语音识别技术文献综述
语音识别技术综述
语音识别技术综述语音识别技术综述电子信息工程2010级1班郭珊珊【摘要】随着计算机处理能力的迅速提高,语音识别技术得到了飞速发展,该技术的发展和应用改变了人们的生产和生活方式,正逐步成为计算机处理技术中的关键技术。
语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
【关键词】语音识别;语音识别原理;语音识别发展;产品语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。
1 语音识别的原理语音识别系统本质是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单位元。
未知语音经过话筒变换成电信号后加载识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需特征,在此基础上建立语音识别所需的模板。
计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。
然后根据此模板的定义,通过查表可给出计算机的识别结果。
这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。
2 语音识别系统的分类语音识别系统可以根据对输入语音的限制加以分类。
2.1从说话者与识别系统的相关性考虑可以将识别系统分为3类:(1)特定人语音识别系统:仅考虑对于专人的话音进行识别;(2)非特定人语音系统:识别的语音与人无关,通常要用大量不同人的语音数据库对识别系统进行学习;(3)多人的识别系统:通常能识别一组人的语音,或者成为特定组语音识别系统,该系统仅要求对要识别的那组人的语音进行训练。
2.2从说话的方式考虑也可以将识别系统分为3类:(1)孤立词语音识别系统:孤立词识别系统要求输入每个词后要停顿;(2)连接词语音识别系统:连接词输入系统要求对每个词都清楚发音,一些连音现象开始出现;(3)连续语音识别系统:连续语音输入是自然流利的连续语音输入,大量连音和变音会出现。
语音识别技术的现状和发展趋势
语音识别技术的现状和发展趋势随着科技的不断发展,各种人工智能产品逐渐走进我们的生活中,其中语音识别技术的应用越来越广泛。
这项技术可以将人类的语言转化为计算机可识别的形式,实现人机交互,让我们的生活更便捷、更智能。
本文从语音识别技术的现状、应用场景、技术难点、发展趋势等方面进行探讨。
一、语音识别技术的现状语音识别已经成为商业化产品,在智能家居、智能手机、智能音箱等设备中得到广泛应用。
其中,智能音箱是应用最广泛的一种形式,如亚马逊Echo、谷歌Home、小米AI音箱等。
这些智能音箱的语音识别技术实现了多种功能,如语音搜索、播放音乐、聊天、控制家庭设备等。
此外,语音助手在智能手机、智能手表、智能车辆等领域也得到了广泛应用。
语音助手可以帮助用户完成电话、短信、导航、音乐播放、天气查询等操作,方便了生活。
二、语音识别技术的应用场景语音识别技术的应用场景非常广泛。
除了上述的智能家居、手机、音箱等领域,语音识别还可以应用于医疗、教育、金融、零售、物流等行业。
在医疗领域,语音识别可以用于病历记录、医嘱输入等操作,提高医生的效率。
在教育领域,语音识别可以用于智能教学,让学生更加深入地了解知识。
在金融领域,语音识别可以用于语音支付、客服问题解答等操作,提高金融服务的效率。
在零售领域,语音识别可以用于语音导航、商品介绍等操作,提高顾客的购物体验。
在物流领域,语音识别可以用于指挥货运,提高货物的配送效率。
三、语音识别技术的技术难点尽管语音识别技术已经得到广泛应用,但是其仍面临着一些技术难点。
一是方言和口音问题。
方言和口音是语音识别的难点之一,由于不同地区人口音差异大,语音识别的准确率也会受到影响。
二是多说者语音识别问题。
在多人场景下,语音识别技术需要识别多个说话者的语音,并对话语进行区分,这对语音识别技术的准确率提出了更高的要求。
三是语言模型问题。
语言模型是语音识别中非常重要的一步,它用于判断用户说的话是否符合语言规范。
语音识别技术综述
模型参数得到后可以用 Viterbi 算法来确定与观察序列对 应的最佳的状态序列。建好模型后,在识别阶段就是要计算 每个模型产生观察符号序列的输出概率,输出概率最大的模 型所表示的词就是我们的识别结果。这个过程计算量很大, 有人提出了前向-后向算法, 大大减少了计算量, 已经被广泛采 用, 关于它们的各种改进方法也被大量提出。 ANN 在语音识别中的应用是现在研究的又一热点。 ANN 本质上是一个自适应非线性动力学系统,是由结点互连组成 的计算网络, 模拟了人类大脑神经元活动的基本原理, 具有自 学习能力、 记忆、 联想、 推理、 概括能力和快速并行实现的特点, 同时还具备自组织、自适应的功能。这些能力是 HMM 模型 不具备的, 可用于处理一些环境信息十分复杂, 背景知识不清 楚, 推理规则不明确的问题, 允许样品有较大的缺损、 畸变, 因 此对于噪声环境下非特定人的语音识别问题来说是一种很好 的解决方案。目前大部分应用神经网络的语音识别系统都采 用了 BP 网并取得了较好的识别效果。 将 ANN 与 HMM 结合分别利用各自优点进行识别将是 今后的一条研究途径。二者结合的混合语音识别方法的研究 开始于上世纪 90 年代, 目前已有一些方法将 ANN 辅助 HMM 进行计算和学习概率参数。 语言模型主要分为规则模型和统计模型两种。统计语言 模型是用概率统计的方法来揭示语言单位内在的统计规律, 其中 N-Gram 简单有效, 被广泛使用。N-Gram 模型基于这样 一种假设: n 个词的出现只与前面 N-1 个词相关, 第 而与其它 任何词都不相关, 整句的概率就是各个词出现概率的乘积。 这 些概率可以通过直接从语料库中统计 N 个词同时出现的次数 得到。常用的是二元的 Bi-Gram 和三元的 Tri-Gram。 5 总结 尽管语音识别技术已经取得了长足的进步,而语音识别 系统也层出不穷, 不断的改变人类现有的生活方式, 但其比较 成功的应用也只是在某些特定的领域,谈不上大规模广泛的 应用。只有建立从声学、 语音学到语言学的知识为基础、 以信 息论、模式识别数理统计和人工智能为主要实现手段的语音 处理机制,把整个语音识别过程从系统工程的高度进行分析 构建, 才有可能获得能与人类相比的高性能的、 完整的计算机 语音识别系统。 参考文献: [1] 易克初,田斌.付强.语音信号处理[M].国防工业出版社,2000. [2] 胡航.语音信号处理[M].哈尔滨工业大学出版社,2000. [3] 赵力.语音信号处理[M].机械工业出版社,2003. [4] 张卫清.语音识别算法的研究[D].南京理工大学 (硕士生论 文) ,2004. [5] 何湘智.语音识别研究与发展[J].计算机与现代化,2002(3).
浅谈语音识别技术论文
浅谈语音识别技术论文语音识别技术研究让人更加方便地享受到更多的社会信息资源和现代化服务,对任何事都能够通过语音交互的方式。
小编整理了浅谈语音识别技术论文,欢迎阅读!浅谈语音识别技术论文篇一语音识别技术概述作者:刘钰马艳丽董蓓蓓摘要:本文简要介绍了语音识别技术理论基础及分类方式,所采用的关键技术以及所面临的困难与挑战,最后讨论了语音识别技术的发展前景和应用。
关键词:语音识别;特征提取;模式匹配;模型训练Abstract:This text briefly introduces the theoretical basis of the speech-identification technology,its mode of classification,the adopted key technique and the difficulties and challenges it have to face.Then,the developing prospect ion and application of the speech-identification technology are discussed in the last part.Keywords:Speech identification;Character Pick-up;Mode matching;Model training一、语音识别技术的理论基础语音识别技术:是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高级技术。
语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。
不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似,一个典型语音识别系统主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。
语音识别参考文献
语音识别参考文献语音识别是一项广泛应用于人机交互、语音翻译、智能助手等领域的技术。
它的目标是将人的语音输入转化为可理解和处理的文本数据。
随着人工智能和机器学习的发展,语音识别技术也得到了极大的提升和应用。
在语音识别领域,有许多经典的参考文献和研究成果。
以下是一些值得参考和研究的文献:1. Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., & Yu, D. (2016). Achieving human parity in conversational speech recognition. arXiv preprintarXiv:1610.05256.这篇文章介绍了微软团队在语音识别方面的研究成果,实现了与人类口语识别准确率相媲美的结果。
2. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.这篇文章介绍了深度神经网络在语音识别中的应用和研究进展,对于理解当前主流的语音识别技术有很大的帮助。
3. Hinton, G., Deng, L., Li, D., & Dahl, G. E. (2012). Deep neural networks for speech recognition. IEEE Signal Processing Magazine, 29(6), 82-97.这篇文章是语音识别中的经典之作,介绍了深度神经网络在语音识别中的应用和优势。
语音识别研究综述
未来的研究需要针对这些问题进行深入探讨,以进一步推动语音识别技术的 发展和应用。随着物联网、可穿戴设备等新技术的不断发展,语音识别技术将在 更多领域得到应用,具有广阔的发展前景。
参考内容
语音识别技术是当前领域的研究热点之一。在过去的几十年中,国内的研究 机构和企业在语音识别领域取得了显著的进展。本次演示将综述国内语音识别的 研究现状、技术发展及未来趋势。
二、语音识别技术的应用
1、智能客服
智能客服是语音识别技术的重要应用之一。在国内,许多企业已经开始使用 语音识别技术来提高客户服务效率。例如,在银行、电信、电商等领域,客户可 以通过语音与智能客服进行交互,快速解决自己的问题。
2、智能家居
智能家居是另一个应用语音识别技术的领域。通过语音识别技术,用户可以 通过语音控制家电的开关、温度、照明等参数。国内许多企业已经推出了智能家 居产品,如小米、、海尔等。
此外,针对特定领域的语音识别应用,如方言语音识别和多语种语音识别, 深度学习方法也取得了显著成果。然而,目前语音识别技术仍存在一些不足之处, 如对口音和语速的适应性有限、实时处理能力不足等。未来的研究将需要在这些 方面进行深入探讨。
语音识别应用综述
随着语音识别技术的不断发展,其在多个领域的应用越来越广泛。以下是几 个主要应用领域的综述:
语音识别技术在不同场景下的应用及优缺点比较各种方法的优劣在实际应用 中,语音识别技术面临着多种挑战,如发音多样性、噪音干扰、口音和语速差异 等。因此,针对不同场景选择合适的语音识别技术尤为重要。在安静环境下,基 于深度学习的端到端语音识别模型表现较好;而在噪音环境下,基于HMM的语音 识别模型更具优势。
1、智能客服:语音识别技术在智能客服领域的应用已经相当成熟。通过语 音转文字、自然语言处理等技术,智能客服可以准确理解客户需求并快速作出回 应,提高客户满意度和服务效率。目前,许多银行、电信运营商等都在使用智能 客服系统来提升客户服务质量。
语音信号采集与处理--专业文献综述
语音信号处理的现状和展望作者:指导老师:摘要:文章简要介绍了“语音信号处理这一分支学科形成和发展的历史过程。
指出了它在现代信息科学技术中的地位和作用。
介绍了语音信号处理在应用领域的一些重要课题 ,如语音的低速率编码 ,语音的规则合成和文- 语转换系统 ,语音识别和人-机语音对话等 ,这些仍然是当前研究的热点。
文章最后展望了语音信号处理的发展前景 ,指出在这个领域还有很多难题等待人们去研究探索。
关键词:语音信号处理;语音低速编码;语音识别Current status and prospects of speech signal processingAuthor TutorAbstract: The history of speech signal processing and its status in modern informatics and information technology is reviewed.In practical app lica tions, key techniques such as low bit rate speech encoding, speech synthesis by rule, text to speech conversion, speech recognition, speech dialogue between man and machine are still hot topics for current research.Though much has been achieved in past years, there are many problems to be solved.Future developments of speech signal processing are identified.Key words : speech signal processing;low rate speech coding;speech recognition前言(引言):语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。
语音识别毕业论文
语音识别毕业论文语音识别毕业论文语音识别是一项旨在将人类语音转化为可被计算机理解和处理的技术。
它在人工智能领域中扮演着重要的角色,被广泛应用于语音助手、语音控制和语音翻译等领域。
本篇论文将探讨语音识别的原理、应用和未来发展趋势,以及相关的挑战和解决方案。
一、语音识别的原理语音识别的核心原理是将语音信号转化为文本信息。
这个过程可以分为三个主要步骤:信号预处理、特征提取和模型训练。
首先,语音信号经过预处理,包括降噪、去除不相关的信号和语音分割等。
然后,从预处理后的语音信号中提取特征,常用的特征包括梅尔频率倒谱系数(MFCC)和线性预测编码(LPC)。
最后,使用机器学习算法,如隐马尔可夫模型(HMM)和深度学习模型,对提取的特征进行训练和识别,得到最终的文本输出。
二、语音识别的应用语音识别技术在各个领域都有广泛的应用。
其中最为人熟知的是语音助手,如苹果的Siri和亚马逊的Alexa。
通过语音识别,用户可以通过语音指令控制智能设备,进行日常操作,如发送短信、播放音乐和查询天气等。
此外,语音识别还被应用于语音翻译、语音识别课堂、语音控制汽车等领域,极大地方便了人们的生活。
三、语音识别的挑战尽管语音识别技术已经取得了巨大的进步,但仍然存在一些挑战。
首先,语音识别需要处理各种不同的语音信号,如不同的语言、口音和噪声环境等。
这使得模型的训练和适应变得更加困难。
其次,语音识别需要处理大量的数据,这对计算资源和存储空间提出了巨大的要求。
此外,语音识别还需要解决语义理解和上下文推理等问题,以提高识别的准确性和可靠性。
四、语音识别的解决方案为了应对语音识别的挑战,研究者们提出了一系列的解决方案。
首先,通过使用更加先进的特征提取算法和模型训练方法,可以提高语音识别的准确性和鲁棒性。
其次,结合其他的人工智能技术,如自然语言处理和知识图谱,可以进一步提高语音识别的语义理解和上下文推理能力。
此外,利用云计算和分布式计算等技术,可以解决语音识别中的计算和存储问题。
语音识别技术综述
语音辨别技术综述语音辨别技术综述电子信息工程2010 级 1 班郭珊珊【纲要】跟着计算机办理能力的快速提升,语音辨别技术获得了飞快发展,该技术的发展和应用改变了人们的生产和生活方式,正逐渐成为计算机办理技术中的要点技术。
语音技术的应用已经成为一个拥有竞争性的新兴高技术家产。
【要点词】语音辨别;语音辨别原理;语音辨别发展;产品语音辨别是以语音为研究对象,经过语音信号办理和模式辨别让机器人自动辨别和理解人类口述的语言。
语音辨别技术就是让机器经过辨别和理解过程把语音信号转变成相应的命令或文本的高新技术。
1语音识其余原理语音辨别系统本质是一种模式辨别系统,包含特色提取、模式般配、参照模式库等三个基本单位元。
未知语音经过话筒变换成电信号后加载识别系统的输入端,第一经过预办理,再依据人的语音特色成立语音模型,对输入的语音信号进行剖析,并抽取所需特色,在此基础上成立语音辨别所需的模板。
计算机在辨别过程中要依据语音识其余模型,将计算机中寄存的语音模板与输入的语音信号的特色进行比较,依据必定的搜寻和般配策略,找出一系列最优的与输入语音般配的模板。
而后依据此模板的定义,经过查表可给出计算机的辨别结果。
这类最优的结果与特色的选择、语音模型的利害、模板能否正确都有直接的关系。
2语音辨别系统的分类语音辨别系统能够依据对输入语音的限制加以分类。
2.1 从说话者与辨别系统的有关性考虑能够将辨别系统分为 3 类: (1) 特定人语音辨别系统:仅考虑关于专人的话音进行识别; (2) 非特定人语音系统:识其余语音与人没关,往常要用大批不一样人的语音数据库对识别系统进行学习; (3) 多人的辨别系统:往常能辨别一组人的语音,或许成为特定组语音辨别系统,该系统仅要求对要识其余那组人的语音进行训练。
2.2 从说话的方式考虑也能够将辨别系统分为 3 类: (1) 孤立词语音辨别系统:孤立词辨别系统要求输入每个词后要停留; (2) 连结词语音辨别系统:连结词输入系统要求对每个词都清楚发音,一些连音现象开始出现; (3) 连续语音辨别系统:连续语音输入是自然流畅的连续语音输入,大批连音和变音会出现。
语音识别技术的现状及发展趋势
语音识别技术的现状及发展趋势目录1.弓I言 (1)2.语音识别技术的现状 (1)3.语音识别技术面临的挑战 (1)4.语音识别技术的发展趋势 (2)5.结论 (2)1.引言语音识别技术是一种将人类语音转化为计算机可读文本的技术,它在许多领域都有广泛的应用,如智能助手、智能家居、医疗诊断等。
本文将探讨语音识别技术的现状、挑战和未来发展。
随着科技的快速发展,语音识别技术得到了广泛应用。
语音识别技术是一种人机交互的关键技术,它使得计算机能理解和解析人类语言。
本文将探讨语音识别技术的现状及未来的发展趋势。
2.语音识别技术的现状1深度学习驱动的语音识别:深度学习已经在语音识别领域取得了显著的成果。
特别是循环神经网络(RNN)和长短期记忆网络(1STM)的应用,使得语音识别的精度和效率大大提高。
2.多语种和多模态语音识别:语音识别技术已经不再局限于单一语种或单一模态。
现在的语音识别系统可以处理多种语言,甚至可以结合多种信息模态,如语音和视觉,以提高识别精度。
3.个性化语音识别:针对不同用户发音习惯和口音的差异,现在的语音识别系统可以通过个性化定制来提高识别精度,满足不同用户的需求。
3.语音识别技术面临的挑战1噪声干扰和口音差异:现实环境中的噪声干扰和不同用户的口音差异是语音识别面临的主要挑战。
如何在复杂的现实环境中提高语音识别的精度是亟待解决的问题。
2.语言覆盖面:尽管现有的语音识别技术已经可以处理多种语言,但仍然有许多小众语言和方言无法得到很好的支持。
如何扩大语音识别的语言覆盖面是未来的一个重要研究方向。
3.隐私和安全:随着语音识别技术的广泛应用,隐私保护问题也日益突出。
如何在保证语音识别精度的同时,保护用户的隐私数据,是当前需要解决的一个重要问题。
4.语音识别技术的发展趋势1)隐私保护技术的进步:随着隐私保护技术的不断发展,如差分隐私等,可以期待未来的语音识别技术将在保护用户隐私的同时,实现更高的识别精度和效率。
语音识别综述PPT课件.ppt
• 性能( 用720小时的语音数据训练)
– 从:原先的4周时间
– 10/8/2024 到:现在的3天时间
18
提纲
• 语音识别简介 • 主流方法 • 技术现状
10/8/2024
19
技术现状──识别效果
• 识别率
– 美国:广播语音可达80% – 中国:有较强噪声的朗读语音:70%左右 – 距离实用还有相当大的距离
– 中国:声学所,自动化所,清华,北大
10/8/2024
5
语音识别简介──主要应用
• 主要应用
– 桌面输入法(ViaVoice):噪音、方言问题 – 电话语音服务器:中国现阶段主要应用 – 手机、PDA命令:比较热的方向,噪音、方言 – 智能交互:信息亭,飞行员训练
10/8/2024
6
提纲
• 语音识别简介 • 主流方法 • 技术现状
• 语言模型
– 已知发音串写出词串 – P(S|LP)P(P|L)P(L|W)P(W|A)P(A) – 其中,W是字串,A是读音串,L是词串,P是
词性串,S是词义串
• 主流方法
– 三元语法:Tri-gram
10/8/2024
12
主流方法──搜索算法
• 搜索(解码)
– 识别的主要过程 – 通过搜索找到某一概率(P(W))最大化的字串
技术现状──美国语音行业现状
• 工业界
– 总体是近乎亏损,通过整合来降低成本 – 整盘后盈利或持平的可能已经出现
• 学术界
– 做大系统的单位减少,专注于创新性的小项目/子课题的研究
• DARPA(Defense Advanced Research Projects Agency )
– 集中资源扶植主力单位,不鼓励小而全的单位 – 对创新研究的小任务也有明确的整合要求 – 已完成实际需求为目的
语音识别技术发展现状
语音识别技术发展现状近年来,随着技术的日益发展,语音识别技术逐渐成为一种普及的人机交互方式。
它可以将人的语音信号转化为可处理的数字信号,实现人与计算机之间的自然语音交互。
语音识别技术的发展不仅改变了人们日常生活和工作中的交流方式,也为许多产业带来了巨大的变化。
一、语音识别技术的原理语音识别技术的基本原理是通过音频采样和数字信号处理,将语音信号转化为计算机可以理解和处理的数字信号。
语音识别技术的三个核心技术是声学模型、语言模型和搜索算法。
声学模型是指对声音的频率、能量、语调等语音特征进行建模;语言模型是指对语音的语法、词汇、语义等知识进行建模;搜索算法则是从所有可能的语音识别结果中,找到最佳的结果。
二、语音识别技术的发展历程语音识别技术发展的历程可以分为四个阶段,分别是模板匹配阶段、统计学习阶段、深度学习阶段和端到端学习阶段。
模板匹配阶段是早期语音识别技术的阶段,主要是基于特定语音模板的比对和匹配。
统计学习阶段则依靠大量的语音数据进行训练和优化,建立了声学模型和语言模型,取得了一定的进展。
深度学习阶段引入了深度神经网络模型,取得了更好的识别效果。
而端到端学习是近年来的一个新的技术方向,它的基本思想是通过建立一种单一的神经网络模型实现端到端的语音识别。
三、语音识别技术的应用领域语音识别技术已广泛应用于许多领域。
在智能家居领域,语音识别技术可以实现家居设备的远程操控,大大提高了家居生活的便利性和舒适度。
在医疗领域,语音识别技术可以实现医生对病人的远程诊断,方便了医疗资源的分配和利用。
在金融领域,语音识别技术可以实现语音支付等功能,提高了金融交易的效率和安全性。
此外,语音识别技术还可以应用于教育、交通、机器人等领域,为人们生活和工作带来巨大的便利。
四、语音识别技术面临的挑战和前景虽然语音识别技术已经取得了很大的进展,但仍面临着一些挑战。
例如,大多数语音识别技术对背景噪声和口音等干扰因素的适应性较差,还需要进一步优化。
基于深度学习的语音识别技术研究
基于深度学习的语音识别技术研究目录一、内容综述 (2)二、文献综述 (3)2.1 国内外研究现状 (4)2.2 研究问题及挑战 (6)三、深度学习理论基础 (7)3.1 深度学习概述 (9)3.2 常见深度学习模型 (10)3.2.1 神经网络模型 (11)3.2.2 循环神经网络模型 (12)3.2.3 卷积神经网络模型 (14)3.3 深度学习在语音识别中的应用优势 (15)四、基于深度学习的语音识别技术研究 (17)4.1 数据预处理技术 (18)4.2 特征提取技术 (19)4.3 模型构建与训练技术 (20)4.4 语音识别评估指标与方法 (22)五、基于深度学习的语音识别技术实现过程 (23)5.1 数据集选择与准备 (25)5.2 模型设计 (26)5.3 模型训练与优化 (28)5.4 模型评估与测试 (29)六、实验设计与结果分析 (30)6.1 实验环境与数据集介绍 (31)6.2 实验设计与实施过程 (32)6.3 实验结果分析 (33)一、内容综述随着人工智能技术的不断发展,语音识别技术在智能家居、车载导航、医疗保健等领域的应用越来越广泛。
为了提高语音识别的准确性和鲁棒性,众多研究者开始尝试采用深度学习方法进行研究和优化。
本论文将对基于深度学习的语音识别技术研究进行综述,以期为相关领域的研究和应用提供有益的参考。
在基于深度学习的语音识别技术研究中,卷积神经网络(CNN)和循环神经网络(RNN)是两种常用的神经网络结构。
CNN主要用于处理时序特征,通过卷积操作提取语音信号的局部特征;而RNN则擅长捕捉序列信息,能够处理变长的输入序列。
长短时记忆网络(LSTM)作为一种特殊的RNN结构,因其能够有效地解决长期依赖问题而被广泛应用于语音识别任务中。
在基于深度学习的语音识别技术研究中,数据增强、模型训练、解码策略等技术同样不容忽视。
数据增强可以通过对原始语音数据进行降噪、变速、变调等操作,增加训练数据的多样性,提高模型的泛化能力。
语音识别研究综述
语音识别研究综述一、本文概述随着信息技术的飞速发展,已经成为推动社会进步的重要力量。
作为领域的关键技术之一,语音识别技术在近年来取得了显著的进步,广泛应用于智能家居、医疗诊断、交通管理等多个领域。
本文旨在对语音识别技术的研究现状和发展趋势进行综述,以期为相关领域的研究人员和实践者提供有益的参考。
本文将回顾语音识别技术的发展历程,从早期的基于模式匹配的方法到现代的深度学习技术,分析不同技术阶段的优缺点。
本文将重点介绍当前语音识别技术的核心算法和模型,包括声学模型、创作者和解码算法等,并评估这些技术在不同应用场景下的性能表现。
本文还将探讨语音识别技术面临的挑战和问题,如噪声干扰、方言和口音差异等,并讨论可能的解决方案。
本文将展望语音识别技术的发展趋势和未来研究方向,包括多模态交互、个性化定制、隐私保护等方面的内容。
通过本文的综述,读者将能够对语音识别技术有更加全面和深入的了解,为未来的研究和应用提供有益的启示和借鉴。
二、语音识别技术基础语音识别,即将人类语音转化为机器可理解和处理的信息,是领域的重要分支。
其技术基础主要包括信号处理、特征提取、模式识别与机器学习等方面。
在信号处理阶段,原始语音信号需要进行预处理,如降噪、端点检测等,以提高语音识别的准确率。
降噪技术通过消除背景噪音,提升语音信号的质量;而端点检测则负责确定语音的开始和结束,避免无效数据的干扰。
特征提取是语音识别的关键步骤。
通过提取语音信号中的关键信息,如基音频率、共振峰等,可以将语音转化为计算机可处理的特征向量。
这些特征向量既包含了语音的主要内容,又降低了计算的复杂度。
模式识别与机器学习是语音识别技术的核心。
在训练阶段,系统通过大量的语音数据学习语音与文字之间的映射关系;在识别阶段,系统则根据输入的语音特征,利用已学习的映射关系进行文字推断。
近年来,深度学习技术的发展为语音识别带来了突破,通过构建深度神经网络,系统能够更有效地处理复杂的语音模式,提高识别的准确率。
语音识别技术综述
语音识别技术综述一、引言语音识别技术是指通过计算机技术将人类的语音转化为计算机可识别的文本或命令的过程。
随着人工智能技术的不断发展,语音识别技术在各个领域得到了广泛应用,如智能家居、智能客服、语音助手等。
本文将对语音识别技术进行综述。
二、语音识别技术分类1.基于模板匹配的语音识别技术该方法是通过预先录制一系列标准的语音样本,然后将输入的语音与这些样本进行匹配,从而获得相应的文本或命令。
但是该方法需要大量存储空间和计算资源,并且对说话人的声音和环境噪声敏感。
2.基于统计模型的语音识别技术该方法是通过使用概率模型来描述声学特征与文本之间的关系,从而实现语音识别。
该方法包括隐马尔可夫模型(HMM)、条件随机场(CRF)等。
这些模型需要大量训练数据,并且对说话人和环境噪声有一定容忍度。
3.基于深度学习的语音识别技术该方法是通过使用深度神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型来实现语音识别。
该方法具有良好的鲁棒性和准确性,但需要大量训练数据和计算资源。
三、语音识别技术关键技术1.特征提取特征提取是将语音信号转换为计算机可处理的数字信号的过程。
常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。
2.声学模型声学模型是描述声学特征与文本之间关系的数学模型。
常用的声学模型包括隐马尔可夫模型(HMM)、条件随机场(CRF)等。
3.语言模型语言模型是描述文本序列出现概率的数学模型。
常用的语言模型包括n元语法、递归神经网络语言模型(RNNLM)等。
4.解码器解码器是将声学特征转化为文本序列的过程。
常用的解码器包括维特比算法、束搜索算法等。
四、语音识别技术应用领域1.智能家居语音识别技术可以实现智能家居的控制,如通过语音控制灯光、空调等。
2.智能客服语音识别技术可以实现智能客服的自助服务,如通过语音识别用户的问题并给出相应的答案。
3.语音助手语音识别技术可以实现语音助手的功能,如通过语音控制手机进行打电话、发短信等操作。
语音科技论文范文
语音科技论文范文语音科技:人工智能领域的新前沿随着人工智能技术的不断进步,语音科技已经成为人工智能领域中一个重要的分支。
它涉及到语音识别、语音合成、自然语言处理等多个方面,旨在让机器能够更好地理解和生成人类的语言。
本文将探讨语音科技的最新进展、应用场景以及面临的挑战。
1. 语音识别技术语音识别技术,也称为自动语音识别(ASR),是一种将人类的语音转换成文本的技术。
近年来,深度学习算法的引入极大地提高了语音识别的准确性。
通过训练大量的语音数据,深度学习模型能够识别不同的口音、语速和背景噪音,使得语音识别在各种环境下都能表现出色。
2. 语音合成技术与语音识别相反,语音合成技术(TTS)是将文本信息转换成语音输出的过程。
现代的TTS系统不仅能够生成流畅自然的语音,还能够模拟不同的声音特征,如性别、年龄和情感。
这使得TTS技术在有声读物、导航系统以及虚拟助手中得到了广泛的应用。
3. 自然语言处理自然语言处理(NLP)是语音科技中的核心组成部分,它使得机器能够理解、解释和生成人类语言。
NLP技术的应用非常广泛,包括机器翻译、情感分析、问答系统等。
随着机器学习技术的发展,NLP系统在理解语言的复杂性和多样性方面取得了显著的进步。
4. 语音科技的应用语音科技的应用场景日益增多,从智能家居控制到医疗咨询,再到客户服务,语音科技正在改变我们与机器的交互方式。
例如,智能音箱可以通过语音命令控制家中的电器,而医疗咨询系统则可以通过语音与患者进行交流,提供健康建议。
5. 面临的挑战尽管语音科技取得了巨大的进展,但它仍然面临着一些挑战。
隐私和安全问题是用户最关心的问题之一,尤其是在处理敏感信息时。
此外,不同语言和方言的多样性也给语音识别带来了困难。
为了克服这些挑战,研究人员正在不断优化算法,提高系统的鲁棒性和适应性。
结论语音科技正在迅速发展,它不仅提高了人机交互的便利性,也为各行各业带来了新的机遇。
随着技术的不断进步,我们有理由相信,未来语音科技将在更多领域展现出其巨大的潜力。
基于深度学习的语音识别技术研究综述
基于深度学习的语音识别技术研究综述一.引言语音识别是指将语音信号转换为文字信息的过程。
目前,随着人工智能技术的发展和深度学习算法的成熟,语音识别技术已经取得了长足的进步。
基于深度学习的语音识别技术是当前研究的热点之一,本文将对其进行综述。
二.深度学习的基本原理深度学习是一种通过训练神经网络进行自动化学习的机器学习技术。
其基本原理是利用多层神经网络模拟人类大脑的信息处理过程,通过不断的学习和优化,从而获得对大量复杂数据的理解和处理能力。
三.基于深度学习的语音识别技术的应用领域基于深度学习的语音识别技术广泛应用于语音识别系统、智能家居、智能客服、语音翻译、语音搜索等领域。
其中,语音识别系统是应用最为广泛的领域之一,主要包括自动语音识别、语音合成和语音交互接口。
四.基于深度学习的语音识别技术的主要算法基于深度学习的语音识别技术的主要算法包括卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等。
其中,LSTM算法在语音识别任务中表现较好。
五.基于深度学习的语音识别技术的关键技术研究基于深度学习的语音识别技术的关键技术研究主要包括提取语音特征、建模、声学模型优化、语言模型和声学模型的联合训练等方面。
其中,声学模型优化是提高语音识别精度的主要手段之一。
六.基于深度学习的语音识别技术的评价指标基于深度学习的语音识别技术的评价指标主要包括准确率、召回率、识别率、敏感度和特异性等。
其中,准确率是评价语音识别系统性能的重要指标。
七.基于深度学习的语音识别技术的未来发展趋势基于深度学习的语音识别技术将继续发展并得到广泛应用。
未来发展趋势主要包括多语言识别、语音情感识别、语音同步翻译、基于语义模型的语音识别等方面。
八.结论基于深度学习的语音识别技术已经成为语音识别领域的核心技术之一,其应用领域和发展前景广阔。
对于语音识别系统的开发者和研究者而言,了解和掌握基于深度学习的语音识别技术将是非常有意义的。
基于深度学习的语音识别技术研究综述
基于深度学习的语音识别技术研究综述近年来,随着人工智能技术的迅速发展,深度学习技术逐渐成为语音识别领域的一大热点。
基于深度学习的语音识别技术具有更高的准确率和更广泛的适用范围,被广泛运用于多领域中。
本文将对基于深度学习的语音识别技术的研究现状进行综述。
一、深度学习技术在语音识别中的应用目前,对于语音识别中的模型选择问题,人们普遍采用深度学习技术进行解决。
在语音信号处理中,通常采用的是深度神经网络(DNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等深度学习算法。
其中,DNN最常用,是一种多层感知机(MLP)的扩展。
DNN 在语音信号处理中的应用,主要是以拟合各种复杂的非线性映射为目标,利用深度学习模型的非线性映射能力,真正实现了高精度的语音识别。
RNN是一种旨在处理序列和时间序列的深度神经网络,常常被用于处理类时间序列数据。
RNN具有许多方法,其中包括门控循环单元(GRU)和LSTM,可以快速适应输入输出的序列。
RNN在自然语言处理和语音识别等领域中,能够很好地处理序列问题。
与传统的神经网络相比,LSTM网络的表现要好得多。
LSTM 能够快速适应输入输出的序列,有效地处理长序列模式,避免了长时依赖性。
LSTM网络的一个重要可以应用是语音识别领域。
二、基于深度学习的语音识别技术的研究现状1. 单通道语音和多通道语音识别技术从声音特征的角度入手,目前已有很多基于深度学习的语音识别技术方法进行了研究。
其中,针对单通道语音的识别技术已经取得了很不错的成果,而现在更多的研究方向则是多通道语音的识别技术。
多通道语音识别技术中,其识别模型通常由时间滑动子空间鉴别分析(T-SUB)和卷积神经网络(CNN)结构共同组成。
其核心思想是从原始语音信号中提取出时间、空间等信息。
2. 训练数据增强技术语音识别中数据规模和数据质量会直接影响识别效果。
因此,如何有效地扩充训练数据,是语音识别中至关重要的研究方向。
数据增强技术在该领域中得到了广泛的应用。
语音合成方面的文献综述
语音合成方面的文献综述1. 引言随着人工智能、计算机语音技术的发展,语音合成技术在人机交互、智能客服、虚拟助手等领域得到了广泛应用。
语音合成旨在将文本信息转化为自然流畅的语音输出,为用户提供自然、真实的语音体验。
本文将对语音合成技术的发展历程、主要方法、技术挑战及未来发展趋势进行综述。
2. 发展历程语音合成技术起源于20世纪50年代,经历了几代技术的发展。
从最初的基于模板匹配的方法,到基于参数合成、统计合成、深度学习等技术,语音合成技术不断迭代,音质和自然度逐渐提高。
3. 主要方法(1)基于模板匹配的方法:通过将输入文本与预先录制的音库进行匹配,选取最相似的音频片段进行拼接。
此方法简单易实现,但合成语音的自然度较低。
(2)基于参数合成的方法:采用声学模型和语言模型生成语音。
声学模型将文本转换为声谱图,语言模型则根据声谱图生成语音。
此方法在一定程度上提高了合成语音的自然度,但仍存在局限性。
(3)基于统计合成的方法:利用统计学习方法生成声谱图,并通过后处理技术改善音质。
此方法在语音自然度方面有较大提升,但计算复杂度较高。
(4)基于深度学习的方法:利用神经网络 (如深度神经网络、卷积神经网络等)生成声谱图,再通过后处理技术合成语音。
此方法在音质和自然度方面取得了显著的成果。
4. 技术挑战(1)自然度:如何提高合成语音的自然度,使其更接近真实语音,是语音合成技术面临的重要挑战。
(2)语音质量:如何提高合成语音的音质,包括音量、音色、清晰度等方面的表现,也是一项关键技术。
(3)鲁棒性:在复杂环境下,如何保证语音合成系统的稳定性和可靠性,降低误识别和中断现象的发生。
(4)个性化语音合成:如何为不同用户提供个性化的语音合成服务,满足个性化需求。
5. 未来发展趋势(1)深度学习技术的应用:随着深度学习技术的不断发展,未来语音合成技术将更加依赖于神经网络,提高合成语音的自然度和音质。
(2)多模态融合:结合视觉、触觉等多模态信息,提高语音合成的真实感和交互性。
语音识别文献综述23页PPT
语音识别文献综述
1、战鼓一响,法律无声。——英国 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
语音识别技术综述The summarization of speech recognition张永双苏州大学摘要本文回顾了语音识别技术的发展历史,综述了语音识别系统的结构、分类及基本方法,分析了语音识别技术面临的问题及发展方向。
关键词:语音识别;特征;匹配AbstactThis article review the courses of speech recognition technology progress ,summarize the structure,classifications and basic methods of speech recognition system and analyze the direction and the issues which speech recognition technology development may confront with. Key words: speech recognition;character;matching引言语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。
语音识别是一门交叉学科,所涉及的领域有信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等,甚至还涉及到人的体态语言(如人民在说话时的表情手势等行为动作可帮助对方理解)。
其应用领域也非常广,例如相对于键盘输入方法的语音输入系统、可用于工业控制的语音控制系统及服务领域的智能对话查询系统,在信息高度化的今天,语音识别技术及其应用已成为信息社会不可或缺的重要组成部分。
1.语音识别技术的发展历史语音识别技术的研究开始二十世纪50年代。
1952年,AT&Tbell实验室的Davis等人成功研制出了世界上第一个能识别十个英文数字发音的实验系统:Audry系统。
60年代计算机的应用推动了语音识别技术的发展,提出两大重要研究成果:动态规划(Dynamic Planning,DP)和线性预测分析(Linear Predict,LP),其中后者较好的解决了语音信号产生模型的问题,对语音识别技术的发展产生了深远影响。
70年代,语音识别领域取得突破性进展。
线性预测编码技术(Linear Predict Coding,LPC)被Itakura成功应用于语音识别;Sakoe和Chiba将动态规划的思想应用到语音识别并提出动态时间规整算法,有效的解决了语音信号的特征提取和不等长语音匹配问题;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。
在同一时期,统计方法开始被用来解决语音识别的关键问题,这为接下来的非特定人大词汇量连续语音识别技术走向成熟奠定了重要的基础。
80年代,连续语音识别成为语音识别的研究重点之一。
Meyers和Rabiner研究出多级动态规划语音识别算法(Level Building,LB)这一连续语音识别算法。
80年代另一个重要的发展是概率统计方法成为语音识别研究方法的主流,其显著特征是HMM模型在语音识别中的成功应用。
1988年,美国卡内基-梅隆大学(CMU)用VQ/HMM方法实现了997词的非特定人连续语音识别系统SPHINX。
在这一时期,人工神经网络在语音识别中也得到成功应用。
进入90年代后,随着多媒体时代的来临,迫切要求语音识别系统从实验走向实用,许多发达国家如美国、日本、韩国以及IBM、Apple、AT&T、NTT等著名公司都为语音识别系统实用化的开发研究投以巨资。
最具代表性的是IBM的ViaVoice和Dragon公司的Dragon Dectate系统。
这些系统具有说话人自适应能力,新用户不需要对全部词汇进行训练便可在使用中不断提高识别率。
当前,美国在非特定人大词汇表连续语音隐马尔可夫模型识别方面起主导作用,而日本则在大词汇表连续语音神经网络识别、模拟人工智能进行语音后处理方面处于主导地位。
国在七十年代末就开始了语音技术的研究,但在很长一段时间内,都处于缓慢发展的阶段。
直到八十年代后期,国内许多单位纷纷投入到这项研究工作中去,其中有中科院声学所,自动化所,清华大学,四川大学和西北工业大学等科研机构和高等院校,大多数研究者致力于语音识别的基础理论研究工作、模型及算法的研究和改进。
但由于起步晚、基础薄弱,计算机水平不发达,导致在整个八十年代,我国在语音识别研究方面并没有形成自己的特色,更没有取得显著的成果和开发出大型性能优良的实验系统。
但进入九十年代后,我国语音识别研究的步伐就逐渐紧追国际先进水平了,在“八五”、“九五”国家科技攻关计划、国家自然科学基金、国家863计划的支持下,我国在中文语音技术的基础研究方面也取得了一系列成果。
在语音合成技术方面,中国科大讯飞公司已具有国际上最领先的核心技术;中科院声学所也在长期积累的基础上,研究开发出颇具特色的产品:在语音识别技术方面,中科院自动化所具有相当的技术优势:社科院语言所在汉语言学及实验语言科学方面同样具有深厚的积累。
但是,这些成果并没有得到很好的应用,没有转化成产业;相反,中文语音技术在技术、人才、市场等方面正面临着来自国际竞争环境中越来越严峻的挑战和压力。
2.语音识别系统的结构主要包括语音信号的采样和预处理部分、特征参数提取部分、语音识别核心部分以及语音识别后处理部分,图2-1给出了语音识别系统的基本结构。
图2-1 语音识别系统的基本结构图语音识别的过程是一个模式识别匹配的过程。
在这个过程中,首先要根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模式。
而在识别过程中要根据语音识别的整体模型,将输入的语音信号的特征与已经存在的语音模式进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入的语音相匹配的模式。
然后,根据此模式号的定义,通过查表就可以给出计算机的识别结果。
3.语音识别系统的分类根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。
其中,孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现,如在一段话中检测“计算机”、“世界”这两个词。
根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。
显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。
另外,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。
不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。
4.语音识别系统的基本识别方法一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模式匹配的方法以及利用人工神经网络的方法。
4.1基于语音学和声学的方法该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段还没有达到实用的阶段。
4.2模式匹配的方法模式匹配方法的发展比较成熟,目前已达到实用阶段。
在模式匹配方法中,需经过四个步骤:特征提取、模式训练、模式识别和判决。
4.2.1特征提取特征提取方法主要采用以下三种:基于LPC的倒谱参数(LPCC)分析法,基于Mel系数的Mel频标倒谱系数(MPCC)分析法,基于现代处理技术的小波变换系数分析法。
在这些方法中,MFCC方法比LPCC方法的识别效果稍好一些,而且MFCC符合人们的听觉特性,在有信道噪声和频谱失真的情况下具有较好的稳健性,其不足之处是MFCC方法中多次用到FFT,故算法的复杂程度远大于LPCC方法。
因此,在安静的环境下,目前比较成熟和最常用的语音特征提取方法还是LPCC方法。
在条件不好的环境下,则宜选用M FCC方法。
而小波变换法则是一种新兴的理论工具,要获得较高的识别率还有许多问题有待研究,但与经典的方法相比,小波变换法有着计算量小、复杂程度低、识别效果好等许多优点,研究前景十分乐观,是研究发展的一个方向。
4.2.2模式识别模式识别常用技术有三种:动态时间规整(DTW)、隐马尔可夫模型(HMM)、矢量量化(VQ)。
(1)动态时间规整(DTW)语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。
所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素) 的始点和终点的位置,从语音信号中排除无声段。
在早期,进行端点检测的主要依据是能量、振幅和过零率。
但效果往往不明显。
上世纪6 0 年代日本学者Itakura 提出了动态时间规整算法。
算法的思想就是把未知量均匀地伸长或缩短,直到与参考模式的长度一致。
在这一过程中,未知单词的时间轴要不均匀地扭曲或弯折,以使其特征与模型特征对正。
在连续语音识别中仍然是主流方法。
同时,在小词汇量、孤立字(词) 识别系统中,也已有许多改进的DTW 算法提出。
(2)隐马尔可夫模型(HMM)隐马尔可夫模型是20世纪70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。
目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM 模型的。
HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。
前者通过后者表现出来,但前者的具体参数是不可测的。
人的言语过程实际上就是一个双重随机过程,语音信号本身是一个可观测的时变序列,是由大脑根据语法知识和言语需要(不可观测的状态) 发出的音素的参数流。
可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。
(3)矢量量化(VQ)矢量量化是一种重要的信号压缩方法。
与HMM 相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。
其过程是:将语音信号波形的k 个样点的每一帧,或有k 个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。
量化时,将k 维无限空间划分为M 个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。
矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。