planetary gear reducer design. The gear has a smaller transmission ratio, and it has a compact, high transmission efficiency, outline, small size and light weight, carrying capacity, smooth motion, shock and vibration resistant and low noise characteristics, Used in chemical, light industry and robotics fields. The function of the development of modern mechanical transmission has a more important significance.First paper introduces the background and the subject of gear reducer situation and development trend, and then compared various transmission structures, which determine the basic type of transmission. Thesis is the main part of the main components of drive mechanism including the sun wheel, planet gear, ring gear and planet carrier in the design calculation, given by the input power, gear ratio, input speed and the condition factor to determine the approximate structure after the gear reducer And to carry out the design and calculation of the overall structure and main components of the strength check calculation. One of the other gear reducer design and compared the structural design of the three major characteristics: First, the three planetary gear to make the load evenly, using a gear-type floating body, the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear; Second, the box uses a reducer flange box, upper and lower box were cast; Third, the ring gear and Box with separate, through bolts and tapered pins will be fixed together with the upper and lower box. Finally, a summary of the entire design process is basically complete the overall design of the reducer. KEY WORDS:planetary gear,driving machanism,structural design,checking calculation目录前言 (1)第1章传动方案的确定 (6)1.1 设计任务 (6)1.1.1 齿轮传动的特点 (6)1.1.2 齿轮传动的两大类型 (7)1.2行星机构的类型选择 (7)1.2.1 行星机构的类型及特点 (7)1.2.2 确定行星齿轮传动类型 (10)第2章齿轮的设计计算 (12)2.1 配齿计算 (12)2.1.1 确定各齿轮的齿数 (12)2.1.2 初算中心距和模数 (13)2.2 几何尺寸计算 (15)2.3 装配条件验算 (17)2.3.1 邻接条件 (17)2.3.2 同心条件 (18)2.3.2 安装条件 (18)2.4 齿轮强度校核 (19)2.4.1 a-c传动强度校核 (19)2.4.1 c-b传动强度校核 (24)第3章轴的设计计算 (29)3.1 行星轴设计 (29)3.2 转轴的设计 (31)3.2.1 输入轴设计 (31)3.2.2 输出轴设计 (32)第4章行星架和箱体的设计 (35)4.1 行星架的设计 (35)4.1.1 行星架结构方案 (35)4.1.2 行星架制造精度 (37)4.2 箱体的设计 (39)结论 (42)谢辞 (43)参考文献 (44)附录 (45)外文资料翻译 (49)主要代号)rad前言本课题通过对行星齿轮减速器的结构设计,初步计算出各零件的设计尺寸和装配尺寸,并对涉及结果进行参数化分析,为行星齿轮减速器产品的开发和性能评价实现行星齿轮减速器规模化生产提供了参考和理论依据。
毕业设计(论文)-ngw行星减速器设计[管理资料]
1 绪论行星齿轮减速器与普通定轴减速器相比,具有承载能力大、传动比大、体积小、重量轻、效率高等特点,被广泛应用于汽车、起重、冶金、矿山等领域。
我国的行星齿轮减速器产品在性能和质量方面与发达国家存在着较大差距,其中一个重要原因就是设计手段落后,发达国家在机械产品设计上早巳进入分析设计阶段,他们利用计算机辅助设计技术,将现代设计方法,如有限元分析、优化设计等应用到产品设计中,采用机械CAD系统在计算机上进行建模、分析、仿真、干涉检查等。
本文通过对行星齿轮减速器的结构设计,初步计算出各零件的设计尺寸和装配尺寸,并对设计结果进行参数化分析,为行星齿轮减速器产品的开发和性能评价,实现行星齿轮减速器规模化生产提供了参考和理论依据。
本课题设计通过对行星齿轮减速器工作状况和设计要求对其结构形状进行分析,,然后以各个系统为模块分别进行具体零部件的设计校核计算,得出各零部件的具体尺寸,再重新调整整体结构,不断反复计算从而使减速器的性能主要使寿命和稳定性及润滑情况进行优化设计。
2设计与校核输入功率:P=10KW 输入转速:n 1=750r/min ; 输出转速:n 2=20r/min ; 中等冲击;每天连续工作14小时; 使用期限10年。
减速器的总传动比i=750/20=,属于二级NGW 型的传动比范围。
拟用两级太阳轮输入、行星架输出的形式串联,即i 1·i 2=。
两级行星轮数都选n p =3。
高速级行星架不加支承,与低速级太阳轮之间用单齿套联接,以实现高速级行星架与低速级太阳轮浮动均载。
其中高速级行星轮采用球面轴承,机构镇定。
低速级仍为静不定。
其自由度为:()()54321654321610554133212113W n P P P P P =-++++=⨯-⨯+⨯+⨯+⨯+⨯=- 机构的静定度为:1(3)4S W W =-=--='因属于低速传动,采用齿形角a n =20o的直齿轮传动。
精度定为6级。
为提高承载能力,两级均采用变位齿轮传动,要求外啮合a ac =24o 内啮合a cb =20o 左右。
型行星齿轮减速器――行星轮的设计
目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
多级NGW型行星齿轮传动的设计
(2
School of Mechanical Engineering and
Automation,Xihna
University,Ch嘴lu 610039,China)
a11B
Abstract
of
The characteristics of NGW planetary gear
sets
widely used in WTGs
introduced.With the design
pitch reducer for 1.5 MW WTGs,some of the key design principles and general experienced conclusions for the im— and difficult points of multi—stage planetary gear transmission
行星齿轮传动町分解为相互啃合的几对齿轮剐, 强度计算可应用定轴线齿轮传动的计算方法.同时要
考虑行丝传动的结构特点(多行星轮)和运动特点(行 星轮既内转义公转等)。在一・般情况r.NGw型行星
齿轮传动的承载能力主要取决于外啮合.设计中首先
计算外啮台的由车仑强度:对于闭式齿轮传动,齿轮主
要失效邢式是接触疲劳脾攫湾曲疲劳折断和腔台,计
52
机械传动
2011焦
文章编号:1004—2539(2011)06—0052—04
多级NGW型行星齿轮传动的设计
洪雷1李学明1王进戈2
(1二重集团重型装备股份有限公司传动技术研究所, (2西华大学机械工程与自动化学院, 四川德阳618000) 四川成都610039)
摘要针对目前在风力发电机组传动装置中广泛应用的NGW型行星齿轮传动,阐述了其传动特 ,占、。结合1.5MW风力发电机组变桨减速机的设计,对多级行星轮系传动设计的重点及难点,给出了关 键设计原则及一般性经验结论。应用Romax Designer虚拟原型工具进行了薄弱环节的齿轮强度分析及 齿面形状优化,并通过均载机构的应用提高了多级行星齿轮传动的效率。最后设计了功率开放型齿轮 箱试验装置,并通过型式试验验证了设计的合理性。 关键词行星齿轮传动 变桨减速机型式试验齿轮强度
NGW行星齿轮减速器的设计
目录一.绪论 (1)1.引言 (1)2.本文的主要内容 (1)二.确定设计数据 (4)三.拟定传动方案及相关参数 (5)1.对减速器进行结构设计 (5)2.齿形与精度 (5)3.齿轮材料及其性能 (6)四,设计计算 (6)1. 配齿数 (6)2.啮合效率计算 (7)3. 确定手摇力并进行运动及动力参数计算 (8)4. 初步计算齿轮主要参数 (9)(1)按齿面接触强度计算太阳轮分度圆直径 (9)(2)按弯曲强度初算模数 (11)5.几何尺寸计算 (12)6.重合度计算 (14)五.行星轮的强度校核 (15)1.疲劳强度校核 (13)(1).外啮合 (13)(2).内啮合 (20)六.行星轮部位的相关设计 (21)七.输入轴的设计 (24)八输出轴的设计 (26)九铸造箱体结构设计 (27)十参考文献 (28)一绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
ngw挖掘机行星齿轮减速器
ngw挖掘机行星齿轮减速器简介ngw挖掘机行星齿轮减速器是一种常见的工程车辆传动装置,常用于挖掘机等工程机械上。
它通过使用行星齿轮传动来实现马达的转速减速,从而提供更大的牵引力和扭矩输出。
本文将介绍ngw挖掘机行星齿轮减速器的工作原理、结构组成、使用注意事项等内容。
工作原理ngw挖掘机行星齿轮减速器的工作原理是基于行星齿轮的传动原理。
它由一个太阳轮、多个行星轮和一个内齿轮组成。
当电机或马达传动太阳轮时,太阳轮与行星轮通过内啮合的方式相连,从而实现转速减小的目的。
同时,行星轮与内齿轮的啮合也可以提供更大的输出扭矩。
结构组成ngw挖掘机行星齿轮减速器通常由以下几个部分组成:1.外壳:用于固定行星齿轮减速器的各个组件,并起到保护作用。
2.太阳轮:由一组齿轮组成的中心轴,可通过电机或马达输入动力。
3.行星轮:多个行星轮围绕着太阳轮旋转,通过内啮合与太阳轮传动力。
4.内齿轮:位于行星轮外部的齿轮,与行星轮的齿轮啮合以提供输出力。
5.轴承:用于支撑太阳轮和行星轮的转动。
6.油封:用于防止润滑油泄漏,保持减速器的工作环境。
使用注意事项在使用ngw挖掘机行星齿轮减速器时,需要注意以下几个问题:1.定期检查润滑油的添加和更换,保证减速器的正常工作。
2.避免过载操作,超过减速器所能承受的负载范围可能导致损坏。
3.注意使用环境温度,避免高温或低温环境对减速器的影响。
4.注意避免减速器的冲击和振动,这可能导致内部部件松动或破损。
5.定期检查减速器的各个部件是否损坏,如有问题及时维修或更换。
总结ngw挖掘机行星齿轮减速器是一种常见且重要的工程机械传动装置。
它通过行星齿轮的传动原理提供较大的牵引力和扭矩输出。
在使用过程中,需要定期维护和保养,避免过载和损坏。
只有正确使用和保养,才能保证减速器的正常工作,并延长其使用寿命。
以上就是对ngw挖掘机行星齿轮减速器的介绍,希望能对读者有所帮助。
NGW(2K-H负号机构)行星减速装置设计
目录1.课程设计任务书 (2)2.电动机选择 (3)3.传动比及其分配 (3)4.前减速器设计 (3)5.行星齿轮减速器齿轮设计 (7)6.行星齿轮传动轴及键的设计 (12)7.轴承寿命计算 (21)8.齿轮加工工艺 (23)9.箱体结构尺寸 (23)10.附录1 (25)11.参考文献 (28)12.感想 (29)1.课程设计任务书设计题目:NGW(2K-H负号机构)行星减速装置设计一.设计要求与安排1、学习行星传动运动学原理,掌握2K-H机构的传动比计算、受力分析、传动件浮动原理。
2、参考有关书籍、刊物、手册、图册了解2K-H行星传动装置(减速器)的基本结构及技术组成的关键点。
3、按所给有关设计参数进行该传动装置(减速器)的设计。
1)、齿数的选择:传动比及装配条件、同心条件、邻界条件的满足。
2)、了解各构件的作用力及力矩的分析,进行“浮动”机构的选择。
3)、参考设计手册根据齿轮、轴、轴承的设计要点进行有关设计计算。
4)、按有关制图标准,绘制完成教师指定的行星传动装置(减速器)总图、部件图、零件图。
书写、整理完成设计计算说明书。
4、对于所设计的典型零件结合所学有关加工工艺知识编写该零件加工工艺5、行星传动装置(减速器)总图选择合适比例采用A0号图面绘制,主要技术参数(特征)、技术要求应表达清楚,在指导教师讲授、指导下标注、完成总图所需的尺寸、明细及图纸的编号等各类要求。
按零件图要求完成零图纸的绘制,提出技术要求,上述图纸总量不应少于:A0+ A01/2。
二.设计条件1.机器功用减速装置用于绞车卷筒传动2.使用寿命预期寿命10 年,平均每天工作12~16小时三.原始数据1.电机功率:150kw2.输入转速:n=960r.p.m 输出转速:43—45r.p.m 3.前减速器传动比 5.62i =4.2K-H 行星传动输出转速43—45r.p.m2.电动机的选择电机功率150kw ,输入转速为 960r.p.m,查表选用 Y200L —4型。
NGW行星轮减速器设计
NGW行星减速器的设计摘要本文完成了对一级行星齿轮减速器的结构设计。
该减速器具有较小的传动比,而且,它具有结构紧凑、传动效率高、外廓尺寸小和重量轻、承载能力大、运动平稳、抗冲击和震动的能力较强、噪声低的特点,适用于化工、轻工业以及机器人等领域。
这些功用对于现代机械传动的发展有着较重要的意义。
首先简要介绍了课题的背景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动结构,从而确定了传动的基本类型。
论文主体部分是对传动机构主要构件包括太阳轮、行星轮、内齿圈及行星架的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致结构之后,对其进行了整体结构的设计计算和主要零部件的强度校核计算。
其中该减速器的设计与其他减速器的结构设计相比有三大特点:其一,为了使三个行星轮的载荷均匀分配,采用了齿式浮动机构,即太阳轮与高速轴通过齿式联轴器将二者连接在一起,从而实现了太阳轮的浮动;其二,该减速器的箱体采用的是法兰式箱体,上下箱体分别铸造而成;其三,内齿圈与箱体采用分离式,通过螺栓和圆锥销将其与上下箱体固定在一起。
最后对整个设计过程进行了总结,基本上完成了对该减速器的整体结构设计。
关键词:行星齿轮,传动机构,结构设计,校核计算The design of NGW planetary gear reducerABSTRACTThis completed a single-stage planetary gear reducer design. The gear has a smaller transmission ratio, and it has a compact, high transmission efficiency, outline, small size and light weight, carrying capacity, smooth motion, shock and vibration resistant and low noise characteristics, Used in chemical, light industry and robotics fields. The function of the development of modern mechanical transmission has a more important significance.First paper introduces the background and the subject of gear reducer situation and development trend, and then compared various transmission structures, which determine the basic type of transmission. Thesis is the main part of the main components of drive mechanism including the sun wheel, planet gear, ring gear and planet carrier in the design calculation, given by the input power, gear ratio, input speed and the condition factor to determine the approximate structure after the gear reducer And to carry out the design and calculation of the overall structure and main components of the strength check calculation. One of the other gear reducer design and compared the structural design of the three major characteristics: First, the three planetary gear to make the load evenly, using a gear-type floating body, the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear; Second, the box uses a reducer flange box, upper and lower box were cast; Third, the ring gear and Box with separate, through bolts and tapered pins will be fixed together with the upper and lower box. Finally, a summary of the entire design process is basically complete the overall design of the reducer.KEY WORDS:planetary gear,driving machanism,structural design,checking calculation目录前言 (1)第1章传动方案的确定 (6)1.1 设计任务 (6)1.1.1 齿轮传动的特点 (6)1.1.2 齿轮传动的两大类型 (7)1.2行星机构的类型选择 (7)1.2.1 行星机构的类型及特点 (7)1.2.2 确定行星齿轮传动类型 (10)第2章齿轮的设计计算 (12)2.1 配齿计算 (12)2.1.1 确定各齿轮的齿数 (12)2.1.2 初算中心距和模数 (13)2.2 几何尺寸计算 (14)2.3 装配条件验算 (17)2.3.1 邻接条件 (17)2.3.2 同心条件 (17)2.3.2 安装条件 (18)2.4 齿轮强度校核 (19)2.4.1 a-c传动强度校核 (19)2.4.1 c-b传动强度校核 (24)第3章轴的设计计算 (29)3.1 行星轴设计 (29)3.2 转轴的设计 (31)3.2.1 输入轴设计 (31)3.2.2 输出轴设计 (32)第4章行星架和箱体的设计 (35)4.1 行星架的设计 (35)4.1.1 行星架结构方案 (35)4.1.2 行星架制造精度 (37)4.2 箱体的设计 (39)结论 (42)谢辞 (43)参考文献 (44)附录 (45)外文资料翻译 (48)主要代号)rad )rad前言本课题通过对行星齿轮减速器的结构设计,初步计算出各零件的设计尺寸和装配尺寸,并对涉及结果进行参数化分析,为行星齿轮减速器产品的开发和性能评价实现行星齿轮减速器规模化生产提供了参考和理论依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章绪论 (2)1.1 行星齿轮传动的特点 (2)1.2 本文的主要内容 (3)第二章NGW行星齿轮减速器结构设计 (3)2.1 设计技术参数 (3)2.2 机构简图确定 (3)2.3 齿形与精度 (4)2.4 齿轮材料及其性能 (4)第三章齿轮的优化设计 (4)3.1 齿轮的设计 (4)3.11配齿数 (4)3.12初步计算齿轮主要参数 (5)3.13几何尺寸计算 (6)3.2 重合度计算 (7)3.2 齿轮啮合效率计算 (7)3.4 疲劳强度校核 (8)3.41外啮合 (8)3.42内啮合 (13)第四章其他零件的设计 (14)4.1 轴承的设计 (14)4.2 行星架的设计 (15)第五章输入轴的优化设计 (15)5.1 装配方案的选择 (15)5.2 尺寸设计 (16)5.21初步确定轴的最小直径 (16)5.22根据轴向定位要求确定轴的各段直径和长度 (17)5.23轴上零件轴向定位 (17)5.24确定轴上圆角和倒角尺寸 (18)5.3 输入轴的受力分析 (18)5.31求输入轴上的功率P、转速n和转矩T (18)5.32求作用在太阳轮上的力 (18)5.33求轴上的载荷 (19)5.4按弯扭合成应力校核轴的强度 (21)5.5精确校核轴的疲劳强度 (22)5.6 按静强度条件进行校核 (28)第六章Solidworks出图 (30)参考文献 (34)第一章绪论渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
1.1 行星齿轮传动的特点行星齿轮传动与其他形式的齿轮传动相比有如下几个特点:(1)体积小、重量轻、结构紧凑、传递功率大、承载能力高,这个特点是由行星齿轮传动的结构等内在因素决定的。
(2)传动比大只要适当的选择行星传动的类型及配齿方案,就可以利用很少的几个齿轮而得到很大的传动比。
在不作为动力传动而主要用以传递运动的行星机构中,其传动比可达到几千。
此外,行星齿轮传动由于它的三个基本构件都可以传动,故可以实现运动的合成与分解,以及有级和无级变速传动等复杂的运动。
(3)传动效率高由于行星齿轮传动采用了对称的分流传动结构,即它具有数个均匀分布的行星齿轮,使作用于中心轮和转臂轴承中的反作用力相互平衡,有利于提高传动效率。
在传动类型选择恰当、结构布置合理的情况下,其效率可达0.97~0.99。
(4)运动平稳、抗冲击和振动的能力较强由于采用数个相同的行星轮,均匀分布于中心轮周围,从而可使行星轮与转臂的惯性力相互平衡。
同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抗冲击和振动的能力较强,工作较可靠。
在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点,如结构形式比定轴齿轮传动复杂;对制造质量要求较高;由于体积较小、散热面积小导致油温升高,故要求严格的润滑与冷却装置等。
行星齿轮传动的设计进行研究,对促进技术进步和国民经济的发展具有重要的理论和实用意义。
1.2 本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,以基本构件命名,又称为ZK-H型行星齿轮传动机构。
本设计的主要内容是单级NGW型行星减速器的设计。
第二章 NGW行星齿轮减速器结构设计2.1 设计技术参数已知输入功率30KW,输入转速100r/min,传动比6,每天工作16小时,使用寿命10年2.2 机构简图确定减速器传动比i=6,故属于1级NGW型行星传动系统(如图2-1)。
图2-1n=2或3,从提高传动装查书《渐开线行星齿轮传动设计》书表4-1确定p置承载力,减小尺寸和重量出发,取p n =3。
计算系统自由度 W=3*3-2*3-2=1 2.3 齿形与精度因属于低速传动,以及方便加工,故采用齿形角为20º,直齿传动,精度定位6级。
2.4 齿轮材料及其性能太阳轮和行星轮采用硬齿面,内齿轮采用软齿面,以提高承载能力,减小尺寸。
材料选择见表2-1。
第三章 齿轮的优化设计3.1 齿轮的设计 3.11配齿数采用比例法:::::(2)2:(1):()a c b a a a a p Z Z Z M Z Z i i Z Z i n =--:2:5:2a a a a Z Z Z Z =按齿面硬度HRC=60,()c a uZ /Z 62/22==-=查 《渐开线行星齿轮传动设计》 书图4-7a 的max 20a Z =,又1320a Z <<,取17a Z =。
由传动比条件知 Y i 17*6102a Z ===M Y /3102/334===计算内齿轮和行星齿轮齿数:Y 1021785b a Z Z =-=-=234c a Z Z =*=3.12初步计算齿轮主要参数(1)按齿面接触强度计算太阳轮分度圆直径 用式()32limA p d Ha H atdT K K K ud K ϕσ=进行计算,相关系数取值如表3-1。
其中:u=34172c a Z Z == 太阳轮传递的扭矩:()a p a T 9549P /n n 954930/3100954.9 N m ==**=⋅则太阳轮分度圆直径为:()32lim768103.76 mmA p d Ha H a tdT K K K ud K ϕσ===(2)按弯曲强度初算模数 用式1321A Fp tmd T K K mK Z ϕσ=进行计算。
式中相关系数同表3-1,其余系数取值如表3-2。
因为2lim 212lim1245 3.182.54306.73350 F Fa Fa F Y Y Nmm σσ=⨯=<=,所以应按行星轮计算模数:3212.15.64a A Fp tmd a T K K m K Z ϕσ===6m =,则太阳轮直径:()176102 mm a a d Z m ==⨯=接触强度初算结果()103.76 mm a d =接近,故初定按()108.5 mm a d =6m =进行接触和弯曲疲劳强度校核计算。
3.13几何尺寸计算将分度圆直径、节圆直径、齿顶圆直径的计算值列于表3-3。
3.2 重合度计算外啮合:()()a a a m Z 2617251 ()26342102()114257 ()2162108()(r)cos ())51cos 2057(r)=arccos(arccos()32.78()arccos((r)ccos ())arccos(102cos 20108)27.441c c a a a a a c a c a a a a r m Z r d r d r a c ra c ααεαα︒︒︒︒=⨯===⨯=============[](tan()tan )(tan()tan )=17(tan 32.78tan 20)34(tan 27.441tan 20(2)=1.598>1.2Za a a Zc a c αααααππ︒︒︒︒=-+-⎡⎤-+-⎣⎦内啮合:()()b b b c m Z 26852255 ()26342102()24952247.5 ()22162108()(r)cos ())255cos 20247.5()(r)cos ())102cos 20108(r)=arccos(arccos()14.50arccos(arccos()27.c c a b a b a c a c a b a b a c a c r m Z r d r d r r αααα︒︒︒=⨯===⨯=============[](tan()tan )(tan()tan (2)=34(tan 27.441tan 20)85(tan14.50tan 20)(2)=2.266>1.2441c a c b a b Z Z αεααααππ︒︒︒︒︒=---⎡⎤---⎣⎦3.2 齿轮啮合效率计算按公式11X Xb ab aXXabi i ηηη-==-进行计算。
式中Xη为转化机构的效率,可用Kyдpявпев计算法确定。
查《渐开线行星齿轮传动设计》中图3-3a 、b (取µ=0.06,因齿轮精度高)得各啮合副的效率为0.978X ac η=,0.997X cb η=,转化机构效率为:0.9870.9970.984X Xac cb X ηηη==⨯=转化机构传动比:85517b a XabZ Z i=-=-=-则 1150.9840.987115X X b ab aXXab i i ηηη-+⨯====-+. 3.4 疲劳强度校核 3.41外啮合(1)齿面接触疲劳强度用式HH σσ=,0H H E Z Z Z Z b uεσ=计算接触应力H σ,用式lim minH NHP L v R W X H Z Z Z Z Z Z S σσ=计算其许用应力HP σ。
三式中的参数和系数取值如表3-4。
基本值0Hσ:02=2.5189.80.891 =825.85 N/mm H H E Z Z Z Z b uεσ=⨯⨯⨯接触应力H σ:2=825.85 =1001.98 N/mm H H σσ=许用接触应力HP σ:lim min21400 1.03 1.050.88 1.03111.25=1097.9 N/mm H NHP L v R W XH Z Z Z Z Z Z S σσ=⨯=⨯⨯⨯⨯⨯因H HP σσ<,故接触强度通过。
(2)齿根弯曲疲劳强度齿根弯曲疲劳应力F σ及其许用应力FP σ,用式0,F F A v F F Fp K K K K K βασσ=lim R minF ST NTFP relT relT X F Y Y Y Y Y S δσσ=和0tF F S nF Y Y Y Y bm ααεβσ=计算。
并分别对太阳轮和行星轮进行校核。
对于表3-4中未出现的参数和系数取值如表3-5。
太阳轮:弯曲应力基本值0F a σ:0 218723.53= 2.95 1.550.7191726=142.5 N/mm tF a F a S a nF Y Y Y Y bm ααεβσ=⨯⨯⨯⨯⨯弯曲应力F a σ:2=142.5 1.25 1.005 1.0761 1.075 =207.67 N/mm F a F a A v F F FpK K K K K βασσ=⨯⨯⨯⨯⨯许用弯曲应力FP a σ:lim R min235021=0.95 1.0451=434.33 N/mm1.6F a ST NTFP a relT a relT a XF Y Y Y Y Y S δσσ=⨯⨯⨯⨯⨯ 因F a FP a σσ<,故太阳轮弯曲强度通过。