黑龙江省绥化市九年级上学期数学第一周考试试卷
绥化市九年级上学期数学第一次月考试卷
绥化市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列函数不属于二次函数的是()A . y=(x-1)(x+2)B . y=(x+1)2C . y=1-x2D . y=2(x+3)2-2x22. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论正确的是()A . abc>0B . 方程ax2+bx+c=0有两个实数根分别为-2和6C . a-b+c<0D . 当y=4时,x的取值只能为03. (2分)平面直角坐标系中,将点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B 的坐标为()A . (1,﹣8)B . (1,﹣2)C . (﹣6,﹣1)D . (0,﹣1)4. (2分) (2016九上·杭州期中) 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是的中点,连结AD,AG,CD,则下列结论不一定成立的是()A . CE=DEB . ∠ADG=∠GABC . ∠AGD=∠ADCD . ∠GDC=∠BAD5. (2分) (2015七下·瑞昌期中) 下列计算中正确的是()A . x3•x2=2x6B . (﹣3x3)2=﹣6x6C . (x3)2=x5D . x6÷x2=x46. (2分) (2019八下·广安期中) 如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为()A . 5B . 3C . 2D . 37. (2分) (2016八上·抚宁期中) 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E且AB=6cm,则△DEB的周长为()A . 40cmB . 6cmC . 8cmD . 10cm8. (2分)如图所示,∠1=∠2,BC=EF ,欲证△ABC≌△DEF ,则还须补充的一个条件是()A . AB=DEB . ∠ACE=∠DFBC . BF=ECD . ∠ABC=∠DEF9. (2分)(2019·龙湾模拟) 把一个足球垂直于水平地面向上踢,该足球距离地面的高度(米)与所经过的时间(秒)之间的关系为 . 若存在两个不同的的值,使足球离地面的高度均为(米),则的取值范围()A .B .C .D .10. (2分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共10题;共12分)11. (1分)(2016·来宾) 已知函数y=﹣x2﹣2x,当________时,函数值y随x的增大而增大.12. (1分)(2018·拱墅模拟) 分解因式: ________13. (1分) (2019八上·合肥月考) 已知点P(a+1,2a-4)关于x轴的对称点在第一象限,则a的取值范围是________.14. (1分)(2020·启东模拟) 如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为________.15. (1分) (2016九上·海南期中) 已知点A(3,﹣6)是二次函数y=ax2上的一点,则这二次函数的解析式是________.16. (2分) (2016九上·蓬江期末) 如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为________m(结果保留根号).17. (1分) (2019八上·瑞安期末) 如图,在直角坐标系中,过点分别向x轴,y轴作垂线,垂足分别为点B,C,取AC的中点P,连结OP,作点C关于直线OP的对称点D,直线PD与AB交于点Q,则线段PQ的长为________,直线PQ的函数表达式为________.18. (2分)(2018·辽阳) 如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=________°.19. (1分) (2020八下·鼎城期中) 如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1= ;再过P1作P1P2⊥OP1且P1P2=1,得OP2= ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得 =________.20. (1分)如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.三、解答题 (共7题;共75分)21. (5分)(2017·苏州模拟) 先化简,再求值:÷(1﹣),其中x= .22. (10分) (2018八上·罗山期末) 如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .(1)求点B的坐标;(2)若△ABC的面积为4,求的解析式.23. (10分) (2019九上·义乌月考) 在一次羽毛球赛中,甲运动员在离地面米的P点处发球,球的运动轨迹PAN看作一个抛物线的一部分,当球运动到最高点A时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为圆点建立如图所示的坐标系,乙运动员站立地点M的坐标为(m,0)(1)求抛物线的解析式(不要求写自变量的取值范围);(2)求羽毛球落地点N离球网的水平距离(即NC的长);(3)乙原地起跳后可接球的最大高度为2.4米,若乙因为接球高度不够而失球,求m的取值范围。
绥化市初三中考数学第一次模拟试卷【含答案】
绥化市初三中考数学第一次模拟试卷【含答案】一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?【分析】(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意,列出方程即可(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550,求即可(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000,分情况讨论即可.【解答】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意得=,解得x=80,经检验x=80 是原分式方程的解.∴x﹣30=80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得,40≤a≤55.∵a为整数,∴该超市有16 种进货方案(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15∴①当8<m<10 时,即10﹣m>0,w随a的增大而增大,故当a=55 时,所获总利润w最大,即A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;故当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,故当a=40 时,所获总利润w最大,即A品牌台灯40 盏、B品牌台灯60 盏【点评】此题为一次函数的应用,渗透了函数与方程的思想,关键是掌握销售利润公式:利润=(售价﹣成本)×数量.22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是AF=BE;②∠ABE=90°;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.【分析】(1)只要证明△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.只要证明△ADF≌△EDB,即可解决问题;(3)分两种情形分别求解即可;【解答】解(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,又∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)①如图3﹣1中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴==,∵AB=8,∴AF=2,∴BE=AF=2,②如图3﹣2中,当点D在BC的延长线上时,∵AC∥DF,∴==,∵AB=8,∴AF=4,故答案为2或4.【点评】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.【分析】(1)先把A点坐标代入y=﹣3x+c求出得到B(0,3),然后利用待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),由于S△P AB=S△POB+S△ABO﹣S△POA,S△P AB=2S△AOB,则S△POB﹣S△POA=S△ABO,讨论:当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,然后分别解方程求出x即可得到对应P 点坐标;(3)解方程﹣x2﹣2x+3=0得C(﹣3,0),则可判断△OBC为等腰直角三角形,讨论:当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表示出DE=BE=(3﹣t),接着利用tan∠MCB=tan∠ABO得到==,所以3﹣(3﹣t)=(3﹣t),解方程求出t得到D点坐标,接下来利用待定系数法确定直线CD的解析式为y=x+,然后解方程组得此时M点坐标;当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,设N(k,﹣3k+3),证明△ABC∽△ACN,利用相似比求出AN=,再利用两点间的距离公式得到(k﹣1)2+(﹣3k+3)2=()2,解方程求出t得N 点坐标为(﹣,),易得直线CN的解析式为y=2x+6,然后解方程组得此时M点坐标.【解答】解:(1)把A(1,0)代入y=﹣3x+c得﹣3+c=0,解得c=3,则B(0,3),把A(1,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),S△P AB=S△POB+S△ABO﹣S△POA,∵S△P AB=2S△AOB,∴S△POB﹣S△POA=S△ABO,当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,解得x1=﹣2,x2=3(舍去),此时P点坐标为(﹣2,3);当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,解得x1=﹣2(舍去),x2=3(舍去),综上所述,P点坐标为(﹣2,3);(3)存在.当y=0时,﹣x2﹣2x+3=0,解得x1=﹣1,x2=﹣3,则C(﹣3,0),∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=∠OCB=45°,BC=3,当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直角三角形,∴DE=BE=BD=(3﹣t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,∴==,即CE=3DE,∴3﹣(3﹣t)=(3﹣t),解得t=,则D(0,),设直线CD的解析式为y=mx+n,把C(﹣3,0),D(0,)代入得,解得,∴直线CD的解析式为y=x+,解方程组得或,此时M点坐标为(,);当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,AB=,AC设N(k,﹣3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,而∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即:4=4:AN,∴AN=,∴(k﹣1)2+(﹣3k+3)2=()2,整理得(k﹣1)2=,解得k1=(舍去),k2=﹣,∴N点坐标为(﹣,),易得直线CN的解析式为y=2x+6,解方程组,得或,此时M点坐标为(﹣1,4),综上所述,满足条件的M点的坐标为(,)或(﹣1,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,能把求函数交点问题转化为解方程组的问题;灵活运用锐角三角函数的定义和相似比进行几何计算;理解坐标与图形性质,记住两点间的距离公式.中学数学一模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9 3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°。
2024年黑龙江绥化市中考数学试题+答案详解
2024年黑龙江绥化市中考数学试题+答案详解(试题部分)考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内 一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1. 实数12025−的相反数是( )A. 2025B. 2025−C. 12025−D.120252. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆B. 菱形C. 平行四边形D. 等腰三角形3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个4.有意义,则m 的取值范围是( ) A. 23m ≤B. 32m ≥−C. 32m ≥D. 23m ≤−5. 下列计算中,结果正确的是( ) A. ()2139−−=B. ()222a b a b +=+C.3=±D. ()3263x yx y −=6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A. 2650x x ++= B. 27100x x −+= C. 2520x x −+=D. 26100x x −−=7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( ) A. 平均数B. 中位数C. 众数D. 方差8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( ) A. 5km /hB. 6km /hC. 7km /hD. 8km /h9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫⎪⎝⎭D. 21,3⎛⎫⎪⎝⎭10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A.245B. 6C.485D. 1212. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本题共10个小题,每小题3分,共30分) 请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为:__________. 14. 分解因式:2228mx my −=______.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).17. 计算:22x y xy y x x x ⎛⎫−−÷−= ⎪⎝⎭_________. 18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .19. 如图,已知点()7,0A −,(),10B x ,()17,C y −,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23. 已知:ABC .(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)5cm,则ABC的面积是______(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于22cm.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?x (3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间min 之间的对应关系如图.其中A种电动车支付费用对应的函数为1y;B种电动车支付费用是10min之内,起步价6元,对应的函数为2y.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1+,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.27. 综合与实践 问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象. 纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====. 下面是创新小组的探究过程. 操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H 、交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程. 问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由. 拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A 、B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).28. 综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =−++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.2024年黑龙江绥化市中考数学试题+答案详解(答案详解)考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内 一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1. 实数12025−的相反数是( )A. 2025B. 2025−C. 12025−D.12025【答案】D 【解析】【分析】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 【详解】解:实数12025−的相反数是12025,故选:D .2. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆 B. 菱形C. 平行四边形D. 等腰三角形【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可. 【详解】A 、是轴对称图形,也是中心对称图形,故此选项错误; B 、是轴对称图形,也是中心对称图形,故此选项错误; C 、不是轴对称图形,是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项正确, 故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个【答案】A 【解析】【分析】此题主考查了三视图,由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【详解】解:由三视图易得最底层有3个正方体,第二层有2个正方体,那么共有325+=个正方体组成. 故选:A .4. 有意义,则m 的取值范围是( ) A. 23m ≤B. 32m ≥−C. 32m ≥D. 23m ≤−【答案】C 【解析】【分析】本题考查了二次根式有意义的条件,根据题意可得230m −≥,即可求解.有意义, ∴230m −≥, 解得:32m ≥, 故选:C .5. 下列计算中,结果正确的是( ) A. ()2139−−=B. ()222a b a b +=+C.3=±D. ()3263x yx y −=【答案】A 【解析】【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A. ()2139−−=,故该选项正确,符合题意; B. ()2222a b a ab b +=++,故该选项不正确,不符合题意;C.3=,故该选项不正确,不符合题意;D. ()3263x yx y −=−,故该选项不正确,不符合题意;故选:A .6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A. 2650x x ++= B. 27100x x −+= C. 2520x x −+= D. 26100x x −−=【答案】B 【解析】【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1; ∴12617x x +=+=,又∵写错了一次项的系数,因而得到方程的两个根是2−和5−. ∴1210x x =A. 2650x x ++=中,126x x +=−,125x x =,故该选项不符合题意;B. 27100x x −+=中,127x x +=,1210x x =,故该选项符合题意;C. 2520x x −+=中,125x x +=,122x x =,故该选项不符合题意;D. 26100x x −−=中,126x x +=,1210x x =−,故该选项不符合题意; 故选:B .7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( )A. 平均数B. 中位数C. 众数D. 方差【答案】C【解析】【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数. 故选:C .8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( )A. 5km /hB. 6km /hC. 7km /hD. 8km /h 【答案】D【解析】【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为km/h x ,根据题意可得: 120804040x x=+−, 解得:8x =,经检验:8x =是原方程的根,答:江水的流速为8km/h .故选:D .9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫ ⎪⎝⎭D. 21,3⎛⎫ ⎪⎝⎭【答案】D【解析】 【分析】本题考查了位似图形的性质,根据题意B 的坐标乘以13,即可求解. 【详解】解:依题意,()3,2B ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是21,3⎛⎫ ⎪⎝⎭故选:D .10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C【解析】【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A. 245B. 6C. 485D. 12【答案】A【解析】【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得OC ,进而得出6AC =,进而根据等面积法,即可求解.【详解】解:∵四边形ABCD 是菱形,5CD =,8BD =, ∴142DO BD ==,AC BD ⊥,5BC CD ==,在Rt CDO △中,3CO ==, ∴26AC OC ==,∵菱形ABCD 的面积为12AC BD BC AE ⨯=⨯, ∴18624255AE ⨯⨯==, 故选:A .12. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0b c> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题考查了二次函数的图象的性质,根据抛物线的开口方向,对称轴可得a<0,20b a =<即可判断①,=1x −时,函数值最大,即可判断②,根据1x =时,0y <,即可判断③,根据对称性可得122x x +=−即可判段④,即可求解.【详解】解:∵二次函数图象开口向下∴a<0∵对称轴为直线=1x −, ∴12b x a=−=− ∴20b a =<∵抛物线与y 轴交于正半轴,则0c > ∴0b c<,故①错误, ∵抛物线开口向下,对称轴为直线=1x −,∴当=1x −时,y 取得最大值,最大值为a b c −+∴2am bm c a b c ++≤−+(m 为任意实数)即2am bm a b +≤−,故②正确;∵1x =时,0y <即0a b c ++<∵2b a =∴20a a c ++<即30a c +<∴31a c +<,故③正确;∵()1,M x y 、()2,N x y 是抛物线上不同的两个点,∴,M N 关于=1x −对称, ∴1212x x +=−即122x x +=−故④不正确正确的有②③故选:B二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为:__________.【答案】3.7×105【解析】【详解】科学记数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一,370000=3.7×510. 故答案为:3.7×105.14. 分解因式:2228mx my −=______.【答案】()()222m x y x y +−【解析】【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my −=()2224m x y −=()()222m x y x y +−故答案为:()()222m x y x y +−.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.【答案】66【解析】【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).【答案】(50+##()50【解析】【分析】本题考查解直角三角形—仰角俯角问题.注意准确构造直角三角形是解答此题的关键.根据题意得456050m BAD CAD AD ∠=︒∠=︒=,,,然后利用三角函数求解即可.【详解】解:依题意,456050m BAD CAD AD ∠=︒∠=︒=,,.在Rt △ABD 中,tan 4550150m BD AD =⋅︒=⨯=,在Rt ACD △中,tan 6050CD AD =⋅︒==,∴(m 50BC BD CD =+=+.故答案为:(50+. 17. 计算:22x y xy y x x x ⎛⎫−−÷−= ⎪⎝⎭_________. 【答案】1x y− 【解析】【分析】本题考查了分式的混合运算.先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可. 【详解】解:22x y xy y x x x ⎛⎫−−÷− ⎪⎝⎭ 222x y x xy y x x−−+=÷ 2()x y x x x y −=− 1x y=−,故答案为:1x y−. 18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm . 【答案】72【解析】【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.【详解】解:设这个圆锥的底面圆的半径为cm R ,由题意得,12610π2π180R ⨯⨯= 解得:7cm 2R = 故答案为:72. 19. 如图,已知点()7,0A −,(),10B x ,()17,C y −,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0k y k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.【答案】15−【解析】【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,B D ,作x 的垂线,垂足分别为,F E ,根据平行四边形的性质得出()2410B −,,证明ODE OBF △∽△得出6OE =,2.5DE =,进而可得()6,2.5D −,即可求解.【详解】如图所示,分别过点,B D ,作x 的垂线,垂足分别为,F E ,∵四边形AOCB 是平行四边形,点()7,0A −,(),10B x ,()17,C y −,∴7OA BC ==,∴24x =−,即()2410B −,,则24OF =,10BF = ∵DE x ⊥轴,BF x ⊥轴,∴DE BF ∥∴ODE OBF △∽△ ∴14OE OD DE OF OB BF === ∴6OE =, 2.5DE =∴()6,2.5D −∴6 2.515k =−⨯=−故答案为:15−.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.【答案】80︒##80度【解析】【分析】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,根据对称的性质可以证得:150OPM OPM ∠=∠=︒,12OP OP OP ==,根据等腰三角形的性质即可求解.【详解】解:作P 关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,连接12PO P O 、,1PP 关于OA 对称,∴11112POP MOP OP OP PM PM OPM OPM ∠=∠==∠=∠,,,同理,222P OP NOP OP OP ∠=∠=,,12122(210)0POP POP P OP MOP NOP AOB ∴∠=∠+∠=∠+∠=∠=︒,12OP OP OP ==, ∴12POP △是等腰三角形.∴2140OP N OPM ∠=∠=︒, ∴2180MPN MPO NPO OP N OPM ∠=∠+∠=∠+∠=︒ 故答案为:80︒.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.【答案】(2891,【解析】【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,,∴可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,(71101,n A n ++∵202472891÷=⋅⋅⋅,∴2023A 的坐标为()2890,0.∴2024A 的坐标为(2891,故答案为:(2891,.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .或5或【解析】【分析】本题考查了矩形的性质,解直角三角形,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ,进而分别求得垂线段的长度,即可求解.【详解】解:∵四边形ABCD 是矩形,4AB =,8BC =,∴8AD BC ==,4CD AB ==,∴AC ===∴sin5CD CAD AC ∠===,cos 5CAD ∠==,41tan 82CAD ∠== 如图所示,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F∵AO DO =∴OAD ODA ∠=∠当E 在线段AD 上时,∴1826AE AD DE =−=−=在11Rt AE F 中个,111sin 655E F AE CAD =⋅∠== ∵OAD ODA ∠=∠在12Rt E F D 中,12112sin 255E F DE E DF =∠=⨯=; 当E 在射线AD 上时,在2Rt DCE 中,221tan 42DCE ∠== ∴CAD DCE ∠=∠∴90DCE DCA ∠+∠=︒∴2E C AC ⊥∴2E C ===在23Rt DE F 中,232232sin 55E F DE E DF DE =⨯∠=⨯=综上所述,点E 或5或或5或 三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23. 已知:ABC.(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于25cm,则ABC的面积是______ 2cm.【答案】(1)见解析(2)15【解析】【分析】本题考查了三角形重心的性质,画垂线;(1)分别作,BC AC的中线,交点即为所求;(2)根据三角形重心的性质可得23ABGABDSS=,根据三角形中线的性质可得2215cmABC ABDS S==【小问1详解】解:作法:如图所示①作BC的垂直平分线交BC于点D②作AC的垂直平分线交AC于点F③连接AD、BF相交于点G④标出点G,点G即为所求【小问2详解】解:∵G是ABC的重心,∴23 AG AD=∴23 ABGABDSS=∵ABG 的面积等于25cm ,∴27.5cm ABD S =又∵D 是BC 的中点,∴2215cm ABC ABD S S ==故答案为:15.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A 组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B 和C 的概率.【答案】(1)60(2)30%,作图见解析(3)16【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;(1)根据D 组的人数除以占比得出总人数;(2)根据总人数求得A 组的人数,进而求得占比,以及补全统计图;(3)根据列表法或画树状图法求概率,即可求解.【小问1详解】解:参加本次问卷调查的学生共有1220%60÷=(人);【小问2详解】解:A组人数为6020101218−−−=人A组所占的百分比为:18100%30% 60⨯=补全统计图如图所示,【小问3详解】画树状图法如下图列表法如下图由树状图法或列表法可以看出共有12种结果出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.∴P(选中的2个社团恰好是B和C)21 126 ==.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A 、B 两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A 、B 两种电动车200辆,其中A 种电动车的数量不多于B 种电动车数量的一半.当购买A 种电动车多少辆时,所需的总费用最少,最少费用是多少元? (3)该公司将购买的A 、B 两种电动车投放到出行市场后,发现消费者支付费用y 元与骑行时间min x 之间的对应关系如图.其中A 种电动车支付费用对应的函数为1y ;B 种电动车支付费用是10min 之内,起步价6元,对应的函数为2y .请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.【答案】(1)A 、B 两种电动车的单价分别为1000元、3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元(3)①B ②5或40【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种电动车的单价分别为x 元、y 元,根据题意列二元一次方程组,解方程组,即可求解;(2)设购买A 种电动车m 辆,则购买B 种电动车()200m −辆,根据题意得出m 的范围,进而根据一次函数的性质,即可求解;(3)①根据函数图象,即可求解;②分别求得12,y y 的函数解析式,根据214y y −=,解方程,即可求解.【小问1详解】解:设A 、B 两种电动车的单价分别为x 元、y 元由题意得,258030500060120480000x y x y +=⎧⎨+=⎩ 解得10003500x y =⎧⎨=⎩答:A 、B 两种电动车的单价分别为1000元、3500元【小问2详解】设购买A 种电动车m 辆,则购买8种电动车()200m −辆,由题意得:()12002m m ≤− 解得:2003m ≤ 设所需购买总费用为w 元,则()100035002002500700000w m m m =+−=−+25000−<,w 随着 m 的增大而减小, m 取正整数66m ∴=时,w 最少∴700000250066535000w =−⨯=最少 (元)答:当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元【小问3详解】解:①∵两种电动车的平均行驶速度均为300m /min ,小刘家到公司的距离为8km , ∴所用时间为80002263003=分钟, 根据函数图象可得当20x >时,21y y <更省钱,∴小刘选择B 种电动车更省钱,故答案为:B .②设11y k x =,将()20,8代入得,1820k = 解得:25k =∴125y x =; 当010x <≤时,26y =,当10x >时,设222y k x b =+,将()10,6,()20,8代入得,2222610820k b k b =+⎧⎨=+⎩解得:22154k b ⎧=⎪⎨⎪=⎩ ∴2145y x =+ 依题意,当010x <<时,214y y −= 即2645x −= 解得:5x =当10x >时,214y y −= 即124455x x +−= 解得:0x =(舍去)或40x =故答案为:5或40.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD1+,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.【答案】(1)证明见解析(2(3)5【解析】【分析】(1)方法一:连接OE ,过点O 作OG AB ⊥于点G ,四边形ABCD 是正方形,AC 是正方形的对角线,得出OE OG =,进而可得OG 为O 的半径,又OG AB ⊥,即可得证;方法二:连接OE ,过点O 作OG AB ⊥于点G ,根据正方形的性质证明()AAS AOE AOG ≌得出OE OG =,同方法一即可得证;方法三:过点O 作OG AB ⊥于点G ,连接OE .得出四边形AEOG 为正方形,则OE OG =,同方法一即可得证;(2)根据O 与AD 相切于点E ,得出90AEO ∠=︒,由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,勾股定理得出AO =,在Rt ADC 中,勾股定理求得AC ,进而根据OA OC AC +=建立方程,解方程,即可求解.(3)方法一:连接ON ,设CM k =,在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,结合题意522FC k R ====5k =,即可得出CN ;方法二:连接FN ,证明CNM CFN ∽△△得出2CN CM CF =⋅,进而可得155CM CF ==,同理可得CN 方法三:连接FN ,证明CNM CFN ∽△△得出2NC MC FC =⋅,设CM k =,则5FC k =,进而可得NC =,进而同方法一,即可求解.【小问1详解】方法一:证明:连接OE ,过点O 作OG AB ⊥于点G , O 与AD 相切于点E ,。
绥化市九年级上学期数学第一次月考试卷
绥化市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共24分) (共8题;共24分)1. (3分) (2018九上·彝良期末) 把抛物线y=-2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得抛物线的函数关系式是()A . y=-2(x-1)2+6B . y=-2(x-1)2—6C . y=-2(x+1)2+6D . y=-2(x+1)2—62. (3分)(2019·西安模拟) 已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为A . 1或B . - 或C .D . 13. (3分)(2019·绍兴模拟) 某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法中错误的是()A . 小强从家到公共汽车站步行了2公里B . 小强在公共汽车站等小明用了10分钟C . 公共汽车的平均速度是30公里/小时D . 小强乘公共汽车用了20分钟4. (3分)函数y=中,自变量x的取值范围是()A . x>﹣1B . x<﹣1C . x≠﹣1D . x≠05. (3分)若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A . 原点上B . x轴上C . y轴上D . x轴上或y轴上(除原点)6. (3分)二次函数的图象如图所示,将其绕坐标原点O旋转,则旋转后的抛物线的解析式为()A .B .C .D .7. (3分) (2019九上·六安期末) 如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c <0的解集是()A . ﹣1<x<5B . x>5C . ﹣1<x且x>5D . x<﹣1或x>58. (3分)如图,小手盖住的点的坐标可能是()A . ( 6,-4)B . (5,2)C . (-3,-6)D . (-3,4)二、填空题(每小题3分,共18分) (共6题;共18分)9. (3分) (2017八下·东营期末) 对于函数y=x2+2x+1,当1<x<2时,y随x的增大而________(填写“增大”或“减小”).10. (3分) (2017八下·海安期中) 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间 x (单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有________个.11. (3分) (2016九上·溧水期末) 如图是某拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为________米.12. (3分)把直线l:y=kx+b向上平移3个单位是直线y=﹣x,则l的解析式为________.13. (3分)如果某公司一销售人员的个人月收入y与其每月的销售量x成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是________元.14. (3分)(2017·碑林模拟) 如图,在Rt△ABC中,∠ABC=90°,点B在x轴上,且B(﹣,0),A点的横坐标是1,AB=3BC,双曲线y= (m>0)经过A点,双曲线y=﹣经过C点,则m的值为________.三、解答题(本大题共10小题,共78分) (共10题;共78分)15. (6分)(2017·石家庄模拟) 某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+ x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?16. (6分) (2019九上·吉林月考) 如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A ,过点A与x轴平行的直线交抛物线于点B、C ,求BC的长.17. (6分) (2019九上·吉林月考) 如图,用6米的铝合金型材做个如图所示的“日”字形矩形窗框,应做成长,宽各多少米时,才能使做成的矩形窗框透光面积S(平方米)最大,最大透光面积是多少?设矩形窗框的宽为x 米(铝合金型材宽度不计).18. (7分) (2019九上·吉林月考) 如图是一个抛物线形拱桥的示意图,桥的跨度AB为100米,支撑桥的是一些等距的立柱,正中间的立柱OC的高为10米(不考虑立柱的粗细),相邻立柱间的水平距离为10米.建立如图坐标系,求距A点最近处的立柱EF的高度.19. (7.0分) (2019九上·吉林月考) 如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B 的坐标为(-1,2),将此矩形绕点O顺时针旋转90°得矩形DEFO ,抛物线y=-x2+bx+c过B,E两点.(1)求此抛物线的函数关系式;(2)将矩形ABCO向上平移,并且使此抛物线平分线段BC,求平移距离.20. (7.0分) (2019九上·吉林月考) 如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的对称轴与x 轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(-1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.21. (8分) (2019九上·吉林月考) 如图,抛物线y=-x2+bx+c经过点B(0,3)和点A(3,0).(1)求抛物线的函数表达式和直线AB的函数表达式;(2)若点P是抛物线在第一象限内的点,连接PA,PB,求△PAB的面积S的最大值及此时点P的坐标.22. (9.0分) (2019九上·吉林月考) 某种蔬菜的单价与销售月份x之间的关系如图1所示,成本与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是________元.(利润=售价-成本);(2)设每千克该蔬菜销售利润为P ,请列出x与P之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?23. (10分) (2019九上·吉林月考) 在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)经过A(-3,4)和B(0,1).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿y轴翻折,得到图象N.如果过点C (-3,0)和D(0,b)的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围.24. (12分) (2019九上·吉林月考) 如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P 从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).(1)直接写出线段AC的长为________.(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,①当PQ将△PEF的面积分成1:2两部分时,求AP的长.②直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.参考答案一、选择题(每小题3分,共24分) (共8题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题(每小题3分,共18分) (共6题;共18分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题(本大题共10小题,共78分) (共10题;共78分) 15-1、15-2、15-3、16-1、17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
黑龙江省绥化市九年级上学期数学第一次月考试卷
黑龙江省绥化市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2018九上·三门期中) 抛物线y=(x﹣1)2-3的顶点坐标是()A . (1,3)B . (﹣1,3)C . (﹣1,﹣3)D . (1,﹣3)2. (3分) (2020九上·昭平期末) 某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A . 15元B . 400元C . 800元D . 1250元3. (3分) (2016九上·杭州期中) 已知点(﹣2,y1),(﹣4,y,2)在函数y=x2﹣4x+7的图象上,那么y1 ,y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 不能确定4. (3分)(2019·泉州模拟) 下列事件中,是必然事件的是()A . 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B . 抛掷一枚普通正方体骰子所得的点数小于7C . 抛掷一枚普通硬币,正面朝上D . 从一副没有大小王的扑克牌中抽出一张牌,恰好是方块5. (3分)设函数(为常数),下列说法正确的是().A . 对任意实数,函数与轴都没有交点B . 存在实数,满足当时,函数的值都随的增大而减小C . 取不同的值时,二次函数的顶点始终在同一条直线上D . 对任意实数,抛物线都必定经过唯一定点6. (3分)在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()试验种子数n(粒)5020050010003000发芽频数m451884769512850发芽频率0.90.940.9520.9510.95A . 0.8B . 0.9C . 0.95D . 17. (3分) (2016九上·遵义期中) 把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A . y=3(x﹣2)2+1B . y=3(x﹣2)2﹣1C . y=3(x+2)2+1D . y=3(x+2)2﹣18. (3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A . cm2B . cm2C . cm2D . cm29. (3分) (2016九上·三亚期中) 抛物线y=x2+2x﹣2的图象的顶点坐标是()A . (2,﹣2)B . (1,﹣2)C . (1,﹣3)D . (﹣1,﹣3)10. (3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2 .若y1≠y2 ,取y1、y2中的较小值记为M;若y1=y2 ,记M=y1=y2 .例如:当x=1时,y1=0,y2=4,y1<y2 ,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A . ①②B . ①④C . ②③D . ③④二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)(2018·镇平模拟) 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.12. (4分) (2016九上·重庆期中) 二次函数y=2x2+bx+c的顶点坐标是(1,﹣2),则b=________,c=________.13. (4分) (2016九上·利津期中) 已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是________.14. (4分) (2020九上·兰考期末) 抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为________.15. (4分) (2020九上·泰兴期末) 在二次函数中,函数y与自变量x的部分对应值如下表:则m、n的大小关系为 m________n.(填“<”,“=”或“>”)16. (4分) (2016九上·淅川期末) 已知0≤x≤ ,那么函数y=﹣2x2+8x﹣6的最大值是________.三、解答题(本题有8小题,共66分) (共8题;共66分)17. (6分)关于x的函数y=2mx2+(1﹣m)x﹣1﹣m(m是实数),探索发现了以下四条结论:①函数图象与坐标轴总有三个不同的交点;②当m=﹣3时,函数图象的顶点坐标是(,);③当m>0时,函数图象截x轴所得的线段长度大于;④当m≠0时,函数图象总经过两个定点.请你判断四条结论的真假,并说明理由.18. (6分)已知二次函数图象顶点为C(1,0),直线y=x+m与该二次函数交于A,B两点,其中A点(3,4),B 点在y轴上.(1)求此二次函数的解析式;(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.19. (6分)已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点,且BC=5,求该二次函数的解析式.20. (8分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式,以及B、C两点的坐标;(2)求过O,B,C三点的圆的面积.(结果保留π)21. (8.0分)(2019·云梦模拟) 某中学就“戏曲进校园”活动的喜爱情况进行了随机调查,对收集的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:(图中表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”)(1)被调查的总人数是________,扇形统计图中部分所对应的扇形圆心角的度数为________;(2)补全条形统计图;(3)在抽取的类5人中,刚好有甲、乙、丙3个女生和丁、戊2个男生,从中随机抽取两个同学担任两角色,用画树状图或列表法求出抽到的两个学生性别不相同的概率.22. (10.0分)(1)已知y=(m2+m) +(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.23. (10分)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.24. (12分) (2016九下·海口开学考) 如图1,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C (0,﹣3).[图2、图3为解答备用图](1)k=________,点A的坐标为________,点B的坐标为________;(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;(4)在抛物线y=x2﹣2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.参考答案一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题有8小题,共66分) (共8题;共66分)17-1、18-1、19、答案:略20-1、20-2、21-1、21-2、21-3、22、答案:略23-1、23-2、24-1、24-2、24-3、。
黑龙江省绥化市部分学校2024-2025学年九年级上学期10月月考数学试卷
黑龙江省绥化市部分学校2024-2025学年九年级上学期10月月考数学试卷一、单选题1.下列函数中,y 是x 的反比例函数的是( )A .21y x =B .1y x -=C .23y x =+D .2x y += 2.若反比例函数解析式为6y x=,则下列说法不正确的是( ) A .图象位于第一、三象限B .图象经过点()2,3PC .y 随x 的增大而减小D .图象关于原点对称3.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC ,若DB=4,AB=6,BE=3,则EC 的长是( )A .4B .2C .32D .14.下列说法正确的是( )A .各有一个角是100o 的两个等腰三角形相似B .各有一个角是45o 的两个等腰三角形相似C .有两边对应成比例的两个等腰三角形相似D .两腰对应成比例的两个等腰三角形相似5.如图,能使ACD BCA V V ∽的条件是( )A .AC AB CD BC = B .2AC CD CB =⋅ C .AB BD AC CD = D .2CD AD BD =⋅6.函数21a y x--=(a 为常数)的图象上有三点1(4,)y -,2(1,)y -,3(2,)y ,则函数值1y ,2y ,3y 的大小关系是( )A .231y y y <<B .321y y y <<C .213y y y <<D .312y y y << 7.在同一直角坐标系中,函数y kx k =+与(0)k y k x-=≠的图象大致为( ). A . B .C .D .8.如图,在平面直角坐标系中,Rt ABC ∆的顶点A 、C 的坐标分别是()()0,33,0、,090ACB ∠=,2AC BC =,则函数()0,0k y k x x=>>的图象经过点B ,则k 的值为( )A .92B .9C .278D .2749.已知反比例函数8y x =,若2x ≥-,则函数y 的取值范围是() A .4y <- B .0y > C .4y ≤- D .4y ≤-或0y >10.如图,在平行四边形ABCD 中,E 是BC 延长线上一点,AE 交CD 于点F ,且CE =12BC ,则ADF EBAS S V V =( )A .14B .12C .23D .4911.如图,在ABC V 中,点D 、E 分别是AB 、AC 上的点,//DE BC ,:2:3ADE BDE S S =V V ,若15BEC S =V ,则(ABC S =V )A .14B .19C .20D .2512.如图,在ABF V 中,D 为AB 的中点,C 为BF 上一点,AC 与DF 交于点E ,3AE AC 4=,则BC CF的值为( )A .1B .34C .43D .2二、填空题13.函数()2102my m x -=-是反比例函数,并且图象在一、三象限,则m =. 14.若52x y =,则x y y- =. 15.在平面直角坐标系中,ABC V 的三个顶点的坐标分别为()()()224264A B C ,,,,,,以原点O 为位似中心,将ABC V 缩小,使变换后得到的DEF V 与ABC V 的相似比为1:2,则变换后点B 的对应点的坐标为.16.如图,已知ΔABC 是等边三角形, 点D 是AB 上一点, 点E 为BC 上一点,60CDE ∠=︒,3AD =,2BE =,则ΔABC 的边长为.17.如图,在平面直角坐标系xOy 中,函数y =k x(x >0)的图象经过Rt △OAB 的斜边OA 的中点D ,交AB 于点C .若点B 在x 轴上,点A 的坐标为(6,4),则△BOC 的面积为.18.如图,某一时刻太阳光下,一颗大树的影子有一部分落在了墙上,已知同一时刻小明测得1米高的测竿影长0.4米,大树落在地上的影长1.2米,墙上的影长0.4米,则大树的高度为米.19.如图,一次函数y kx b =+()0k ≠图像与反比例函数m y x=()0m ≠图像交于点()1,2A -,()2,1B -,则不等式m kx b x+≤的解集是.20.如图,⊙O 的两条弦AB ,CD 相交于点P ,连接AC ,BD .若S △ACP ∶S △DBP =16∶9,则AC ∶BD =.21.已知:如图,在ABC V 中,90ACB ∠=o ,CD AB ⊥,垂足是D ,BC =BD=1.则AD =.22.如图,在ABC V 中,依次取BC 的中点1,D BA 的中点21,D BD 的中点32,D BD 的中点4D ,......,并连接1123234,,,AD D D D D D D ,....若ABC V 的面积是1,则20192020BD D V 的面积是.三、解答题23.如图,一次函数y =kx+b 与反比例函数y =m x(x <0)的图象相交于点A 、点B ,与X 轴交于点C ,其中点A (﹣1,3)和点B (﹣3,n ).(1)填空:m = ,n = .(2)求一次函数的解析式和△AOB 的面积.(3)根据图象回答:当x 为何值时,kx+b≥m x(请直接写出答案) .24.△ABC 在平面直角坐标系中的位置如图所示(坐标系内正方形网格的单位长度为1):(1)在网格内画出和△ABC 以点O 为位似中心的位似图形△A 1B 1C 1,使△A 1B 1C 1和△ABC 的位似比为2:1且△A 1B 1C 1位于y 轴左侧;(2)分别写出A 1、B 1、C 1三个点的坐标:A 1 、B 1 、C 1 ;(3)求△A 1B 1C 1的面积为 .25.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示.(1)开始学习后第5分钟时与第40分钟时相比较,何时学生的注意力更集中?(2)某校博雅课堂学习大致可分为三个环节:即“自学自测展素养,研学随练展收获,检学综练展成效”.其中重点环节“研学随练展收获”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问这样的课堂学习安排是否合理?并说明理由.26.如图,在ABC V 中,48AB AC ==,,点P 从B 点出发沿BA 方向以每秒1个单位移动,点Q 从A 出发沿AC 方向以每秒2个单位移动,当它们到达A 、C 后停止运动.试问经过几秒后,ABC V 与APQ △相似?请说明理由.27.如图,在ABC V 中,高线CD 、BE 交于点O .(1)求证:AED ACB ∽△△;(2)若31AE AC =,求:AED ABC S S V V . 28.(1)【问题呈现】如图1,ABC V 和ADE V 都是等边三角形,连接BD CE ,.请直接写出BD 和CE 的数量关系.(2)【类比探究】如图2,ABC V 和ADE V 都是等腰直角三角形,90ABC ADE ∠=∠=︒.连接BD CE ,.请直接写出BD CE的值. (3)【拓展提升】如图3,ABC V 和ADE V 都是直角三角形,90ABC ADE ∠=∠=︒,且34AB AD BC DE ==.连接BD CE ,. ①求BD CE的值; ②延长CE 交BD 于点F ,交AB 于点G .若14BG CG =,6AB =,求BF 的长.。
2023年黑龙江省绥化市中考数学一模试卷(含解析)
2023年黑龙江省绥化市中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. ±2是4的( )A. 平方根B. 相反数C. 绝对值D. 倒数2. 下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A. B. C. D.3. 下列运算正确的是( )A. (a+b)2=a2+b2B. (2ab2)2=2a2b4C. 22+32=2+3D. −a3=−a−a4.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是( )A. S1>S2>S3B. S3>S2>S1C. S2>S3>S1D. S1>S3>S25. 函数y=x+2中,自变量x的取值范围是( )xA. x≠0B. x≥−2C. x>0D. x≥−2且x≠06. 下列命题是真命题的是( )A. “对顶角相等”的逆命题是真命题B. 平行线的同旁内角的平分线互相垂直C. 和为180°的两个角叫做邻补角D. 在同一平面内,a,b,c是直线,且a//b,b⊥c,则a//c7.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( )A. (1,1)B. (2,2)C. (−1,1)D. (−2,2)8.某企业1~5月份利润的变化情况图,以下说法中与图中反映的信息相符的是( )A. 1~2月份利润的增长快于2~3月份利润的增长B. 1~5月份利润的众数是130万元C. 1~4月份利润的极差与1~5月份利润的极差不同D. 1~5月份利润的中位数为120万元9. 有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程( )A. 900x+300=1500xB. 900x=1500x−300C. 900x=1500x+300D. 900x−300=1500x10. 若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是( )A. B. C. D.11. 如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是( )A. B.C. D.12. 如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于点M ,N .下列结论:①AF ⊥BG ;②BN =23NF ;③BM MG =38;④S 四边形C G N F :S 四边形A N G D =18:31.其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个第II 卷(非选择题)二、填空题(本大题共10小题,共30.0分)13. 某超市有A ,B ,C 三种型号的甲种品牌饮水机和D ,E 两种型号的乙种品牌饮水机,某中学准备从甲、乙两种品牌的饮水机中各选购一种型号的饮水机安装到教室.如果各种选购方案被选中的可能性相同,那么A 型号饮水机被选中的概率是______ .14. 分解因式:8(a 2+1)−16a =______.15. 若不等式组{1+x >a2x −4≤0有解,则a 的取值范围是______.16. 用一个圆心角为120°,半径为6cm 的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为______.17. 已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2−1=0的两实数根,且满足(x 1−x 2)2=16−x 1x 2,实数m 的值为______.18. 在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为(x 1+x 22,y 1+y 22).在直角坐标系中,有A (−1,2),B (3,1),C (1,4)三点,另有一点D 与A ,B ,C 构成平行四边形的顶点,则点D 的坐标为______ .19. 如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,A10B10C10D10E10F10的边长为______ .20. 宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有______种.21. 如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n的面积为______ .22.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是______cm.三、解答题(本大题共6小题,共54.0分。
2023年黑龙江省绥化市(初三学业水平考试)数学中考真题试卷含详解
二〇二三年绥化市初中毕业学业考试数学试卷考生注意:1.考试时间120分钟2.本试卷共三道大题,28个小题3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.计算052-+的结果是()A.3- B.7C.4- D.63.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯ B.8110-⨯ C.8110⨯ D.9110⨯5.下列计算中,结果正确的是()A.333()pq p q -= B.3228x x x x x ⋅+⋅= C.5=± D.()326a a =6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A7080x≤<B8090x≤<C90100x≤<D100110x≤<E110120x≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒9.在平面直角坐标系中,点A在y轴的正半轴上,AC平行于x轴,点B,C的横坐标都是3,2BC=,点D在AC上,且其横坐标为1,若反比例函数kyx=(0x>)的图像经过点B,D,则k的值是()A.1B.2C.3D.3210.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个B.1个C.2个D.3个二、填空题13.因式分解:2x xy xz yz +--=_______.14.若式子5x x有意义,则x 的取值范围是_______.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷=⎪--+-⎝⎭_______.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b的式子表示)20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF,EF ,DF ,则CDF 周长的最小值是______.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE ∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走12)+米到达P 点.求tan CPE ∠的值.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.26.已知:四边形ABCD 为矩形,4AB =,3AD =,点F 是BC 延长线上的一个动点(点F 不与点C 重合).连接AF 交CD 于点G .(1)如图一,当点G 为CD 的中点时,求证:ADG FCG ≅△△.(2)如图二,过点C 作CE AF ⊥,垂足为E .连接BE ,设BF x =,CE y =.求y 关于x 的函数关系式.(3)如图三,在(2)的条件下,过点B 作BM BE ⊥,交FA 的延长线于点M .当1CF =时,求线段BM 的长.27.如图,MN 为⊙O 的直径,且15MN =,MC 与ND 为圆内的一组平行弦,弦AB 交MC 于点H .点A 在¼MC上,点B 在»NC上,90OND AHM ∠+∠=︒.(1)求证:MH CH AH BH ⋅=⋅.(2)求证: AC BC=.(3)在⊙O 中,沿弦ND 所在的直线作劣弧 ND 的轴对称图形,使其交直径MN 于点G .若3sin 5CMN ∠=,求NG 的长.28.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?二〇二三年绥化市初中毕业学业考试数学试卷一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形又是中心对称图形,故C选项合题意;D、不是轴对称图形,是中心对称图形,故D选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.2.计算052-+的结果是()A.3-B.7C.4-D.6【答案】D【分析】根据求一个数的绝对值,零指数幂进行计算即可求解.【详解】解:052-+516=+=,故选:D.【点睛】本题考查了求一个数的绝对值,零指数幂,熟练掌握求一个数的绝对值,零指数幂是解题的关键.3.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.【答案】B【分析】根据左视图的意义判断即可.【详解】根据题意,该几何体的左视图为:,故选B .【点睛】本题考查了三视图的画法,熟练掌握三视图的空间意义是解题的关键.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯B.8110-⨯ C.8110⨯ D.9110⨯【答案】A【分析】用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为整数.【详解】解:90.000000001110-=⨯.故选:A .【点睛】此题主要考查了用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.5.下列计算中,结果正确的是()A.333()pq p q -=B.3228x x x x x ⋅+⋅=C.5=± D.()326a a =【答案】D【分析】根据积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,进行计算即可求解.【详解】解:A.333()pq p q =--,故该选项不正确,不符合题意;B.43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;C.5=,故该选项不正确,不符合题意;D.()326a a =,故该选项正确,符合题意;故选:D .【点睛】本题考查了积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,熟练掌握以上运算法则是解题的关键.6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒【答案】C【分析】根据两直线平行内错角相等即可求解.【详解】解:依题意,190345∠+︒=∠+︒,∵125∠=︒,∴370∠=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上【答案】D【分析】根据方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,逐项分析判断即可求解.【详解】解:A.若方差22s s >乙甲,则乙组数据的波动较小,故该选项不正确,不符合题意;B.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意;C.三角形三条中线的交点叫做三角形的重心,故该选项不正确,不符合题意;D.角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意;故选:D .【点睛】本题考查了方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,熟练掌握以上知识是解题的关键.8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A 7080x ≤<B 8090x ≤<C 90100x ≤<D 100110x ≤<E110120x ≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒【答案】B【分析】根据C 组的人数除以占比求得样本的容量,结合统计图求得8090x ≤<的人数为15,进而根据中位数的定义,即可判断B 选项,根据组中值为901002+=95,即可判断C 选项,根据110~120的占比乘以360︒,即可判断D 选项.【详解】解:A 、该组数据的样本容量是1224%50÷=,故该选项不正确,不符合题意;B 、8090x ≤<的人数为:5041212715----=,41525+<,4151225++>,该组数据的中位数落在90~100这一组,故该选项正确,符合题意;C 、90~100这组数据的组中值是95,故该选项不正确,不符合题意;D 、110~120这组数据对应的扇形统计图的圆心角度数为736050.450⨯︒=︒,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了样本的容量,条形统计图与扇形统计图信息关联,中位数的定义,求扇形统计图的圆心角的度数,求频数分布直方图组中值,从统计图表中获取信息是解题的关键.9.在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,2BC =,点D 在AC上,且其横坐标为1,若反比例函数ky x=(0x >)的图像经过点B ,D ,则k 的值是()A.1B.2C.3D.32【答案】C【分析】设()3,B m ,则()()3,2,1,2C m D m ++根据反比例函数的性质,列出等式计算即可.【详解】设()3,B m ,∵点B ,C 的横坐标都是3,2BC =,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴()()3,2,1,2C m D m ++,∴32m m =+,解得1m =,∴()3,1B ,∴313k =⨯=,故选C .【点睛】本题考查了反比例函数解析式的确定,熟练掌握k的意义,反比例函数的性质是解题的关键.10.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭【答案】B【分析】设乙车单独运送这批货物需x 天,由题意列出分式方程即可求解.【详解】解:设乙车单独运送这批货物需x 天,由题意列方程11111424x ⎛⎫++= ⎪⎝⎭,故选:B .【点睛】本题考查了列分式方程,根据题意找到等量关系列出方程是解题的关键.11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.【答案】A【分析】连接BD ,过点B 作BE AD ⊥于点E ,根据已知条件得出ABD △是等边三角形,进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒,当04t <<时,M 在AB 上,当48t ≤<时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==,∴2AM ABAN AE==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ==,∴2122y x x ==当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯=,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个 B.1个C.2个D.3个【答案】D【分析】①根据题意可得90ABF BAF DAE ∠=︒-∠=∠,则cos cos ABF EAD ∠=∠,即BF ADAB AE=,又AB AD =,即可判断①;②设正方形的边长为a ,根据勾股定理求得AF ,证明GAB GED ∽,根据相似三角形的性质求得GE ,进而求得FG ,即可判断②;过点H 分别作,BF AE 的垂线,垂足分别为,M N ,根据②的结论求得BH ,勾股定理求得BD ,即可判断③.【详解】∵四边形ABCD 是正方形,∴90BAD ADE ∠=∠=︒,AB AD =∵BF AE⊥∴90ABF BAF DAE ∠=︒-∠=∠∴cos cos ABF EAD ∠=∠即BF ADAB AE=,又AB AD =,∴2AB BF AE =⋅,故①正确;设正方形的边长为a ,∵点E 为边CD 的中点,∴2a DE =,∴1tan tans 2ABF EAD ∠=∠=,在Rt ABE △中,AB a ===,∴5AF a =在Rt ADE △中,2AE ==∴55352510EF AE AF a =-=-=,∵AB DE ∥∴GAB GED ∽∴2AG ABGE DE==∴136GE AE a ==∴25615FG AE AF GE a a a a =--=--=∴322515AF FG ==∴:2:3BGF BAF S S =△△,故②正确;∵AB a =,∴22222BD AB AD a =+=,如图所示,过点H 分别作,BF AE 的垂线,垂足分别为,M N,又∵BF AE ⊥,∴四边形FMHN 是矩形,∵FH 是BFG ∠的角平分线,∴HM HN =,∴四边形FMHN 是正方形,∴FN HM HN ==∵25252,515BF AF a FG a ===∴13MH FG BM BF ==设MH b =,则34BF BM FM BM MH b b b =+=+=+=在Rt BMH中,BH ==,∵5BF a =∴45a b =解得:10b a =∴52102BH a a ==,∴222222B a D BD HD a a =--⋅⨯=,故④正确.故选:D .【点睛】本题考查了解直角三角形,相似三角形的性质与判定,正方形的性质,熟练掌握相似三角形的性质与判定是解题的关键.二、填空题13.因式分解:2x xy xz yz +--=_______.【答案】()()x y x z +-【分析】先分组,然后根据提公因式法,因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.14.若式子5x x有意义,则x 的取值范围是_______.【答案】5x ≥-且0x ≠##0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子5x x有意义,∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.【答案】12##0.5【分析】根据题意列表法求概率即可求解.【详解】解:列表如下,1234111 1=1213142221=212=232142=333 1=3 2313=344441=42 2=43414=共有16种等可能结果,符合题意的有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是81162=,故答案为:12.【点睛】本题考查了列表法求概率,整除,熟练掌握列表法求概率是解题的关键.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.【答案】23-【分析】根据一元二次方程根与系数的关系得出121246x x x x +==-,,将分式通分,代入即可求解.【详解】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷= ⎪--+-⎝⎭_______.【答案】12x -##12x-+【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简即可求解.【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x x x x x ---+=⨯--12x =-;故答案为:12x -.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)【答案】22π3cm 3⎛⎫-⎪⎝⎭【分析】根据折叠的性质得出AOC 是等边三角形,则60AOC ∠=︒,1OD CD ==,根据阴影部分面积AOC AOC S S =- 扇形即可求解.【详解】解:如图所示,连接,OA OC ,设,AB CO 交于点D∵将 AB 沿弦AB 翻折,使点C 与圆心O 重合,∴AC AO =,OC AB ⊥又OA OC =∴OA OC AC ==,∴AOC 是等边三角形,∴60AOC ∠=︒,1OD CD ==,∴AD ==,∴阴影部分面积)226012π22πcm 36023AOC AOC S S =-=⨯-⨯= 扇形故答案为:22πcm 3⎛-⎝.19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b 的式子表示)【答案】(62,2)a b --【分析】过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',根据题意得出2AD AD '=,则2,AD a CD b =-=,得出()224,0D a '-+,即可求解.【详解】解:如图所示,过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',∵ABC 与AB C ''△的相似比为12∶,点A 是位似中心,(2,0)A ∴2AD AD '=∵(,)C a b ,∴2,AD a CD b =-=,∴24,2A D a C D b '''=-=,∴()224,0D a '-+∴C '(62,2)a b --故答案为:(62,2)a b --.【点睛】本题考查了求位似图形的坐标,熟练掌握位似图形的性质是解题的关键.20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF ,EF ,DF ,则CDF 周长的最小值是______.【答案】3+3+【分析】根据题意,证明CBE CAF ≌,进而得出F 点在射线AF 上运动,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=,进而求得C D ',即可求解.【详解】解:∵E 为高BD 上的动点.∴1302CBE ABC ∠=∠=︒∵将CE 绕点C 顺时针旋转60︒得到CF .ABC 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC=∠=∠=︒=∴CBE CAF≌∴30CAF CBE ∠=∠=︒,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒在Rt AOC 中,30CAO ∠=︒,则132CO AC ==,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=∵6CC AC '==,ACO C CD '∠=∠,CO CD=∴ACO C CD' ≌∴90C DC AOC '∠=∠=︒在C DC ' 中,C D '==,∴CDF 周长的最小值为3CD FC CD CD DC '++=+=+故答案为:3+【点睛】本题考查了轴对称求线段和的最值问题,等边三角形的性质与判定,全等三角形的性质与判定,勾股定理,熟练掌握等边三角形的性质与判定以及轴对称的性质是解题的关键.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)【答案】22n n -##22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.【答案】44+-【分析】根据题意,先求得BC =,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,BM CM ===∴BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,BE ==∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴EB ED ==∴4A D A E DE ''=+=+如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴33BC BF BF =+=∴33DF BF ==∴2623DC DF '==-∴63243A D C D A C ''''=-=-=-,综上所述,A D '的长度为423-或43+,故答案为:423-或43+.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.【答案】(1)见解析(2)75EDF ∠=︒或105︒【分析】(1)①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画圆,两圆交于点,M N 两点,作直线MN交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,(2)根据切线的性质得出90PEO PFO ∠=∠=︒,根据四边形内角和得出150EOF ∠=︒,进而根据圆周角定理以及圆内接四边形对角互补即可求解.【小问1详解】解:如图所示,①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画弧,两弧交于点,M N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,则直线,PE PF 即为所求;【小问2详解】如图所示,点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒,∵,PE PF 是O 的切线,∴90PEO PFO ∠=∠=︒,∴360909030150EOF ∠=︒-︒-︒-︒=︒,当点D 在优弧 EF 上时,1752EDF EOF ∠=∠=︒,当点D 在劣弧 EF上时,18075105EDF ∠=︒-︒=︒,∴75EDF ∠=︒或105︒.【点睛】本题考查了切线的性质与判定,直径所对的圆周角是直角,圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE ∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走312)+米到达P 点.求tan CPE ∠的值.【答案】(1)河两岸之间的距离是20320米(2)5tan 2CPE ∠=【分析】(1)过点C 作CM EF ⊥于点M ,设CM a =米,在Rt MCB △中,3MB a =,在Rt MCD △中,MD MC a ==,根据40BD =,建立方程,解方程即可求解;(2)根据题意求得MP 的长,进而根据正切的定义,即可求解.【小问1详解】解:如图所示,过点C 作CM EF ⊥于点M ,设CM a =米,∵30CBE ∠=︒∴3tan tan 303CM CBM PB ∠==︒=,∴3MB a =,在Rt MCD △中,tan tan 451CM CDM MD∠==︒=,∴MD MC a ==∴340BD MB MD a a =-=-=解得:320a =答:河两岸之间的距离是20320米;【小问2详解】解:如图所示,依题意,40(12312)523PB BD DP =+=+=+,∴((32035212383MP MB PB =-=++=+在Rt CMP △中,2035tan 2883CM CPM MP ∠===+,∴5tan 2CPE ∠=.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.【答案】(1)每辆A 型车、B 型车坐满后各载客40人、55人(2)共有4种租车方案,租8辆A 型车,2辆B 型车最省钱(3)在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米【分析】(1)设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出m 的值,设总租金为w 元,根据一次函数的性质即可求解;(3)设s kt =甲,1s k t b =+乙,由题意可知,甲车的函数图像经过(4,300);乙车的函数图像经过(0.5,0),(3.5,300)两点.求出函数解析式,进而即可求解.【小问1详解】解:设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意得5231034340x y x y +=⎧⎨+=⎩解得4055x y =⎧⎨=⎩答:每辆A 型车、B 型车坐满后各载客40人、55人.【小问2详解】设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意得()()500600105500405510420m m m m ⎧+-≤⎪⎨+-≥⎪⎩解得:2583m ≤≤m 取正整数,∴5m =,6,7,8∴共有4种租车方案设总租金为w 元,则500600(10)1006000w m m m =+-=-+ 1000-<w ∴随着m 的增大而减小∴8m =时,w 最小∴租8辆A 型车,2辆B 型车最省钱.【小问3详解】设s kt =甲,1s k t b =+乙.由题意可知,甲车的函数图象经过(4,300);乙车的函数图象经过(0.5,0),(3.5,300)两点.∴75s t =甲,10050s t =-乙25s s -=乙甲,即100507525t t --=解得3t =。
黑龙江省绥化市九年级上学期入学数学试卷
黑龙江省绥化市九年级上学期入学数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)把化为最简二次根式,结果是()A .B .C .D .2. (2分)若分式有意义,则x的取值范围是()A . x≠2B . x>2C . x=2D . x<23. (2分)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是()A . 1B . 2C . 4D . 84. (2分)配方法解方程x2-4x+2=0,下列配方正确的是()A . (x-2)2=2B . (x+2)2=2C . (x-2)2=-2D . (x-2)2=65. (2分)已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A . 4<α<16B . 14<α<26C . 12<α<20D . 以上答案都不正确6. (2分) (2017九上·海淀月考) 已知关于的函数是二次函数,则此解析式的一次项系数是().A .B .C .D .7. (2分)如图所示,l1反映了某公司产品的销售收入和销售数量的关系,l2反映产品的销售成本与销售数量的关系,根据图象判断公司盈利时的销售量为()A . 小于4万件B . 大于4万件C . 等于4万件D . 大于或等于4万件8. (2分)已知关于x的一元二次方程x2+x+c=0有一个解为x=1,则c的值为()A . -2B . 0C . 1D . 29. (2分) (2020八下·临江期末) 以下列各组数为边长,不能构成直角三角形的是()A .B .C .D .二、填空题 (共8题;共8分)10. (1分)(2020·株洲) 计算的结果是________.11. (1分)(2017·阳谷模拟) 如图,大正方形ABCD中有2个小正方形,如果它们的面积分别是s1 , s2 ,那么s1________s2 .(填>,<或=)12. (1分) (2019八下·温州期中) 如图,在▱ABCD中,∠DAB=45°,AB=17,BC=7 ,对角线AC、BD相交于点O,点E、F分别是边BC、DC上的点,连结OE、OF、EF.则△OEF周长的最小值是________.13. (1分)已知关于x的方程x2﹣2x+3b=0的一个根是1,则b=________.14. (1分)(2017·平川模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有________.15. (1分) (2017八上·西湖期中) 如图,已知,点在边上,,点,在边上,,且,则 ________.16. (1分) (2020八下·阳东期末) 函数与的图像如图所示,则 ________.17. (1分)(2019·新余模拟) 已知一组数据3,4,1,a , 2,a的平均数为2,则这组数据的中位数是________.三、解答题 (共7题;共66分)18. (10分)(2017·江阴模拟) 解方程(1)解方程:(x﹣4)2=x﹣4;(2)解不等式组:.19. (10分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围.(2)当该方程的一个根为1时,求a的值及方程的另一根.20. (10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.21. (5分)已知:二次函数y=ax 2+bx+c(a≠0)的图象如图所示.请你根据图象提供的信息,求出这条抛物线的表达式.22. (10分) (2020八下·来宾期末) 如图,在△ABC中,∠ACB=90°,∠ACD=∠B。
绥化市九年级数学上册第一单元《一元二次方程》测试卷(包含答案解析)
一、选择题1.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-lD .m >-1且m≠12.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .43.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( ) A .-3 B .0 C .1 D .-3或0 4.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-45.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .166.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=7.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长8.下列方程中是关于x 的一元二次方程的是( ) A .210x x+= B .ax 2+bx +c =0 C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)29.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-10.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( ) A .1 B .0 C .1- D .1或0 11.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( )A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 12.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( )A .m ≠1B .m =1C .m ≥1D .m ≠0二、填空题13.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.14.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.15.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.16.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.17.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.18.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 19.一元二次方程x 2=2x 的解为__________20.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________. 三、解答题21.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPCScm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPCS cm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?22.用适当的方法解下列方程: (1)22580x x --=;(2)23(5)2(5)x x -=-.23.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 24.先阅读理解下面的例题,再按要求解答下面的问题: 例题:说明代数式m 2+2m+4的值一定是正数. 解:m 2+2m+4=m 2+2m+1+3=(m+1)2+3. ∵(m+1)2≥0, ∴(m+1)2+3≥3,∴m 2+2m+4的值一定是正数.(1)说明代数式﹣a 2+6a ﹣10的值一定是负数.(2)设正方形面积为S 1,长方形的面积为S 2,正方形的边长为a ,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S 1与S 2的大小关系,并说明理由. 25.回答下列问题. (1(2|1-. (3)计算:102(1)-++.(4)解方程:2(1)90x +-=.26.解方程: (1)2237x x +=; (2)x(2x+5)=2x+5.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得. 【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程, ∴210m -≠, 解得1m ≠±,10m +≥, 解得:1m ≥-, ∴1m >-且1m ≠, 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.B解析:B 【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答. 【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程, ∴240,20m m -=-≠, ∴m=-2, 故选:B . 【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.3.C解析:C 【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可. 【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数, ∴x 1•x 2=a=1. 故选:C . 【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 4.D解析:D 【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值. 【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0, 得:()()222-23-2-20a a ⨯+⋅=, 化简得:2+340a a -=, 解得:a=1或a=-4. 故选:D . 【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.5.B解析:B 【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可. 【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2, 设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b , 如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12. 故答案为:B . 【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.6.B解析:B 【分析】根据配方法解一元二次方程的方法解答即可. 【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=.故选:B . 【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键.7.B解析:B 【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可. 【详解】解:∵四边形ABCD 是矩形 ∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得x a =±=-∴线段BF 的长是方程2240x ax +-=的一个根. 故选:B . 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.C解析:C 【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案. 【详解】A 、是分式方程.错误;B 、当a =0时不是一元二次方程,错误;C 、是,一元二次方程,正确;D 、3x 2+2=x 2+2(x ﹣1)2整理后为x=0,是一元一次方程,错误; 故选:C . 【点睛】考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.9.D解析:D 【分析】直接利用根与系数的关系解答. 【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12.故选:D . 【点睛】此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.A解析:A 【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可. 【详解】解:∵-1是方程x 2+mx=0的根, ∴1-m=0, ∴m=1, 故答案为:A. 【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.11.B解析:B 【分析】根据一元二次方程的配方法即可求出答案. 【详解】 解:x 2﹣4x ﹣1=0 x 2-4x=1 x 2-4x+4=1+4 (x-2)2=5, 故选:B . 【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.12.A解析:A 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】解:由题意得:m ﹣1≠0, 解得:m≠1, 故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.二、填空题13.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15 【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答. 【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++ =2222(1)(1)(3)15a a b b b -++-+++ =22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15. 故答案为:4,3,15. 【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.14.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12【分析】由根与系数的关系,即可求出答案. 【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2, ∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.15.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m结合α2+β2=12即可得出关于m的一元二次方程解之即可得出结论【详解】解:∵关于x的解析:-1【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m2-m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m2-m)=-4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m2-m,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m2-m)=12,即m2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m的一元二次方程.16.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x=5∴x2﹣8x+16=5+16即(x﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x2﹣8x=5,∴x2﹣8x+16=5+16,即(x﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.17.729【分析】设每轮传染中平均每人传染了x人根据经过两轮传染后共有81人患了流感可求出x进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x人,根据经过两轮传染后共有81人患了流感,可求出x,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人, 由题意可列得,()1181x x x +++=, 解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人). 故答案为:729. 【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.18.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3. 【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案. 【详解】解:设方程的另一个根为x 2, 则2x 2=﹣6, 解得x 2=﹣3, 故答案为:﹣3. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅=. 19.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2. 【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】 解:x 2=2x , x 2-2x=0, x (x-2)=0, x=0,x-2=0, x=0或2. 故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.20.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 三、解答题21.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅=∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.22.(1)125544x x ==;(2)12175,3x x == 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,x ∴==,1255,44x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.24.(1)见解析;(2)S 1>S 2,见解析【分析】(1)利用配方法,将原式化成含平方代数式形式﹣(a ﹣3)2﹣1,可判断其值为负数; (2)用a 分别表示出S 1与S 2,再作差比较即可.【详解】解:(1)﹣a 2+6a ﹣10=﹣(a 2﹣6a+9)﹣1=﹣(a ﹣3)2﹣1,∵(a ﹣3)2≥0,∴﹣(a ﹣3)2≤0,∴﹣(a ﹣3)2﹣1<0,∴代数式﹣a 2+6a ﹣10的值一定是负数;(2)S 1>S 2,理由是:∵S 1=a 2,S 2=4(a ﹣3),∴S 1﹣S 2=a 2﹣4(a ﹣3)=a 2﹣4a+12=a 2﹣4a+4+8=(a ﹣2)2+8,∵(a ﹣2)2≥0,∴(a ﹣2)2+8≥8,∴S 1﹣S 2>0,∴S 1>S 2.【点睛】本题主要考查配方法的应用,掌握配方法是解题的关键,注意两数比较大小时可用作差法.25.(13;(21+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(133=+3=;(2|11)=-1=12=+; (3)102(1)-++121=+-4=-(4)2(1)90x +-=,移项得:2(1)9x +=,∴13x +=或13x +=-, 12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
黑龙江省绥化市九年级上学期数学开学试卷
黑龙江省绥化市九年级上学期数学开学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·南岗模拟) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分)下列运算中正确的是()A .B .C .D .3. (2分)若分式有意义,则字母的取值范围是()A .B .C .D .4. (2分)(2017·武汉模拟) 如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB,AC于M、N,则△AMN的周长为()A . 12B . 4C . 8D . 不确定5. (2分)下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,因此,n边形的内角和是(n-2)·180;④六边形的对角线有7条,正确的个数有()A . 4个B . 3个C . 2个D . 1个6. (2分)如果a<b ,那么下列不等式中一定正确的是()A . a﹣2b<﹣bB . a2<abC . ab<b2D . a2<b27. (2分) (2017八上·台州期末) 小方是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,分别对应下列六个字:州,爱,我,台,赞,美.现将因式分解,结果呈现的密码信息可能是()A . 赞美B . 台州赞C . 爱我台州D . 我爱美8. (2分)已知不等式ax<b的解集为x>,则有()A . a<0B . a>0C . a<0,b<0D . a>0,b<09. (2分)若分式的值为零,那么x的值为()A . x=1或x=﹣1B . x=1C . x=﹣1D . x=010. (2分) (2017九上·夏津开学考) 如图,在中,,、分别是,的中点,则等于()A . 6B . 3C .D . 911. (2分)(2013·资阳) 从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A .B .C .D .12. (2分) (2016八上·余杭期中) 在中,,边长为,边的长度可以在、、、、中取值,满足这些条件的互不全等的三角形的个数是().A . 3个B . 4个C . 5个D . 6个二、填空题 (共6题;共6分)13. (1分) (2016七下·桐城期中) 不等式3x﹣2≥4(x﹣1)的所有非负整数解的和等于________.14. (1分)因式分解:x3﹣9x=________ .15. (1分) (2019七下·丹阳月考) 如图AD⊥BD,AE平分∠BAC,∠ACD=70°,∠B=30°.则∠DAE的度数为________°.16. (1分)(2020·郑州模拟) 关于x的不等式组有2个整数解,则a的取值范围是________.17. (1分)如图,在四边形ABCD中,DA⊥AB,DA=AB= ,BC= ,DC=1.则∠ADC的度数是________.18. (1分)(2017·东平模拟) 如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r= 时,S为________.三、解答题 (共8题;共60分)19. (5分)(2013·南京) 化简()÷ .20. (5分)(2017·孝感模拟) 解不等式组.21. (5分)如图,在□ABCD中,对角线AC⊥BD于点O,∠ABC=58º.求∠BAC的度数.22. (10分)(2018·阜宁模拟) 如图,△ABC与△DEF边BC、EF在同一直线上,AC与DE相交于点G,且∠ABC =∠DEF=90°,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若AB=3,DF-EF=1,求EF的长.23. (5分)如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.24. (10分) (2017七下·兴化期末) 学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,问A 型节能灯最多可以买多少只?25. (10分)(2012·朝阳) 为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?26. (10分) (2017九上·金华开学考) 如图,已知AB是半圆O的直径,点P是半圆上一点,连结BP,并延长BP到点C,使PC=PB,连结AC.(1)求证:AB=AC.(2)若AB=4,∠ABC=30°,①求弦BP的长;②求阴影部分的面积.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共60分)19-1、20-1、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、26-1、26-2、第11 页共11 页。
黑龙江省绥化市2021年九年级上学期数学第一次月考试卷(II)卷
黑龙江省绥化市2021年九年级上学期数学第一次月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(4分×10=40分) (共10题;共40分)1. (4分) (2019九上·柯桥月考) 如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5,CD是斜边AB上的中线,以AC为直径作O,设线段CD的中点为P,则点P与O的位置关系是()A . 点P在O外B . 点P在O上C . 点P在O内D . 无法确定2. (4分) (2019九上·武汉月考) 对于抛物线y=-2(x+5)2+4,下列说法正确的是()A . 开口向下,顶点坐标(5,4).B . 开口向上,顶点坐标(5,4).C . 开口向下,顶点坐标(-5,4).D . 开口向上,顶点坐标(-5,4).3. (4分)将抛物线y=x2向左平移2个单位,再向下平移3个单位,则得到的抛物线解析式是()A . y=(x﹣2)2﹣3B . y=(x﹣2)2+3C . y=(x+2)2﹣3D . y=(x+2)2+34. (4分)(2018·河南模拟) 在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A .B .C .D .5. (4分)下列说法中正确的个数有()①直径不是弦;②三点确定一个圆;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④相等的圆心角所对的弧相等,所对的弦也相等A . 1个B . 2个C . 3个D . 4个6. (4分)(2018·大庆) 如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2 , y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1 ,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A . 1B . 2C . 3D . 47. (4分)半径为2的圆内有两条互相垂直的弦AB和CD,它们的交点E到圆心O的距离等于1,则AB2+CD2=()A . 28B . 26C . 18D . 358. (4分)如图,A1、A2、A3是抛物线y=ax2( a>0)上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3 ,直线A2B2交线段A1A3于点C.A1、A2、A3三点的横坐标为连续整数n﹣1、n、n+1,则线段CA2的长为()A . aB . 2aC . nD . n-19. (4分)(2018·白银) 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A . 5B .C . 7D .10. (4分)(2016·滨州) 如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A . ②④⑤⑥B . ①③⑤⑥C . ②③④⑥D . ①③④⑤二、填空题(5分×6=30分) (共6题;共30分)11. (5分)二次函数y=ax2+bx+c(a≠0)中,自变量x与函数y的部分对应值如表:则一元二次方程ax2+bx+c=0(a≠0)的两个根x1 , x2的取值范围是________ .x﹣1-0123y﹣2﹣1421﹣﹣212. (5分)若将二次函数y=2x2﹣6x变为y=a(x﹣h)2+k的形式,则h•k=________.13. (5分)(2017·眉山) 如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC=________cm.14. (5分) (2017九上·越城期中) 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为________mm.15. (5分)(2018·娄底模拟) 在实数、、、、0.3131131113中任意取一个数,其中恰好是无理数的概率是________.16. (5分) (2020九上·嘉陵期末) 将抛物线y=-x2-4x(-4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省绥化市九年级上学期数学第一周考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题(每题4分,共32分) (共8题;共32分)
1. (4分)若是关于x的一元二次方程,则a的值是()
A . 0
B . 2
C . -2
D . ±2
2. (4分)用配方法将二次三项式a2-4a+5变形,结果为()
A . (a-2)2+1
B . (a+2)2+1
C . (a-2)2-1
D . (a+2)2-1
3. (4分)下列方程有两个相等的实数根的是()
A . x2+x+1=0
B . 4x2+2x+1=0
C . x2+12x+36=0
D . x2+x﹣2=0
4. (4分)一元二次方程2x2﹣3x+5=0根的情况是()
A . 没有实数根
B . 只有一个实数根
C . 有两个相等的实数根
D . 有两个不相等的实数根
5. (4分)(2020·重庆模拟) 关于x的一元二次方程的两实数根分别为、,且
,则m的值为()
A .
B .
C .
D . 0
6. (4分) (2019九上·南昌月考) 某班一物理科代表在老师的培训后学会了某个物理实验操作,回到班上
后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有36人会做这个实验;若设1人每次都能教会x名同学,则可列方程为()
A . x+(x+1)x=36
B . 1+x+(1+x)x=36
C . 1+x+x2=36
D . x+(x+1)2=36
7. (4分) (2020九上·思明期末) 已知一元二次方程的一般式为,则一元二次方程x2-5=0中b的值为()
A . 1
B . 0
C . -5
D . 5
8. (4分)(2019·抚顺模拟) 一元二次方程(x﹣2)=x(x﹣2)的解是()
A . x=1
B . x=2
C . x1=2,x2=0
D . x1=1,x2=2
二、填空题(每题3分,共18分) (共6题;共18分)
9. (3分)(2020·济南模拟) 已知,且,则 ________;
10. (3分)下列方程,是一元二次方程的是________.
①3x2+x=20
②2x2﹣3xy+4=0
③x2﹣ =4
④x2=0
⑤x2﹣ +3=0.
11. (3分)若关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0的常数项为0,则m的值是________.
12. (3分)(2016·镇江) 关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=________.
13. (3分)(2020·龙泉驿模拟) 若是一元二次方程的一个根,则k的值为________。
14. (3分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2+b2的值为________.
三、计算(每题5分,共20分) (共1题;共20分)
15. (20分) (2020九上·成都月考) 解下列方程
(1).
(2).
四、解答题 (共50分) (共7题;共48分)
16. (8分)(2018·南充) 已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为x1 , x2 ,且x12+x22=10,求m的值.
17. (6分) (2019九上·富顺月考) 已知:关于x的方程x2+kx+k﹣1=0
(1)求证:方程一定有两个实数根;
(2)设x1 , x2是方程的两个实数根,且(x1+x2)(x1﹣x2)=0,求k的值.
18. (6分)(2020·新泰模拟) 先化简,再求值:,其中x的值是方程
x²-2x-3=0的解。
19. (6分) (2019九上·柳江期中) 有一个人患了流感,经过两轮传染后共有个人患了流感,每轮传染中平均一个人传染了几个人?
20. (8分) (2018九上·重庆月考) 雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
21. (6分) (2019九上·江岸月考) 如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米,求鸡场的长和宽各为多少米?
22. (8分)如图,已知一次函数y= x+b的图象与反比例函数(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.
(1)当△ABC的周长最小时,求点C的坐标;
(2)当时,请直接写出x的取值范围.
参考答案一、单选题(每题4分,共32分) (共8题;共32分)答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、
考点:
解析:
二、填空题(每题3分,共18分) (共6题;共18分)答案:9-1、
考点:
解析:
答案:10-1、
考点:
解析:
答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
三、计算(每题5分,共20分) (共1题;共20分)
答案:15-1、
答案:15-2、
考点:
解析:
四、解答题 (共50分) (共7题;共48分)答案:16-1、
答案:16-2、
考点:
解析:
答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、
答案:22-2、
考点:
解析:。