纳米材料的制备及合成
纳米材料的制备方法与技巧

纳米材料的制备方法与技巧纳米材料是一种具有纳米级尺寸(1纳米=10^-9米)的材料,在材料科学和纳米技术领域有着广泛的应用。
制备纳米材料的方法有很多种,下面将介绍几种常用且重要的纳米材料制备方法与技巧。
1. 物理法物理法是通过物理手段实现纳米材料的制备,其中包括热蒸发法、磁控溅射法和高能球磨法等。
热蒸发法是将材料在高温条件下蒸发,并通过凝结形成纳米材料。
磁控溅射法是将材料置于惰性气体环境下,利用高能离子撞击材料表面产生离子化原子或离子,并通过表面扩散形成纳米材料。
高能球磨法是通过球磨机将原料粉末进行机械剪切和冲击,使其粒度减小到纳米级别。
2. 化学合成法化学合成法是通过化学反应合成纳米材料,其中包括溶液法、气相法和电化学法等。
溶液法是将金属盐或金属有机化合物溶解在溶剂中,通过控制反应条件和添加适当的保护剂或模板剂制备纳米材料。
气相法是在控制的气氛和温度下通过气相反应合成纳米材料,例如化学气相沉积法。
电化学法是通过利用电化学原理,在电解质溶液中施加电压或电流,使材料在电极表面形成纳米颗粒。
3. 生物法生物法是利用生物体或其代谢物合成纳米材料,其中包括生物模板法、生物还原法和植物提取法等。
生物模板法是使用生物体或其组织的特殊形态或功能作为模板,在其表面合成纳米材料。
生物还原法是利用生物体或其细胞酶的还原活性将金属离子还原为金属纳米团簇。
植物提取法是通过植物提取物作为还原剂和模板,在其作用下合成纳米材料。
4. 加工法加工法是通过物理或化学加工手段制备纳米材料,其中包括机械法、电化学法和光电化学法等。
机械法是通过机械加工方式如研磨、切割等将材料分解成纳米颗粒。
电化学法是通过在电解质中施加电压或电流,使材料在电极表面形成纳米结构。
光电化学法是通过光催化反应,在光照条件下制备纳米材料。
在纳米材料的制备过程中,还需要注意一些技巧和注意事项。
首先,要精确控制反应条件,包括温度、压力和pH值等。
不同条件对于纳米材料的形成过程和性能具有重要影响。
纳米材料的制备和合成

纳米科技概念的提出与发展
n“The
principles of physics, as far as I can see, do not speak
against the possibility of maneuvering things atom by atom.”
“Put the atoms down where the chemist says, and so you make the
electron-rich interior whose effective circular van der Waals
packing just touches that of the nanotube framework.
第六页,共81页
什么是纳米材料(nanomaterial)?
纳米材料是指在三维空间中至少有一维处于纳米尺度
high-resolution, low-temperature scanning tunneling microscope (STM)
(Science----1 February 2002)
第二十四页,共81页
Nano rings
JACS 2005
第二十五页,共81页
Nano-flowers
中科院物理所先进材料与结构分析实验室李超荣
• 纳米技术是一门高新技术,它对21世纪材料科学和微型器 件技术
的发展具有重要影响,纳米技术,就是要做到,从小到大,从下到上
。要什么东西,将分子、原子搭起来,就是什么东西,原材料浪
费为零,能耗降到极低,彻底从技术上解决了环保问题。
第九页,共81页
什么是纳米技术(nanotechnology)?
纳米技术是当前全球都在谈论的热门话题。所谓纳米技术,
纳米材料制备工艺详解

纳米材料制备工艺详解纳米材料是指在纳米尺度下具有特殊物理、化学和生物性能的材料。
纳米材料制备工艺是指通过特定的方法和工艺将原材料转变为纳米级别的材料。
本文将详细介绍纳米材料制备工艺的几种常见方法和工艺。
一、化学合成法化学合成法是一种常见的纳米材料制备工艺,它通过控制反应条件和添加特定的试剂来控制纳米颗粒的尺寸和形态。
其中最常见的方法是溶胶-凝胶法、气相合成法和水热合成法。
溶胶-凝胶法是利用溶胶在适当的温度下形成凝胶,并通过热处理和其他后续工艺步骤得到纳米颗粒。
这种方法适用于制备氧化物、金属和半导体纳米材料。
气相合成法是通过控制气相反应条件和反应物浓度来制备纳米颗粒。
常见的气相合成方法包括化学气相沉积和气相凝胶法。
这种方法适用于制备纳米粉体、纳米线和纳米薄膜等。
水热合成法利用高温高压的水环境下进行合成反应,通过溶液中的离子交换和沉淀来制备纳米颗粒。
这种方法适用于制备金属氧化物、碳化物和磷化物等纳米材料。
二、物理制备法物理制备法主要是利用物理性能的改变从宏观材料中得到纳米尺度的材料。
常见的物理制备法包括磁控溅射法、高能球磨法和激光烧结法。
磁控溅射法是通过在真空环境下,利用磁场控制离子轰击靶材溅射出材料颗粒来制备纳米材料。
这种方法适用于制备金属、合金和氧化物等纳米材料。
高能球磨法是通过使用高能的机械能,在球磨罐中将原料粉末进行碰撞、摩擦和剧烈混合,使材料粉末粒径不断减小到纳米尺度。
这种方法适用于制备金属和合金纳米材料。
激光烧结法是通过使用高功率激光束将材料粉末快速加热熔结,然后迅速冷却形成纳米颗粒。
这种方法适用于制备高熔点金属和陶瓷纳米材料。
三、生物制备法生物制备法是利用生物体内的特定酶或微生物来制备纳米材料。
这种方法具有环境友好、低成本和高度可控性的优点。
目前最常用的方法是利用微生物和植物来制备纳米材料。
微生物制备法通过利用微生物的代谢活性来合成纳米颗粒。
其中最常见的是利用细菌、酵母菌和藻类来制备金属和半导体纳米颗粒。
纳米材料的制备方法

纳米材料的制备方法
纳米材料的制备方法主要有几种,其中包括物理法、化学法和生
物技术法。
1. 物理法:物理法的制备方法又可以分为几类,包括电磁熔炼法、湿法分散器等。
例如电磁熔炼法可以通过电磁力场将含有特定成分的
材料加热融化,然后通过冷却和固定,形成小尺度的粒子。
湿法分散
器也可以将混入溶剂中的原料加以研磨并调节粒径,从而获得纳米溶胶。
2. 化学法:化学法中,主要有溶剂热法、溶剂冷法等。
溶剂热法
是使用溶剂作为介质,将原料溶解,然后加入体系内氧化剂进行氧化
聚合,最后用超声处理微粒,形成更小的纳米粒子。
而溶剂冷法则是
将原料溶解后,再加入表面活性剂,使其聚集形成纳米粒子。
3. 生物技术法:生物技术法则是利用微生物的合成能力进行合成,将原料添加到表面活性剂、微生物介质、磷酸肥料等中,以促进微生
物的生长和代谢,最终形成纳米粒子。
以上就是纳米材料的制备方法主要有几种,它们分别是物理法、
化学法和生物技术法。
这些方法都有不同的优点和缺点,需要根据具
体应用场景选择合适的方法,以期获得更高质量的纳米材料粒子。
纳米材料的制备方法及原理 (整理)

7、等离子体加热蒸发法
等离子体的概念及其形成
物质各态变化: 固体→液体→气体→等离子体→反物质(负)+物质(正) (正负电相反,质量相同) 只要使气体中每个粒子的能量超过原子的电离能,电子将 会脱离原子的束缚而成为自由电子,而原子因失去电子成 为带正电的离子(热电子轰击)。这个过程称为电离。当 足够的原子电离后转变另一物态---等离子态。
4
1、气相法制备纳米微粒的生长机理
• 2) 高频感应加热: 电磁感应现象产生的热来加热。 类似于变压器的热损耗。 高频感应加热是利用金属和磁 性材料在高频交变电磁场中存 在涡流损耗和磁滞损耗,因而 实现对金属和铁磁性性材料工 件内部直接加热。
5
1、气相法制备纳米微粒的生长机理
• 3) 激光加热: 将具有很高亮度的激光束经透镜聚焦后,能在焦点附近产生数千
17/372
3、非晶晶化法
原理:先将原料用急冷技术制成非晶薄带或薄膜, 就是把某些金属元素按一定比例高温熔化,然后 将熔化了的合金液体适量连续滴漏到高速转动的 飞轮表面,这些合金液体沿着飞轮表面的切线方 向被甩了出去同时急遽地冷却,成为非晶薄带或 薄膜。然后控制退火条件,如退火时间和退火温 度,使非晶全部或部分晶化,生成的晶粒尺寸可 维持在纳米级。
18/372
4、机械破碎法
是采用高能球磨、超声波或气流粉碎等机械方法,以粉 碎与研磨为主体来实现粉末的纳米化。 其机理主要是产生大量缺陷,位错,发展成交错的位错 墙,将大晶粒切割成纳米晶。 球磨工艺的目的是减小微粒尺寸、固态合金化、混合以 及改变微粒的形状。球磨的动能是它的动能和速度的函 数,致密的材料使用陶瓷球,在连续严重塑性形变中, 位错密度增加,在一定的临界密度下松弛为小角度亚晶 晶格畸变减小,粉末颗粒的内部结构连续地细化到纳米 尺寸
纳米材料的制备方法(液相法)

05
液相法制备纳米材料的前景与展 望
新材料开发与应用
液相法制备纳米材料在新型材料开发 中具有广泛应用,如高分子纳米复合 材料、金属氧化物纳米材料等。
随着科技的发展,液相法制备的纳米 材料在能源、环保、生物医学等领域 的应用前景广阔,如燃料电池、太阳 能电池、生物传感器等。
提高制备效率与质量
液相法制备纳米材料具有较高的生产效率和可控性,能够实 现规模化生产。
通过优化制备条件和工艺参数,可以进一步提高纳米材料的 性能和质量,如粒径分布、结晶度等。
降低制备成本与能耗
液相法制备纳米材料具有较低的成本和能耗,能够降低生 产成本,提高经济效益。
通过改进制备技术和设备,可以进一步降低液相法制备纳 米材料的成本和能耗,实现绿色可持续发展。
THANKS
感谢观看
微乳液法
总结词
通过将前驱体溶液包含在微小的水或油滴中来制备纳米材料的方法。
详细描述
微乳液法是一种制备纳米材料的有效方法。在微乳液法中,将前驱体溶液包含在微小的水或油滴中, 形成微乳液。通过控制微乳液的尺寸和前驱体的反应条件,可以制备出具有特定形貌和尺寸的纳米材 料。微乳液法可以用于制备有机或无机纳米材料,具有较高的应用价值。
液相法具有操作简便、成本低、 可大规模生产等优点,适用于制 备多种纳米材料,如金属、氧化 物、硫化物等。
液相法的分类
01
02
03
化学还原法
通过化学还原剂将金属盐 或氧化物还原成金属纳米 粒子。
沉淀法
通过控制溶液的pH值、温 度等条件,使金属离子或 化合物沉淀为纳米粒子。
微乳液法
利用微乳液作为反应介质, 通过控制微乳液的组成和 反应条件,合成纳米粒子。
纳米材料的制备方法

纳米材料的制备方法
纳米材料是一种具有纳米尺度特征的材料,其在材料科学领域具有重要的应用
价值。
制备纳米材料的方法多种多样,包括物理方法、化学方法、生物方法等。
下面将介绍几种常见的纳米材料制备方法。
首先,物理方法是一种常见的纳米材料制备方法。
其中,溅射法是一种常用的
物理方法。
通过在真空环境中,利用高能粒子轰击靶材,使靶材表面的原子或分子脱落,从而在基底上形成纳米薄膜。
此外,还有气溶胶法、机械合金化等物理方法也被广泛应用于纳米材料的制备过程中。
其次,化学方法也是一种常见的纳米材料制备方法。
溶胶-凝胶法是一种常用
的化学方法。
通过将溶胶中的溶质在溶剂中溶解,并在一定条件下使其成为凝胶,然后通过热处理或化学处理,形成纳米材料。
此外,还有水热法、溶剂热法等化学方法也被广泛应用于纳米材料的制备过程中。
另外,生物方法也是一种新兴的纳米材料制备方法。
生物合成法是一种常用的
生物方法。
通过利用微生物、植物或动物等生物体内的代谢活性,将金属离子还原成金属纳米颗粒,从而实现纳米材料的制备。
此外,还有基因工程法、生物矿化法等生物方法也被广泛应用于纳米材料的制备过程中。
总的来说,纳米材料的制备方法多种多样,每种方法都有其独特的优势和适用
范围。
在实际应用中,可以根据需要选择合适的制备方法,以获得所需的纳米材料。
随着纳米材料制备技术的不断发展和创新,相信纳米材料将在材料科学领域发挥越来越重要的作用。
纳米材料的合成与制备技巧

纳米材料的合成与制备技巧纳米材料作为一种具有特殊性质和应用潜力的材料,在化学、物理、生物等领域都得到了广泛的研究和应用。
合成和制备高质量的纳米材料是实现其应用的关键步骤。
本文将介绍几种常见的纳米材料合成与制备技巧。
一、溶液法合成纳米材料溶液法是一种常见且简便的纳米材料制备方法,其原理是通过适当的溶剂和前驱物,使纳米颗粒在溶液中形成。
其中,反应温度、反应时间和反应物的摩尔比例是影响纳米材料合成的重要参数。
在溶液法中,常见的合成方法包括热分解法、溶胶-凝胶法和胶体合成法。
热分解法是利用高温条件下,通过控制反应体系中的温度和时间,在溶液中形成纳米颗粒。
溶胶-凝胶法是通过控制前驱体的改性、凝胶条件和热处理过程来合成纳米材料。
胶体合成法则是利用溶胶和胶体颗粒之间的反应来制备纳米材料。
二、气相法合成纳米材料气相法是一种利用气体前驱物反应生成纳米颗粒的方法。
其基本原理是通过热分解、氧化、还原等反应机制,在高温下将气体前驱物转化为固体纳米颗粒。
气相法合成纳米材料具有高纯度、均匀性好和可扩展性等优点。
常见的气相法合成方法包括气相沉积法、熔融法和等离子体化学气相沉积法。
其中,气相沉积法是通过在高温下,使气体前驱物在基底表面形成纳米颗粒。
熔融法是将固体材料加热至熔点,通过气氛调节来获得纳米颗粒。
等离子体化学气相沉积法则是通过等离子体反应体系,在高温下合成纳米材料。
三、电化学合成纳米材料电化学合成是利用电化学方法在电解质溶液中合成纳米材料。
其操作简单,控制精度高,常用于纳米触媒、纳米传感器等领域。
在电化学合成中,电解槽和电极的设计是关键的影响因素。
常见的电化学合成方法包括阳极氧化和电沉积法。
阳极氧化是通过在阳极上加电,通过氧化反应生成纳米材料。
电沉积法则是利用电流将离子还原成金属沉积在电极表面。
四、机械法合成纳米材料机械法是一种利用机械力将大颗粒材料转化为纳米颗粒的方法。
其原理是通过高能球磨、高能喷雾等机械作用,使原料粉末破碎、溶胶化并重新凝聚成纳米颗粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料的合成与制备 (1)摘要 (1)关键词 (1)The synthesis and preparation of nanomaterials (1)Abstract (1)Keywords (1)引言 (1)1纳米材料的化学制备 (2)1.1纳米粉体的湿化学法制备 (2)1.2纳米粉体的化学气相法制备 (2)1.2.1气体冷凝法 (3)1.2.2溅射法 (3)1.2.3真空蒸镀法 (4)1.2.4等离子体方法 (4)1.2.5激光诱导化学气相沉积法(LICVD) (4)1.2.6爆炸丝方法 (5)1.2.7燃烧合成法 (5)1.3纳米薄膜的化学法制备 (5)1.4纳米单相及复相材料的制备 (6)2纳米材料的物理法制备 (7)2.1纳米粉体(固体)的惰性气体冷凝法制备 (7)2.2纳米粉体的高能机械球磨法制备 (7)2.3纳米晶体非晶晶化方法制备 (8)2.4深度塑性变形法制备纳米晶体 (9)2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9)2.6纳米薄膜物理气相沉积技术 (9)3纳米材料的应用展望 (10)4 总结 (11)参考文献 (12)纳米材料的合成与制备摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。
从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。
关键词纳米材料,合成,制备The synthesis and preparation of nanomaterialsAbstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects.Keywords nano materials, synthesis, preparation引言纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。
正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。
本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。
[1]纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。
新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。
1纳米材料的化学制备1.1纳米粉体的湿化学法制备湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。
上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错超细粉体的工作中,得到了10~15nm的性能优良的纳米粉体.由于湿化学方法中对超细粒子的团聚体的形成及强度的控制是非常重要的,采用共沸蒸馏、有机溶剂洗涤等方法,有效地控制了氧化错纳米粉体的合成及硬团聚的形成.特别是有巨大比表面积的纳米粉体能达到微米粉体的素坯成型密度,并且能在比微米粉体烧结温度低500~600℃的温度下烧结致密,达到理论密度的89 5%以上,晶粒尺寸只有1 0nm左右。
其它的溶液化学方法还可包括如金属盐的还原法制备金属纳米颗粒和金属一氧化物复合材料等。
[2]1.2纳米粉体的化学气相法制备气相法制备纳米材料在较高温度下,使用固体原材料蒸发成蒸气或直接使用气体原料,经过化学反应,或者使气体直接达到过饱和状态,凝聚成固态纳米微粒并收集得到纳米材料的方法称之为气相法。
气相方法是制备纳米粉体,晶须,纤维,薄膜的主要方法,但该方法所需设备复杂,制造成本较高,气相法可以分为气体冷凝法,溅射法,真空蒸镀法,混合等离子体法,激光诱导化学气相沉积法,爆炸丝法及燃烧合成法等。
[3]1.2.1气体冷凝法气体冷凝法是在1963年由Ryozi Uyeda及其合作者提出的,即通过在纯净的惰性气体(氩,氮气)中蒸发和冷凝过程获得纳米微粒。
20世纪80年代初,Gleiter等人提出了将该方法制备的纳米微粒在超高真空条件下紧压致密可以得到多晶体,从而进一步完善了该方法[3]。
该方法加热源有以下几种:电阻加热,等离子体喷射,高频感应,电子束,激光加热等。
该方法可以通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速率,或者惰性气体的温度来控制纳米微粒的大小。
例如采用SiH4- CH3NH2- NH3系统制备了Si/C/N复合粉末,微粒粒径是30~72nm[5]。
1.2.2溅射法该方法采用金属板分别作为阴、阳极,阴极为蒸发用材料,在两电极间充入氩气(40~250Pa),两电极间电压范围是0.3~1.5kV。
由于电极间辉光放电使Ar离子形成,在电场作用下Ar离子冲击阴极靶材表面,使靶材原子从其表面蒸发形成纳米粒子。
粒子大小及尺寸分布主要取决于两电极间的电压、电流和气体压力,靶材的表面积越大,原子的蒸发速度越高,纳米颗粒的获得量越多。
用溅射法制备纳米微粒有以下优点:(1)可制备多种纳米金属,包括高熔点和低熔点金属;(2)能制备多组元的化合物纳米微粒,例如Al52Ti48,Cu91Mn9及ZrO2等;(3)可获得较大量的纳米颗粒材料。
1.2.3真空蒸镀法该方法的原理是在高真空中采用电子束加热,使金属粒子蒸发,打开快门使粒子转入圆盘表面,从而进入圆盘表面的油膜而形成纳米粒子。
然后含微粒子的油被摔到真空室沿壁的容器中,蒸馏,浓缩溶液,得到纳米粒子的糊状物。
采用该方法制备纳米粒子有以下优点:(1)可制备单金属颗粒,例如Ag,Au,Pd,Cu,Fe,Ni,Co,Al,In等金属粒子,粒径大约8nm。
(2)粒径分步窄,并且均匀;(3)粒径尺寸可通过调节蒸发速度,油的黏度,圆盘转速等进行控制。
1.2.4等离子体方法该方法是采用RF等离子与DC等离子组合的混和方式来获得纳米粒子的方法,该方法按照所制产物的不同又可分为如下几种方法:(1)等离子蒸发方法。
大颗粒金属和气体流入等离子室生成金属纳米颗粒;(2)反应性等离子蒸发方法。
大颗粒金属和气体流入等离子室,同时通入反应性气体,生成化合物纳米粒子;(3)等离子CVD方法。
化合物随载气流入等离子室,同时通入反应性气体,生成化合物纳米粒子。
例如吉林大学采用DC等离子体方法生产了Ti,Co,Ni,Cr,Mn等金属纳米粉;青岛化工学院采用该方法实现了年产300kg纳米材料产品的水平,可制备金属,合金,氧化物,氮化物等。
等离子体方法制备纳米粒子有以下特点:(1)可制备纯度较高的纳米粒子;(2)可以制备各种纳米粒子产品,并且可实现批量生产;(3)反应速度快,所得纳粒粒径小。
1.2.5激光诱导化学气相沉积法(LICVD)LICVD方法是一种新的制备超微颗粒的方法,其基本原理是利用反应气体分子对特定波长激光束的吸收,引起反应气体分子激光光解,激光热解,激光光敏化和激光化学合成反应,然后在一定条件下获得纳米粒子。
该方法具有制备的纳米粒子表面清洁,粒子大小可以控制,不团聚,粒度分布均匀等优点,并且可制备几到几十个纳米的非晶态或晶态纳米微粒。
目前,LICVD方法已制备出多种单质,无机化合物和复合材料纳米粉末,并已经进入规模生产阶段,例如美国麻省理工学院(MIT)在1986年建成年产几十吨的装置。
1.2.6爆炸丝方法该方法基本原理是先将金属丝固定在一个充满惰性气体(5×106Pa)的反应室内,丝两端的接头是两个电极,电极分别与大电容相连形成回路,加15kV高压,金属丝在500~800kA电流下加热,金属丝熔断后在电流中断的瞬间,接头处的高压放电,使熔融后的金属进一步加热变为蒸气,在惰性气体碰撞下形成纳米金属或合金粒子从而沉降在容器的底部。
该方法适用于工业上连续生产纳米金属,合金和金属氧化物粉体。
1.2.7燃烧合成法该方法的原理是通过金属有机先驱物分子热解获得纳米粉体或者金属与金属化合物在惰性气体的保护下混合,燃烧,发生置换反应生成金属纳米粉。
例如美国辛辛那提大学用针状或平板电极,以电力协助碳氢化合物燃烧来氧化卤化物蒸气制取了纳米相的TiO2,SnO2,SiO2晶粒。
近年来,随着纳米科技的深入发展及对纳米材料需求的不断扩大,纳米材料的规模化生产要求越来越迫切,从而相继出现了新的纳米制备技术和方法。
例如,超声等离子体粒子沉积方法,电火花侵蚀法,电子束蒸发方法等。
1.3纳米薄膜的化学法制备纳米薄膜的化学制备主要包括电化学方法和化学气相沉积方法。
电化学沉积可用于合成具有纳米结构的纯金属、合金、金属-陶瓷复合涂层以及块状材料。
其纳米结构的获得,关键在于制备过程中晶粒成核与生长的控制。
化学气相沉积包括常压、低压、等离子辅助气相沉积等。
这一工艺方法在半导体、氧化物、氮化物、碳化物纳米微粒薄膜中应用较多。
电化学沉积方法作为一种十分经济而又简单的传统工艺手段,可用于合成具有纳米结构的纯金属、合金、金属一陶瓷复合涂层以及块状材料,包括直流电镀、脉冲电镀、无极电镀、共沉积等技术.其纳米结构的获得,关键在于制备过程中晶粒成核与生长的控制.电化学方法制备的纳米材料在抗腐蚀、抗磨损、磁性、催化、储氢、磁记录等方面均具有良好的应用前景。
在Ni-P纳米涂层材料的研究中,通过材料纳米结构的控制,制备了不同粒径的纳米涂层,发现符合Hall 一Petch关系的晶粒临界尺寸为8nm。