EMC的分析与可靠性设计

合集下载

汽车电子产品电磁兼容性分析、仿真及优化设计

汽车电子产品电磁兼容性分析、仿真及优化设计

3、PCB布局技术:根据电磁兼容性要求,合理安排PCB上元器件的位置和连接 方式,以提高电磁干扰的抵抗能力。例如,可以将敏感元器件布置在PCB的低 干扰区域,或者优化线束走线方式以减小电磁辐射。
在关键技术方面,需要以下几个方面:
1、电路设计:合理的电路设计可以有效地减小电磁干扰。例如,选择合适的 元器件和电路拓扑结构,避免高频信号的突变和电流尖峰的产生。
2、搜集相关资料:收集与汽车电子电磁兼容性相关的文献资料,了解已有研 究成果和不足之处。
3、理论分析和仿真模拟:利用电磁场理论、数值仿真软件等技术手段,对汽 车电子设备在不同电磁环境下的性能进行预测和分析。
4、实验设计与实施:根据理论分析和仿真模拟的结果,设计实验并进行实施。 实验过程中需要实验条件、测试方法、数据处理等方面的问题。
展望未来,随着航空技术的不断发展和电子设备的日益复杂化,PCB布局电磁 兼容性设计将成为航空发动机电子控制器设计中越来越重要的研究方向。研究 人员需要进一步深入研究和探索新的设计方法,以提升航空发动机电子控制器 的性能和可靠性。应注重开展跨学科合作,将电磁兼容性设计与航空发动机电 子控制器的其他关键技术相结合,实现全面优化设计。
在电子设备中,PCB布局的电磁兼容性是指PCB在特定环境中对电磁干扰(EMI, Electromagnetic Interference)的抵抗能力和不会产生影响其他电路或系 统的电磁辐射水平。对于航空发动机电子控制器来说,其工作环境中存在大量 的电磁干扰,如雷电、无线电信号、电力线等。因此,PCB布局的电磁兼容性 设计对于保证航空发动机电子控制器的稳定性和可靠性至关重要。
3、加强屏蔽措施:对于关键电路和元器件,可以采用金属外壳或导电材料进 行屏蔽,以减少电磁干扰的影响。

结构工程师必须掌握的EMC结构设计知识

结构工程师必须掌握的EMC结构设计知识

结构工程师必须掌握的EMC结构设计知识1.EMC简单介绍EMC的概念:电磁兼容(Electromagnetic Compatibility , EMC)其定义为“设备和系统在其电磁环境中能正常工作且不对环境中任何事物构成不能承受的电磁骚扰的能力”。

EMC包含两个方面的意思,首先,设备能够抵抗所接受到的干扰而正常工作(即EMS);其次,设备所发射的电磁干扰不能影响其它设备的正常工作(即EMI)。

生活中的EMC:飞机上限制使用手机等电子设备,是因为手机等有可能会对机载设备造成电磁干扰,引起机载设备性能下降或者功能丧失,影响飞机飞行安全。

有时乘客会偷偷使用手机,为什么没有“引起机载设备性能下降或者功能丧失”?这是因为飞机的“电磁兼容性”设计有很高的安全裕度。

随着电子电气设备越发密集的应用,电磁兼容性引起工业制造领域各设备制造商的广泛关注,民用飞机电磁兼容性设计验证更是有着严格的适航要求。

电磁兼容性设计工作基于一个重要的现象:电子电气设备在正常工作时,既对外部空间发射电磁能量,也容易被外来电磁能量干扰。

现代民机作为高度集成各种电子设备的精密系统,任何关键设备的正常工作受到影响,后果都将不堪设想。

例如,飞机若想按照事先规划的航路飞行以确保空域畅通和绝对安全,在飞行中需要时刻与地面塔台保持联系,这有赖导航系统的准确定位,且通信系统能快速清晰传达和接收信息。

如果电磁兼容工作不到位,同时工作的其他设备所发射的电磁能量经过叠加,可能超过一般设备的耐受上限,通过线缆传导或者空间耦合等机理进入通信、导航等系统,轻则降低系统工作性能,重则损坏电路,使系统彻底失效。

电磁干扰作为一种可传播的能量,从发射源产生通过耦合路径最后到达受影响设备。

上述三者即电磁兼容三要素。

民机设计师通过“三要素”开展电磁兼容工作。

比如,在设计初期,通过优化“发射源”的设计,使其降低无意泄漏的电磁能量;在系统安装集成阶段,通过增加敏感设备之间的隔离距离,“切断”耦合路径;在系统验证阶段,如果发现了电磁兼容问题,再针对性地为问题设备增加屏蔽层。

USB保护电路的EMC设计

USB保护电路的EMC设计

USB保护电路的EMC设计1.确定电路布局电路布局是EMC设计中的重要一环。

首先,需要将接地电路的尽可能短。

接地电路是消除电磁串扰的关键,良好的接地是保证设备EMC性能的基础。

其次,将高频信号线与低频信号线分离布局,减少彼此之间的相互干扰。

此外,还需要根据系统需求,合理布局各个电路模块,减少信号线的长度和走线面积。

2.适当选择滤波器滤波器的设计对于EMC起着至关重要的作用。

在USB保护电路中,常常需要使用滤波器来抑制高频噪声和滤除电源线上的电磁干扰。

常用的滤波器包括LC滤波器、Ferrite Beads和EMI滤波器等。

在选择滤波器时,需要根据系统的特点和需求,合理选择滤波器的参数和类型。

3.良好的接地设计良好的接地设计是EMC设计中的重要一环。

首先,需要构建星型接地系统,即将所有的接地点连接在一起,并与外部接地点相连接。

其次,需要采用大面积的接地层来减少环路面积,并且减少共模噪声的辐射和接收。

另外,还要注意将模拟和数字地线分离布局,减少相互之间的干扰。

4.抗干扰设计在USB保护电路的EMC设计中,抗干扰设计是重要的一环。

主要包括以下几个方面:首先,需要合理选择电容和电感元件,以增加抑制干扰的能力。

其次,需要适当加入屏蔽罩或屏蔽层,以减少电磁辐射和电磁感受。

另外,要合理设置地孔和电流回路,在设计中避免环路,减少电磁干扰。

5.可靠的布线设计布线设计也是EMC设计中的关键一环。

在USB保护电路中,需要合理规划信号线和电源线的走线路径,尽量减少信号线的长度和延迟。

此外,还要合理设计PCB板的层压结构,减少信号线的串扰和电磁辐射。

6.使用合适的材料和元件选择合适的材料和元件也是EMC设计中的重要一环。

例如,选择具有良好屏蔽性能的材料和元件,如磁性材料、屏蔽罩等,以减少电磁辐射和电磁感受。

另外,选择高频特性好的元件,如高频滤波器等,以提高系统的EMC性能。

总结起来,USB保护电路的EMC设计是确保设备电磁兼容性和可靠性的重要环节。

射频电路中的电磁兼容问题分析及解决方案

射频电路中的电磁兼容问题分析及解决方案

射频电路中的电磁兼容问题分析及解决方案随着现代通讯技术的不断发展,射频电路的应用越来越广泛,但同时也带来了各种电磁兼容性问题。

这些问题严重影响了电路的性能和可靠性,需要采取一些措施来降低电磁干扰和提高电路的电磁兼容性。

本文将从射频电路中的电磁兼容问题入手,分析其原因,并提出一些解决方案。

一、射频电路中的电磁兼容问题在射频电路中,电磁兼容问题常常表现为电磁干扰和电磁泄漏。

电磁干扰(EMI)指电磁场对电路的干扰,可以使电路系统出现误差、噪声、振荡等现象,严重影响电路的性能和可靠性。

电磁泄漏(EMC)则是指电路的辐射和传导干扰影响其他电路设备的工作,如毫米波雷达和微波电子设备等。

二、射频电路中电磁兼容问题的原因射频电路中的电磁兼容问题主要是由以下原因引起的:1、电磁辐射电磁辐射是指电路的信号频率与基波频率相同或者倍频频率接近电磁波向外辐射。

这种辐射会造成电磁泄漏干扰,破坏其他电路设备的正常工作。

2、电磁谐振电磁谐振是指电路中的元器件、线路和电路板产生的电磁场彼此作用产生振荡。

这种振荡会使电路变得不稳定,容易产生电磁干扰。

3、电磁传导电磁传导是指电路中元器件中出现的电磁场通过共同的地或信号线等媒介对周围的干扰。

这种干扰会产生电压干扰和电流干扰,导致电路性能急剧下降。

三、射频电路中电磁兼容问题的解决方案为降低电磁兼容性问题,我们可以采取以下措施:1、选择合适的元器件和材料射频电路中的元器件和材料需要选择品质较好的,这些元器件和材料应具有较高的带宽和品质因子,同时其抗EMI/EMC的性能也要较强。

2、设计合理的线路布局线路布局应尽量简单,可以通过增加两极滤波器、避免电路的环路、尽量缩小线路面积等,降低电路的电磁能散发。

例如,采用单端布线并避免使用复杂的结构,设计较短的布线线路等,可以有效降低电磁兼容性问题。

3、增加电磁隔离屏蔽结构影响电路性能的小波长电磁辐射必须被隔离,这可以通过使用较好的射频电缆,尽量使用电容式/吸收材料垫子和EMC隔离屏蔽等方法来实现。

emc模式介绍能源化工工程科技专业资料

emc模式介绍能源化工工程科技专业资料

化工工艺流程与设备
化工工艺流程是指通过一定的化学反应过程,将 原料转化为目标产物的过程。
化工设备是实现化工工艺流程所必需的设备,包 括反应器、分离器、换热器、塔器等。
不同的化工工艺流程需要不同的设备,设备的选 择和设计需要根据具体的工艺要求和条件进行。
能源效率提升技术与实践
能源效率提升技术是实现能源节 约和减少环境污染的重要手段, 包括节能技术、清洁能源技术、
质量标准
为了确保服务质量,EMC应遵循国家和行业的质量标准,并建立内部质量控制体 系,以确保服务的可靠性和有效性。
能源审计与数据监测
能源审计
EMC应定期进行能源审计,以了解客户的能源消耗情况,发现能源浪费和节能潜力。
数据监测
通过数据监测技术,EMC可以实时监测客户的能源消耗情况,及时发现异常消耗和能源浪费问题。
02
数字化和智能化技术的应用将 进一步推动能源化工行业的转 型升级,提高生产效率和产品 质量。
03
未来,能源化工行业将继续朝 着高效、环保、安全的方向发 展,为人类社会的可持续发展 做出更大的贡献。
THANKS FOR WATCHING
感谢您的观看
能源回收利用技术等。
在实践中,企业需要结合自身的 实际情况,选择适合的能源效率 提升技术,并制定相应的实施方
案。
政府可以出台相关政策,鼓励企 业采用能源效率提升技术,提高
整个行业的能源利用效率。
行业发展趋势与未来展望
01
随着环保意识的提高和技术的 不断进步,新能源的开发和利 用将逐渐成为能源化工行业的 发展重点。
的影响。
成本加价合同
成本加价合同中,EMC为客 户承担能源成本,并在合同 中商定一个固定的加价,以 确保EMC获得合理的投资回

EMC 设计技术

EMC 设计技术

EMC 设计技术随着电力电子技术的发展,开关电源模块以其相对体积小、效率高、工作可靠等优点而逐渐取代传统整流电源但是,由于开关电源工作频率高,内部会产生很高的电流、电压变化率(即高dv/dt和di/df),导致开关电源模块产生较强的电磁干扰,并通过传导、辐射和串扰等耦合途径影响自身电路及其它电子系统的正常工作,当然其本身也会受到其它电子设备电磁干扰的影响,电磁干扰将造成传输信号畸变,影响电子设备的止常工作对于雷电、静电放电等高能量的电磁下扰,严重时会损坏电子设备而对于某些电子设备,电磁辐射会引起重要信息的泄漏,严重时会威胁国家信息安全这就是我们所讨论的电磁兼容性问题另外,国家开始对部分电子产品强制实行3C认证,因此,一个电子设备能否满足电磁兼容标准,将关系到这一产品能否在市场上销售,所以,进行开关电源的电磁兼容性研究显得非常重要日常生活中常用的频率范围,包括交流电源频率、音频、长、中、短波收音机占有的频段、调频及电视广播、蜂窝电话常用的900MHz 及1.8GHz。

但实际的频谱远比这拥挤得多,9KHz 以上的频段几乎都被用于特定的场合。

随着微波技术广泛应用于日常生活,该图中所示的频率也很快将扩展至10GHz(甚至100GHz)。

交流电源整流器件在基频至相当高的谐波频率范围内均可发射开关噪声,具体情况取决于这些器件的功率。

5 千伏安左右的电源(线性或开关模式)由于其50 或60Hz 桥式整流所产生的开关噪声,通常在数MHz 频率以下不能满足传导发射的限制要求。

可控硅直流电机驱动装置及交流移相控制系统所产生的噪声也大致如此。

这些噪声极易干扰中长波和部分短波广播。

开关电源的工作基频一般在2kHz 至500kHz 之间。

开关电源在其工作频率1000 倍的频率处仍具有很强的发射是常见的。

图15 给出了个人计算机中常用的频率为70kHz 的开关电源的发射频谱。

这将干扰包括调频广播在内的广播通信。

这些器件的发射通常会在200MHz 甚至更高的频率超过发射极限值。

芯片设计中的电磁兼容性分析技术有哪些创新

芯片设计中的电磁兼容性分析技术有哪些创新

芯片设计中的电磁兼容性分析技术有哪些创新在当今科技飞速发展的时代,芯片作为电子设备的核心组件,其性能和可靠性至关重要。

而电磁兼容性(EMC)是确保芯片在复杂电磁环境中正常工作、不干扰其他设备且自身不受干扰的关键因素。

随着芯片集成度的不断提高、工作频率的增加以及应用场景的日益多样化,传统的电磁兼容性分析技术已经难以满足需求,因此一系列创新的技术应运而生。

一、三维全波电磁场仿真技术传统的电磁兼容性分析方法大多基于二维模型或简化的三维模型,这在面对日益复杂的芯片结构时存在较大的局限性。

三维全波电磁场仿真技术的出现是一项重大创新。

它能够精确地模拟芯片内部的电磁场分布,考虑到多层布线、过孔、封装等复杂结构的影响。

通过这种技术,设计人员可以更准确地预测电磁干扰的产生和传播路径,从而优化芯片布局和布线,提高电磁兼容性。

例如,在高速数字芯片设计中,信号的传输速度越来越快,信号完整性问题变得尤为突出。

三维全波电磁场仿真可以帮助分析高速信号在传输线上的反射、串扰等现象,从而合理地设计匹配电阻、端接电容等,减少信号失真和电磁辐射。

二、电磁拓扑分析方法电磁拓扑分析方法是将芯片及其周边环境看作一个由多个电磁单元组成的网络,通过分析这些单元之间的连接关系和电磁耦合特性,来评估整个系统的电磁兼容性。

这种方法的创新之处在于能够将复杂的电磁问题分解为相对简单的子问题,从而降低分析的难度和计算量。

在芯片设计中,电磁拓扑分析可以帮助确定关键的电磁耦合路径,针对性地采取屏蔽、滤波等措施。

比如,对于电源分配网络,通过电磁拓扑分析可以找出容易产生噪声的节点和路径,进而优化电源滤波电容的布局和参数,提高电源的稳定性和抗干扰能力。

三、多物理场协同仿真技术芯片在工作过程中会同时受到电磁场、热场、力场等多种物理场的作用,这些物理场之间相互影响。

多物理场协同仿真技术的创新在于能够同时考虑这些物理场的耦合效应,从而更全面地评估芯片的电磁兼容性。

以芯片的热效应为例,温度的升高会导致材料的电导率发生变化,进而影响电磁性能。

集成电路设计与信号完整性分析

集成电路设计与信号完整性分析

集成电路设计与信号完整性分析现代科技的快速发展使得集成电路(Integrated Circuit,IC)成为现代电子设备的核心部件。

集成电路设计和信号完整性分析是保证电路性能稳定和可靠性的重要环节。

本文将介绍集成电路设计的基本概念,以及信号完整性分析的方法和意义。

一、集成电路设计简介集成电路设计是指将多个电子器件、电路元件和电子系统集成到单一的芯片上的过程。

集成电路设计的目标是在给定的特定应用场景下,实现电路的功能需求,并具备正常工作所需要的性能要求。

首先,集成电路设计需要进行电路功能的规划和设计。

这包括确定电路所需的输入、输出接口,电源供应的要求,以及各个模块之间的通信和数据交互方式等。

然后,设计人员需要对电路进行逻辑设计和电路元件的选择。

逻辑设计涉及选择合适的逻辑门、存储元件等来实现电路的逻辑功能。

接下来,设计人员需要进行电路的物理设计。

物理设计包括电路的布局和布线。

布局指的是将电子组件和元件放置在芯片上的位置,以最小化电路的面积和功率消耗。

布线是指连接各个元件的导线的布置,以及导线的宽度和厚度等参数的确定。

最后,集成电路设计需要进行电路的验证和测试。

验证是指通过模拟和数字仿真等手段,检验电路是否满足预期的功能需求。

测试是指在实际工作环境中通过各种测试手段,对芯片进行功能和性能的测试。

二、信号完整性分析的方法及意义信号完整性分析是在集成电路设计过程中非常重要的一环。

它主要针对电路中信号传输过程中可能出现的干扰和损耗问题,确保信号能够在电路中正确传递和处理。

首先,信号完整性分析需要通过仿真和建模等手段,对信号的传输过程进行分析。

通过建立数学模型,仿真软件可以帮助分析人员分析信号在传输过程中可能出现的问题,例如信号的时延、功耗、噪声等。

同时,也可以通过模拟实验,验证电路设计的可行性和稳定性。

其次,信号完整性分析需要考虑电磁兼容性(Electromagnetic Compatibility,EMC)的因素。

芯片设计中的电磁兼容性问题如何解决

芯片设计中的电磁兼容性问题如何解决

芯片设计中的电磁兼容性问题如何解决在当今高度数字化和信息化的时代,芯片作为各种电子设备的核心组件,其性能和可靠性至关重要。

然而,在芯片设计过程中,电磁兼容性(EMC)问题是一个不容忽视的挑战。

电磁兼容性是指电子设备在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

如果芯片在设计阶段没有充分考虑电磁兼容性,可能会导致信号干扰、数据错误、系统故障甚至整个设备无法正常运行。

因此,解决芯片设计中的电磁兼容性问题具有极其重要的意义。

要解决芯片设计中的电磁兼容性问题,首先需要深入了解电磁干扰的产生机制。

电磁干扰主要来源于三个方面:传导干扰、辐射干扰和串扰。

传导干扰是指干扰信号通过电源线、信号线等导体传播;辐射干扰则是通过空间电磁场向外传播;串扰则是指相邻信号线之间的电磁耦合。

在芯片内部,由于晶体管的高速开关动作、电流的快速变化以及布线的不合理等因素,都可能产生这些电磁干扰。

为了降低传导干扰,在芯片设计中可以采用合理的电源和地平面布局。

电源平面和地平面应该尽可能地靠近,以减小电源和地之间的阻抗,从而减少电源噪声和地弹噪声。

同时,在电源引脚处添加适当的滤波电容,可以滤除电源线上的高频噪声。

此外,对于输入输出接口,应该采用合适的滤波电路,以阻止外部的干扰信号进入芯片内部,同时也防止芯片内部的干扰信号向外传播。

辐射干扰的抑制则需要从芯片的封装和布局入手。

合理的芯片封装可以有效地屏蔽内部电路产生的电磁场,减少对外辐射。

在芯片布局方面,应尽量减小高速信号线的长度,避免形成环形天线结构。

对于敏感电路,如模拟电路部分,应该与数字电路部分进行隔离,以减少数字电路产生的噪声对模拟电路的影响。

串扰是芯片设计中另一个常见的电磁兼容性问题。

为了减小串扰,可以采用增加信号线间距、使用屏蔽线或者采用差分信号传输等方法。

在布线时,应该遵循一些基本原则,如尽量避免平行布线、减少信号线的交叉等。

同时,对于关键信号线,可以采用多层布线或者在相邻层之间设置地平面来进行隔离。

整流电路EMC试验可靠性研究与应用

整流电路EMC试验可靠性研究与应用

整流电路EMC试验可靠性研究与应用作者:冯勇雄王小龙来源:《河南科技》2019年第02期摘要:针对某空调机组在进行整机EMC浪涌试验时,内机驱动板所用A厂家整流桥短路失效的问题,本文从整流桥失效机理、器件参数对比、电路设计差异、模拟验证复现等方面进行分析,找出导致驱动板EMC浪涌冲击试验失效的原因。

关键词:EMC;整流桥;电容;充放电;静电;电路设计中图分类号:TG433 文献标识码:A 文章编号:1003-5168(2019)02-0041-03Research and Application of Reliability Test of Rectifier Circuit EMC—— Taking the Failure of EMC Test of an Air Conditioning Unit Drive Board as an ExampleAbstract: Aiming at the short-circuit failure of rectifier bridge of manufacturer a used in internal drive board of an air-conditioning unit during EMC surge test, this paper analysed the failure mechanism of rectifier bridge, the comparison of device parameters, the difference ofcircuit design and the recurrence of simulation verification, and found out the reasons for the failure of EMC surge test of driving board.Keywords: EMC;rectifier bridge;capacitor;charge and discharge;static electricity;circuit design强电滤波整流电路是把工频交流电转换为直流电的电路,该电路主要由前级EMC滤波和后级整流滤波组成。

计算机硬件设计中的电磁兼容性测试方法与工具

计算机硬件设计中的电磁兼容性测试方法与工具

计算机硬件设计中的电磁兼容性测试方法与工具随着计算机科技的快速发展,计算机硬件的设计和制造变得越来越复杂。

在这个过程中,电磁兼容性(Electromagnetic Compatibility,EMC)测试显得尤为重要。

本文将介绍计算机硬件设计中常用的电磁兼容性测试方法与工具。

一、电磁兼容性测试方法1. 辐射测试辐射测试主要用于验证计算机硬件设备产生的电磁辐射是否在国际电工委员会(International Electrotechnical Commission,IEC)规定的限制范围内。

常用的辐射测试方法包括:(1)电磁辐射场强测试:通过在测试室内使用规定的天线和测量设备,测量计算机硬件设备产生的电磁辐射场强度。

(2)频谱分析方法:通过使用频谱分析仪,对计算机硬件设备产生的电磁辐射频率进行分析和测量。

2. 抗扰度测试抗扰度测试是为了验证计算机硬件设备对外界电磁干扰的抵抗能力。

常用的抗扰度测试方法包括:(1)电磁场干扰测试:通过在测试室内设置模拟的电磁场干扰源,观察计算机硬件设备在不同干扰条件下的工作状态和性能。

(2)传导干扰测试:通过在测试室内设置传导干扰信号源,观察计算机硬件设备对传导干扰的抵抗能力。

二、电磁兼容性测试工具1. 电磁兼容性测试仪器(1)频谱分析仪:用于对计算机硬件设备产生的电磁辐射频率进行分析和测量。

(2)电磁辐射场强测试设备:用于测量计算机硬件设备产生的电磁辐射场强度。

(3)电磁场干扰源:用于模拟各种电磁干扰场景,观察计算机硬件设备的抗扰度能力。

(4)传导干扰信号源:用于模拟传导干扰场景,观察计算机硬件设备对传导干扰的抵抗程度。

2. 电磁兼容性仿真软件电磁兼容性仿真软件是通过计算机模拟和分析计算机硬件设备的电磁场分布、辐射特性和抗电磁干扰能力的软件工具。

(1)Ansys Electronics Desktop:提供了一套全面的电磁场仿真工具,可用于电磁辐射和电磁抗扰度测试。

(2)EMIT(Electro-Magnetic Interference Toolkit):专门用于计算机硬件设备的电磁辐射和电磁抗扰度仿真分析。

探讨EMC中共模电感的选择

探讨EMC中共模电感的选择

探讨EMC中共模电感的选择共模电感在电磁兼容(EMC)设计中是一种重要的组件,它可以用来抑制共模噪声,提高系统的抗干扰能力。

在设计中选择合适的共模电感对于提高系统的性能和可靠性至关重要。

本文将探讨共模电感的选择要素以及如何选择合适的共模电感。

在EMC设计中,选择共模电感需要考虑以下要素:1.频率范围:共模电感的频率范围应与实际应用中的信号频率范围匹配。

根据信号频率的不同,可选择不同类型的共模电感,如线圈式、扁平线圈式或螺旋式。

2.电感值:共模电感的电感值应根据系统的要求来选择。

一般来说,较大的电感值可以提供更好的抗干扰性能,但同时也会增加系统的失耦电感。

3.额定电流:共模电感的额定电流应根据系统的电流需求来选择。

如果共模电感的额定电流小于实际应用中的电流,则可能导致共模噪声的抑制效果下降,从而影响系统的性能。

4.直流阻抗:共模电感应具有较高的直流阻抗,以避免短路共模信号。

直流阻抗越高,共模电感的效果越好。

5.尺寸和重量:共模电感的尺寸和重量也是选择要素之一、根据实际应用的要求,选择合适的尺寸和重量,以便在系统中方便布置和散热。

根据以上要素,选择共模电感时应考虑以下几个方面:1.系统需求:首先需要了解系统的工作条件和要求,包括信号频率范围、电流需求等。

这些信息有助于确定共模电感的参数范围。

2.厂家性能数据:对不同品牌和型号的共模电感进行调查和对比,了解它们的性能数据,如额定电流、电感值、直流阻抗等。

这些数据可用于筛选出符合系统要求的共模电感。

3.仿真和实验验证:根据系统要求,可以使用电磁场仿真软件进行电磁兼容分析,评估不同共模电感的抗干扰性能。

同时,还可以进行实验验证,对比不同共模电感的效果,选择最佳的共模电感。

4.成本和可靠性:在选择共模电感时,还需要考虑成本和可靠性。

成本包括购买成本和系统维护成本,可靠性包括共模电感的寿命和可靠性指标。

总之,选择合适的共模电感是EMC设计中很关键的一步。

需要根据系统要求和性能数据,结合仿真和实验验证,综合考虑成本和可靠性等因素,选择最佳的共模电感。

emc辐射限值-概述说明以及解释

emc辐射限值-概述说明以及解释

emc辐射限值-概述说明以及解释1.引言1.1 概述电磁兼容性(EMC)是指电子设备在电磁环境中正常工作而不受干扰,同时也不会对周围的电磁环境产生有害影响的能力。

为了保障电子设备之间的相互兼容以及保护电磁环境的安全,各国纷纷制定了一系列的EMC标准和辐射限值。

EMC辐射限值是指设备在工作时所产生的电磁辐射应该符合的最高限制值,其目的是减少设备对周围环境和其他设备产生的干扰,并确保设备在电磁环境中的安全性和稳定性。

本文将重点介绍EMC辐射限值的定义、重要性、制定原则和实施方法,通过对相关内容的探讨,希望能够更好地了解EMC辐射限值的意义和实施方法,为提高设备的电磁兼容性提供一定的参考和指导。

1.2 文章结构文章结构部分主要介绍了整篇文章的组织结构和各个章节的内容概述。

本文的结构分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个方面的内容。

在概述中,将简要介绍EMC辐射限值的定义和重要性。

在文章结构部分,将介绍整篇文章的组织结构和各个章节的内容概述。

在目的部分,将说明本文的写作目的和意义,以及希望通过本文所达到的效果。

正文部分包括了四个小节,分别是EMC辐射限值的定义、EMC辐射限值的重要性、EMC辐射限值的制定原则和EMC辐射限值的实施方法。

在每个小节中,将对相应的主题进行详细的阐述和分析,包括定义的解释、重要性的说明、制定原则的介绍和实施方法的讲解等。

结论部分包括了四个小节,分别是总结、对未来发展的展望、对相关领域的启示和对政策制定的建议。

在总结部分,将对整篇文章的主要内容进行简要概括和总结。

在对未来发展的展望部分,将对EMC辐射限值的未来发展趋势和可能的研究方向进行展望。

在对相关领域的启示部分,将探讨EMC辐射限值对于相关领域的启示和借鉴意义。

在对政策制定的建议部分,将提出一些建议,以指导相关政策的制定和实施。

通过以上的文章结构,可以清晰地展示出本文的逻辑结构和层次关系,使读者更好地理解和掌握文章的内容。

电路板的EMC设计指南.

电路板的EMC设计指南.

PCB的EMC设计指南_____________________________________________________________________________________艾默生网络能源有限公司修订信息表目录前言 (5)目的 (7)范围 (7)引用/参考标准或资料 (7)名词解释 (7)指南简介 (7)指南内容 (7)第一部分层的设置 (8)1.1 弱信号单板的合理层数 (8)1.2 电源层、地层、信号层的相对位置 (8)1.3 强信号单板的合理层数 (13)第二部分布线 (14)2.1 布线基本规则 (14)2.2 串扰 (22)2.3 优选布线层 (24)2.4 阻抗控制 (25)2.5 跨分割区及开槽的处理 (26)第三部分地回路设计 (32)3.1 地的分割与汇接 (32)3.2 接地的含义 (32)3.3 接地的目的 (32)3.4 基本的接地方式 (32)3.5 地线回路导致的电磁干扰 (33)3.6 接地和信号回路(涡流除外) (34)3.7 浮地 (34)3.8 关于接地方式的一般选取原则 (34)3.9 单板接地方式 (34)第四部分典型电路的PCB设计 (36)4.1 概述 (36)4.2 功率主电路的PCB EMC布局原则 (36)4.3 PFC电路的布局 (41)4.4 单端正激电路 (42)4.5 单端反激电路 (47)4.6 非隔离电路(正激) (48)4.7 双正激电路 (48)4.8 全桥电路 (51)4.9 半桥逆变电路 (53)第五部分电源EMI滤波器的PCB设计 (56)5.1 概述 (56)5.2 EMI滤波器的基本结构 (56)5.3 布局考虑 (56)5.4 布线考虑 (58)第六部分传输线 (60)6.1 概述: (60)6.2 传输线模型 (60)6.3 传输线的种类 (60)6.3.2 带状线(Stripline) (60)6.3.3 嵌入式微带线 (61)6.4 传输线的反射 (62)6.5 微带线与带状线的比较 (64)前言近几年,EMC问题在我们的产品开发过程中越来越突出,为了保证产品高可靠性、较短的开发周期、有竞争力的价格,我们必需在产品开发前期就把EMC问题解决好。

电磁兼容性(EMC)简介电磁兼容是研究电磁干扰的学科

电磁兼容性(EMC)简介电磁兼容是研究电磁干扰的学科

电磁兼容性(EMC)简介电磁兼容是研究电磁干扰的学科。

电磁干扰是人们早就发现的电磁现象,它几乎和电磁效应的现象同时被发现,1981年英国科学家发表“论干扰”的文章,标志着研究干扰问题的开始。

1989年英国邮电部门研究了通信中的干扰问题,使干扰问题的研究开始走向工程化和产业化。

虽然电磁干扰问题由来已久,但电磁兼容这个新的综合性学科确是近代形成的。

40年代提出电磁兼容性(Electromagnetic Compatibility缩写为EMC)概念,是电磁干扰问题由单纯的排除干扰逐步发展成为从理论上、技术上全面控制用电设备在其电磁环境中正常工作能力保证的系统工程。

70年代以来,电磁兼容技术逐渐成为非常活跃的学科领域之一。

80年代,美国、德国、日本、前苏联、法国等经济发达国家在电磁兼容研究和应用方面达到很高的水平。

建立了相应的电磁兼容标准和规范,电磁兼容设计成为民用电子设备和军用武器装备研制中必须严格遵循的原则和步骤。

电磁兼容性成为产品可靠性保证中的重要组成部分。

90年代,电磁兼容性工程以事后检测处理发展到预先分析评估、预先检验、预先设计。

在我国电磁兼容理论和技术的研究起步较晚,直到80年代之后才组织系统地研究并制定国家级和行业级的电磁兼容性标准和规范。

90年代以来,随着国民经济和高科技产业的形迅速发展,在航空、航天、通信、电子等部门,电磁兼容技术受到格外重视。

电磁兼容性的定义由于电磁干扰源的大量普遍曾在,电磁干扰现象经常发生。

如果在一个系统中各种用电设备能和谐正常工作而不致相互发生电磁干扰造成性能改变和遭受损坏,人们就满意的称这个系统中的用电设备是相互兼容的。

但是随着用电设备功能的多样化、结构的复杂化、功率加大和频率提高,同时它们的灵敏度已越来越高,这种相互包容兼顾、各显其能的状态很难获得。

为了使系统达到电磁兼容,必须以系统的电磁环境为依据,要求每个用电设备不产生超过一定限度的电磁发射,同时又要求它具有一定的抗干扰能力。

汽车电子电器的EMC标准及测试方法解读

汽车电子电器的EMC标准及测试方法解读

汽车电子电器的EMC标准及测试方法解读汽车电子电器是汽车中非常重要的组成部分,对车辆的性能、安全和舒适度都起着至关重要的作用。

然而,由于车内电器电子元件数量的增加和近年来无线电设备的广泛使用,车内的电磁兼容性问题也日益凸显。

因此,在汽车电子电器设计和生产中,必须遵守一定的EMC标准以保证汽车电器的正常使用和减少车辆故障率。

下面将详细解读汽车电子电器的EMC标准及测试方法。

1.汽车电器的EMC标准EMC意为电磁兼容性(Electromagnetic Compatibility),它是一个测量汽车电子电器与其周围环境互相发射和接收电磁能力的参数。

在汽车电子电器设计和生产中,必须遵守以下EMC 标准:(1) CISPR 25:2008.这是一项国际标准,规定了汽车电子电器的电磁兼容性要求,包括发射和接收两个方面。

(2) ISO 11452-2:2004.这是一项行业标准,规定了汽车电子电器的电磁兼容性试验方法和要求。

(3) ISO 7637-2:2004. 这是一项国际标准,规定了汽车电子电器在各种电源干扰下的性能测试方法和要求。

(4) ISO 10605:2008.这是一项国际标准,规定了汽车电子电器的静电放电抗性测试方法和要求。

(5) IEC 61000-4-2:2008.这是一项国际标准,规定了汽车电子电器的电磁放射抗性和传导抗性测试方法和要求。

2.汽车电器的EMC测试方法汽车电子电器的EMC测试方法有许多种,其中比较常见的包括:(1) 发射测试。

这是测试汽车电子电器在运行时是否会产生电磁干扰的方法。

测试时会使用EMC测试设备,将汽车电子电器电源连接到设备上,并进行多种场景下的试验,例如正常行驶、车辆启动时、灯光开启时等。

(2) 接收测试。

这是测试汽车电子电器是否能够正常工作而不受到来自外部电磁场的干扰的方法。

测试时会使用EMC测试设备模拟外部电磁场,并对汽车电子电器进行测试。

(3) 静电放电测试。

物联网终端硬件设计中的EMC技术应用

物联网终端硬件设计中的EMC技术应用

物联网终端硬件设计中的EMC技术应用随着物联网技术的快速发展,物联网终端设备在各行各业得到广泛应用。

而在物联网终端硬件设计中,电磁兼容性(Electromagnetic Compatibility,简称EMC)技术的应用尤为重要。

本文将探讨物联网终端硬件设计中EMC技术的应用,并分析其重要性及挑战。

一、物联网终端硬件设计中的EMC技术概述物联网终端设备通常包括传感器、处理器、通信模块等组件,其设计目标是实现设备间的互联互通。

然而,在物联网终端设备中,各种电子设备同时存在时,可能会产生电磁干扰(Electromagnetic Interference,简称EMI),从而影响设备的正常工作和通信。

为了确保设备的稳定性、可靠性和安全性,EMC技术被广泛应用于物联网终端硬件设计中。

EMC技术主要包括电磁辐射抑制(Electromagnetic Radiation Suppression,简称EMS)和抗电磁干扰能力(Electromagnetic Immunity,简称EMI)。

EMS通过合理的电路设计和防护措施来减少设备对外界电磁环境的辐射,从而降低对其他设备的干扰;EMI则通过抗干扰设计来保证设备在外界电磁环境变化时的正常工作。

二、1. PCB设计方面PCB(Printed Circuit Board)是物联网终端设备的核心组件之一。

在PCB设计中,需要注意以下几个方面的EMC技术应用:1.1 地线设计:良好的地线设计可以有效减少共模干扰,并提高设备的抗干扰能力。

1.2 信号线与电源线的分离:信号线与电源线的分离可以减少电源线上的高频噪声对信号线的干扰。

1.3 高频滤波器的使用:在PCB设计中,可以采用高频滤波器来滤除高频噪声,并减少对其他设备的干扰。

2. 外壳设计方面物联网终端设备的外壳设计也是EMC技术应用的重要方面。

外壳设计的目标是减少电磁辐射,防止外界电磁波对设备的干扰。

在外壳设计中,可以采用以下措施:2.1 选择合适的材料:使用具有屏蔽功能的材料可以有效地阻挡外界电磁波的干扰。

可靠性设计基本方法

可靠性设计基本方法

可靠性设计的基本方法1.简化设计系统在设计过程中将在满足性能指标的条件下,线路尽可能简单,系统设计充分借鉴2G直放站设计经验,采用可靠性高的、模块化的标准射频模块,提高系统的集成度,监控盘直接借用2G直放站监控盘,根据3G通信协议重新设计监控程序,电源采用公司成熟的模块化电源解决方案,以提高产品的可靠性。

2.模块和元器件选择和控制优先选用公司元器件大纲中的器件,优先选用经过认证的合格供应商提供的器件,尽可能减少元器件的品种、规格,严格控制选用非标准规格的元器件;需要外购的部分射频模块一方面严格对供货商进行准入认证,另一方面要对入库的外购模块进行严格的性能检验,以保证外购模块的质量。

外购的模块和元器件在装机前将100%进行环境应力筛选试验(ESS),以保证元器件在装机前已消除了早期的性能缺陷。

3.热设计考虑直放站结构设计时均对产品进行热分析和预计,对产品内部最高温升进行设计控制,采用大功率散热器,并预留足够的余量,同时对发热量较大的功率放大器模块安装时底部覆涂导热硅脂,保证功放表面温升不大于25℃。

总体结构方案设计完成后,针对电子设备热产生机理与传播方式,对电子设备的热场分布进行分析研究,采用合理的热设计方法保证电子设备在允许的温度范围内工作。

通过CAE辅助分析软件,进行模型建立、模型求解和结果解释三方面对直放站产品进行热效应分析,优化整机设备关键器件、部件的参数位置;并对电子系统强迫对流和自然对流冷结构设计方案进行优化。

在仿真方案达到设计要求后,通过环境温升试验对设备结构设计方案作最终考评,以保证直放站设备的热设计可靠性。

4.降额设计降低元器件在电路中所承受的应力(一般主要指温度应力及电应力)可以提高元器件的可靠性,元器件的工作温度范围要求大于整机的工作温度范围,电阻、电容等元器件的耐压值应大于额定工作电压的2倍,电源模块实际功耗不超过额定功率的70%。

5.FMEA分析FMEA是进行可靠性分析的重要手段,由于直放站整机采用成熟的模块化设计技术,根据2G直放站的设计经验,功放模块的故障或失效对整机的功能影响较大,当功放模块失效或发生参数飘移时,对整机造成的影响是整机无输出或者输出功率失控,严重时导致网络瘫痪,因此将功放模块确定为整机的关键件,在研发和生产过程中必须加以重点控制,功放模块在装机前必须进行严格检测和筛选,同时严格控制功放模块在使用过程中的表面温升不超过25℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EMC的分析与可靠性设计1 引言随着当前电子技术的飞速发展,现代的电子设备已经越来越多地应用于人类生活的各个方面。

随着人类社会的持续进步和发展,电子设备的发展过程仍以日益增长的速度持续着。

电子设备的广泛应用和发展,必然导致它们在其周围空间中产生的电磁场电平的不断增加。

电子设备不可避免地在日益恶化的电磁环境(EME)中工作。

因此,必须改善电子设备在电磁环境中的适应能力以使其更好地工作。

,也就是对相应的电磁兼容性设计提出更可靠的解决方案,从而最大限度地抑制和消除空间中的电磁干扰,使电子设备或系统与其他设备联系在一起工作时,整个系统任何部分的工作性能都不会出现恶化或者较大幅度的降低。

当前比较普遍使用的电磁兼容设计技术包括屏蔽、滤波、合理接地及合理布局等方法,并在工程实践中被广泛采用。

但是随着电子系统的集成化、综合化,以上措施的应用往往会与产品或者系统的成本、质量、功能要求产生矛盾,因此必须权衡利弊研究出最合理的措施来满足电磁兼容性要求。

随着新的导电和屏蔽材料以及工艺方法的出现,电磁兼容性的设计技术又有了新的措施。

无论如何,电磁干扰的抑制技术始终都是电磁兼容科学中最活跃的研究课题。

2 电磁干扰的来源和传播途径2.1 电磁干扰的来源各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,了解其来源是电磁兼容设计的先决条件之一。

一般的来源分为内部和外部两种。

1). 内部干扰-------电子设备内部各元部件之间的相互干扰。

(1)工作电源通过线路的分布电容和绝缘电阻产生漏电而造成的干扰;(2)信号通过地线、电源和传输导线的阻抗互相耦合,或导线之间的互感造成的干扰;(3)设备或系统内部某些元件发热,影响元件本身或其他元件的稳定性造成的干扰;(4)大功率和高电压部件产生的磁场、电场通过耦合影响其它部件造成的干扰。

2). 外部干扰------电子设备或系统以外的因素对线路、设备或系统的干扰。

(1) 外部的高电压、电源通过绝缘漏电而干扰电子线路、设备或系统;(2) 外部大功率的设备在空间产生很强的磁场,通过互感耦合干扰电子线路、设备或系统;(3) 空间电磁对电子线路或系统产生的干扰;(4) 工作环境温度不稳定,引起电子线路、设备或系统内部元器件参数改变造成的干扰;(5) 由工业电网供电的设备和由电网电压通过电源变压器所产生的干扰。

2.2电磁干扰的传播途径1). 当干扰源的频率较高、干扰信号的波长又比被干扰的对象结构尺寸小,或者干扰源与倍感绕者之间的距离r>>λ/2π时,则干扰信号可以认为是辐射场,它以平面电磁波形式向外辐射电磁场能量进入被干扰对象的通路2). 干扰信号以漏电和耦合形式,通过绝缘支撑物(包括空气)为媒介,经公共阻抗的耦合进入被干扰的线路、设备或系统。

3). 干扰信号可以通过直接传导方式进入线路、设备或系统。

3 电磁干扰的控制策略分析电磁兼容学科实在早期单纯的抗干扰方法基础上发展形成的,两者的目标都是为了使设备和系统达到在共存的环境中互不发生干涉并最大限度地发挥其工作效率。

但是早期的抗干扰性方法和现代的电磁兼容技术在控制电磁干扰策略思想上有着本质的差别。

单纯的抗干扰性方法在抑制干扰的思想方法上比较简单,或者认识比较肤浅,主要的思路集中在怎样设法抑制干扰的传播上,因此工程技术人员处于被动的地位,哪里有干扰哪里就事论事的给予解决,当然经验丰富的工程师也会采取预防措施,但这仅仅是根据经验局部的应用,解决问题的方法也是单纯的对抗式的措施。

电磁兼容技术在控制干扰的策略上采取了主动预防、整体规划和“对抗”与“疏导“相结合的方针。

电磁兼容性控制是一项系统工程,应该在设备和系统设计、研制、生产、使用与维护的各阶段都充分给予考虑和实施才可能有效。

科学而先进的电磁兼容工程管理是有效控制技术的重要组成部分。

在控制方法,除了采用众所周知的抑制干扰传播的技术,如屏蔽、接地、搭接、合理布线等方法以外,还可以采取回避和疏导的技术处理,如空间方位分离、频率划分与回避、滤波、吸收和旁路等等,有时采用这些简单而巧妙的回避和疏导技术能够代替昂贵且质量、体积都较大的硬件措施,从而取得较好的抑制效果。

在解决电磁干扰问题的时机上,以前往往是设备研制后期暴露出不兼容问题后,再采取挽救修补的措施进行被动的EMC控制,这种情况在电子设备发展精度日益增高的今天应当极力避免,因此必须在设备设计的初始阶段就开展预测分析和设计,预先进行详细的论证和检验计算,并尽可能全面地规划实施细则和步骤,把涉及到相关系统的电磁兼容性设计和可靠性设计,产品的维护性与产品的基本功能结构设计和软硬件设计综合考虑并同步进行,只有这样才有可能最大限度地减小电磁干扰,实现更高层次上的电磁兼容设计策略。

总之,电磁兼容技术是现代并行工程的组成部分之一。

4 电磁兼容的可靠性设计方法4.1 接地不管在任何系统中,电子设备的接地都是该设备电磁兼容设计的一个很重要的问题。

一般的实际系统中接地情况如图1所示,其作用如下:(1)接地可以使整个电路系统的所有单元电路都有一个公共的参考零电位,保证电路系统能稳定地工作。

(2)防止外界电磁场的干扰。

机壳接地可以使得由于静电感应而积累在机壳上得大量电荷通过大地泄放,否则这些电荷形成得高压可能引起设备内部得火花放电而造成干扰。

另外对于电路得屏蔽体,若选择合适得接地,也可获得良好得屏蔽效果。

(3)保证安全工作。

当发生直接雷电得电磁感应时,可避免电子设备得损坏;当工频交流电源得输入电压因绝缘不良或其他原因直接与机壳相通时,可避免操作人员得触电事故发生。

此外,很多医疗设备都与病人的人体直接相连,当机壳带有110V或者220V电压时,将可能发生致命危险。

实际电子系统的接地示意图总之,接地是抑制噪声并防止干扰的主要方法之一。

一般的接地可以理解为一个等电位点或等电位面,属于电路或系统的基准电位,但不一定为大地电位。

为了防止雷击或其他高电压可能造成的损坏或者工作人员的人身安全,电子设备的机壳和己方的金属构件等必须与大地相连界,而且接地电阻一般很小,不能超过规定值。

4.2 屏蔽屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。

具体地讲,就是用屏蔽体将电子元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们收到外界电磁场的影响。

屏蔽体对来自导线、电缆、元部件以及电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以利用屏蔽体可以非常有效地减弱电磁干扰。

屏蔽材料选择的原则如下:(1)当干扰电磁场的频率较高时,利用低电阻率(高电导率)的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。

(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。

(3)在某些特定场合下,如果要求对高频和低频电磁场都具有良好的评比效果时,往往采用不同的金属材料组成多层屏蔽体。

4.3 滤波正确而合理的滤波是解决电磁干扰的一个非常重要的技术方法。

电磁干扰滤波器是以能够有效抑制电磁干扰为目标的滤波器,常常分为信号线EMI滤波器、电源TMI滤波器、印制板Emi滤波器、反射Emi滤波器以及隔离EMI滤波器等几类,这里主要分析一下前两种滤波器的情况。

线路板上的导线是最有效的接收和辐射天线,由于导线的存在,往往会使线路板上产生过强的电磁辐射。

同时由于这些导线又能接收外部的电磁干扰,使得电路对干扰很敏感。

针对这种情况使用信号滤波器是一种结局高频电磁干扰辐射和接收很有效的方法。

脉冲信号的高频部分很丰富,这些高频成分可以借助导线辐射,使线路板的辐射超标。

而信号滤波器的使用可以使脉冲信号的高频成分大打减少,从而使线路板的辐射大大改善。

电源线是电磁干扰传入设备和传出设备的主要途径。

通过电源线,电网上的干扰可以传入设备,干扰设备的正常工作。

同样,设备的干扰也可以通过电源线传到电网上,对网上其他设备造成干扰。

为了防止这两种情况的发生,必须在设备的电源入口处安装一个低通滤波器,这个滤波器只容许设备的正常工作频率通过,而对较高频率的干扰有很大的损耗,从而达到了滤除高频干扰的目的,这种滤波器即为电源线滤波器。

当然由于电源线上的干扰虽工作频率的高低而不有所同,低频时通常是差模干扰成分占多,而高频时主要是共模干扰成分,因此设计电源线滤波器时又要仔细考虑并区别对待。

4.4 其他抑制干扰方法(1)正确地选择无源器件实用的无源器件并不是“理想“的,其特性和理想的特性本身肯定是有差异的。

实用的元件本身就是一个干扰源,因此正确地选用无源元件非常重要。

应当充分利用这一特性对电磁干扰进行抑制和防止。

(2)恰当设计电路有时候单纯地采用屏蔽并不能很好地满足抑制和防止干扰的要求,此时可以结合屏蔽并采取平衡措施等电路技术。

平衡电路是指双线电路中的两根导线与连接到这两根导线的所有电路,对地或对其它导线都具有相同的阻抗。

其目的在于使两根导线所收到的干扰信号相等。

这时的干扰信号噪声由于是共态信号,可在负载上自行消失,除此之外,还有恰当地设计接点网络、整形电路、积分电路及选通电路等方法来抑制干扰。

5 一些典型电磁兼容性问题的解决由于电子技术在各行业的广泛应用,在人类社会的空间中无处不充斥着电磁波。

在实际的电子设备应用中,人们在研究抗干扰技术方面逐渐积累了大量的经验,不断研究出许多实用的方法来消除电磁干扰。

(1)汽车行业的电磁兼容实验发现:汽车工作时,电磁干扰相当突出,严重时会影响电子仪表的指示精度甚至损坏电子元器件,因此汽车电子设备的电磁环境极为恶劣。

技术人员采取了如下的措施来抑制电磁干扰:1) 在汽车点火时,采用带阻尼的屏蔽线作为点火线,可以很有效地减小产生的高频辐射,从而减轻了汽车电气噪声对环境的污染。

2) 针对微电子技术在汽车上应用时产生的电磁干扰问题,可以通过针对实际应用情况设计出适当的滤波电路和隔离电路,恰当地选择元器件和安排电路系统,设置能量吸收回路等,从而使EMI被抑制到最小。

(2)微机设备的软件抗EMI措施微机设备是一个可编程控制装置,通过合理的软件编程可以支持和加强硬件的抗干扰能力。

当微机系统中随机内存即RAM主要用于测量和控制时数据的暂时存放,内存空间较小,对存放的数据而言,若将采集到的几组数据求平均值作为采样结果,可以有效地避免采集时因干扰而破坏了数据的真实性;如果存放在随机内存中的数据因干扰而丢失或者数据发生变化,可以在随机内存区设置检验标志,同时在随机存储器芯片的写信号线上加触发装置,保证只在CPU写数据时才发。

相关文档
最新文档