第十一章蛋白质生物合成

合集下载

蛋白质的生物合成习题

蛋白质的生物合成习题

第十一章蛋白质的生物合成习题一、填空题1、核糖体含有的与tRNA有关的3个功能部位是位、位和位。

2、氨基酸与tRNA形成氨酰-tRNA的过程被称为,它由特定的催化,共消耗个ATP,此酶可以通过机制尽可能降低误载的氨酰-tRNA的生成。

3、蛋白质合成时,原核细胞的起始氨基酸为,真核细胞的起始氨基酸是。

4、翻译时阅读mRNA的方向都是从,多肽链延伸的方向是从,正确的氨基酸的掺入取决于之间的相互作用。

5、在原核生物蛋白质过程中,起始密码子AUG定位于核糖体的位点,这个位点也是可结合的位点。

当终止密码子进入核糖体的部位以后,或便识别并结合上去。

二、选择题1、翻译过程中不需要GTP水解的一步是()(A) 翻译的起始(B) 氨酰-tRNA进入A位(C) 转肽反应(D) 移位反应2、与密码子AUG(5′→3′)配对的反密码子是()(A)UGA (B)CAU (C)CGT (D)UAC3、以下最能反映一次翻译循环移位反应结束以后核糖体状态的是()(A)P部位含有肽酰-tRNA,A部位空着(B) P部位含有空载的tRNA,A部位含有肽酰-tRNA(C) P部位含有氨酰-tRNA,A部位含有肽酰-tRNA(D) P部位含有肽酰-tRNA,A部位含有空载的tRNA4、一种抗生素干扰核糖体的移位,那么它对细菌的翻译造成的影响是()(A) 合成出的蛋白质比正常的短(B) 没有(C)合成出的蛋白质大小正常,但没有功能(D)无蛋白质产生5、蛋白质生物合成中多肽的氨基酸排列顺序取决于()(A)相应tRNA的专一性(B)相应氨酰-tRNA合成酶的专一性(C)相应mRNA中核苷酸排列顺序(D)相应tRNA上的反密码子三、判断题1、每种生物都是有自己特有的一套遗传密码。

()2、蛋白质合成所需的能量都由ATP直接供给。

()3、密码子从5'至3'读码,反密码子则从3'至5'读码。

()4、基因表达的终产物都是蛋白质。

第十一章多聚核糖体与蛋白质的合成

第十一章多聚核糖体与蛋白质的合成

第十一章核糖体● 核糖体是细胞质中普遍存在的一种非膜性细胞器,由RNA和蛋白质组成,是细胞内蛋白质合成的场所。

● 多聚核糖体是由多个甚至是几十个核糖体串联在一条mRNA上构成的,能高效的进行肽链的合成。

● 蛋白质合成是以各种氨基酸为原料,mRNA为模板,tRNA 作为“搬运工具”以及核糖体作为“装配机” 合成肽链的过程。

● RNA可能是生命起源中最早的生物大分子。

关键词:核糖体;多聚核糖体;蛋白质合成第二节多聚核糖体与蛋白质的合成核糖体(ribosome)是合成蛋白质的细胞器,其功能是以mRNA为模板,以氨基酸为原料高效且精确地合成蛋白质多肽链。

在真核细胞中,核糖体以多聚核糖体的形式存在能高效的进行肽链的合成。

一、多聚核糖体核糖体往往并不是单个独立地执行功能,而是由多个核糖体串连在一条mRNA 分子上高效地进行肽键的合成。

这种具有特殊功能与形态的核糖体与mRNA的聚合体称为多聚核糖体(polyribosome)。

图11-2-1多聚核糖体二、蛋白质的合成蛋白质合成是以各种氨基酸为原料,mRNA为模板,tRNA 作为“搬运工具”以及核糖体作为“装配机” 合成肽链的过程。

原核细胞蛋白质合成的过程已比较清楚,包括3个阶段:肽链合成的起始,延伸和终止。

在起始之前还要进行氨基酸的活化(一)氨基酸的活化1. 定义氨基酸的活化是指各种参加蛋白质合成的AA与携带它的相应的tRNA结合成氨酰- tRNA的过程。

活化反应在氨酰-tRNA 合成酶的催化下进行。

2.过程活化反应分两步进行:活化:AA-AMP-E复合物的形成转移:氨酰-tRNA形成20种氨基酸中每一种都有各自特异的氨酰-tRNA合成酶。

氨酰-tRNA合成酶具有高度的专一性,它既能识别相应的氨基酸(L-构型),又能识别与此氨基酸相对应的一个或多个tRNA 分子;即使AA识别出现错误,此酶具有水解功能,可以将其水解掉。

这种高度的专一性保证了氨基酸与其特定的tRNA准确匹配,从而使蛋白质的合成具有一定的保真性。

生物化学-生化知识点_第十一章 蛋白质的生物合成

生物化学-生化知识点_第十一章  蛋白质的生物合成

第十一章蛋白质的生物合成11-1 遗传密码(下册 P504,37章)蛋白质是生物主要的功能分子,它参与所有的生命活动过程,并起着主导作用。

蛋白质的合成由核酸所控制,决定蛋白质结构的遗传信息编码在核酸分子中。

遗传密码:编码氨基酸的核苷酸序列,通常指核苷酸三联体决定氨基酸的对应关系。

一一一三联密码:核酸分子中只有四种碱基,要为蛋白质分子20种氨基酸编码。

三个碱基编码64个,又称三联密码。

密码子:mRNA上有三个相邻核苷酸组成一个密码子,代表某种氨基酸、肽链合成的起始或终止信号。

蛋白质翻译:在RNA控制下根据核酸链上每3个核苷酸决定一种氨基酸的规则,合成出具有特定氨基酸顺序的蛋白质过程。

全部64个密码子破译后,编写出的遗传密码字典。

见P511 表37-5。

一一一遗传密码的基本特性一1一密码的基本单位遗传密码按5‘→3‘方向编码,为不重叠、无标点的三联体密码子。

起始密码子兼Met:AUG。

终止密码子:UAA、UAG和UGA。

其余61个密码子对应20种氨基酸。

一2一密码的简并性同一种氨基酸有两个或更多密码子的现象称为密码的简并性。

同一种氨基酸不同密码子称为同义密码子,氨基酸密码子的简并见P512表37-6。

简并可以减少有害突变,对物种稳定有一定作用。

一3一密码的变偶性(摆动性)编码同一个氨基酸的密码子前两位碱基都相同,第三位碱基不同,为变偶性。

即密码简并性往往表现在密码子第三位碱基上,如Gly的密码子为GGU、GGC、和GGA。

一4一密码的通用性和变异性通用性:各种低等和高等生物,包括病毒、细菌及真核生物基本上共用一套遗传密码。

变异性:已知线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。

一5一密码的防错系统密码的编排方式使得密码子中一个碱基被置换,其结果常常是编码相同的氨基酸或是为物理化学性质接近的氨基酸取代。

11-2 蛋白质合成及转运下册 P5171、氨基酸是怎样被选择及掺入到多肽链当中去的。

生物化学第十一章 蛋白质的生物合成(共65张PPT)全

生物化学第十一章 蛋白质的生物合成(共65张PPT)全

原核、真核生物各种起始因子的生物功能
起始因子
生物功能
IF-1
占 据 A 位 防 止 结 合 其 他 tRN A
原核
生物
EIF-2
促进起始tRNA与小亚基结合
EIF-3
促 进 大 小 亚 基 分 离 , 提 高 P位 对 结 合 起 始 tRNA 敏 感 性
eIF-2
促进起始tRNA与小亚基结合
eIF-2B,eIF-3
eEF-1-A
EF-Ts 再生EF-Tu
eEF-1-B
EFG
有转位酶活性,促进mRNA肽酰-tRNA由A位前移到P位, 促进卸载tRNA释放
eEF-2
(一)进位(P607 609)
又称注册(registration)
指根据mRNA下一组遗传密 三
码指导,使相应氨基酰-tRNA进 元
入核蛋白体A位。
第一节 蛋白质合成体系
一、翻译模板mRNA及遗传密码
二、核蛋白体是多肽链合成的装置 三、tRNA与氨基酸的活化
P602
一、翻译模板mRNA及遗传密码
(一) mRNA是遗传信息的携带者
1.顺反子(cistron):将编码一个多肽的遗传单位称为顺反
子。
2. 开放阅读框架(open reading frame, ORF):从mRNA 5 端起始密码子AUG到3端终止密码子之间的核苷酸序列。
mRNA 的结构
原核生物的多顺反子
5 PPP
ORF
ORF
真核生物的单顺反子
5 mG - PPP
3
ORF
蛋白质
3
蛋白质
非编码序列
核蛋白体结合位点
编码序列
起始密码子

第十一(15)章蛋白质的

第十一(15)章蛋白质的

摆动规则
反密码子第一个碱基 A C G U I 密码子第三个碱基 U G C、U A、G A、C、U
5′
3′
二、氨基酸的“搬运工具”----tRNA
1、tRNA的功能区 (四个功能位点)
氨基酸臂
与氨基酸结合
氨基酸臂
DHU环 与氨酰-tRNA合成酶结合 反密码环 识别、结合密码子 TψC环 核糖体结合位点
⑥变偶性:(摆动性) 密码子上第一、二位上碱基不变,第三位碱基可 改变
密码子的专一性主要是由前两位的碱基决定,而 第三位碱基有较大的灵活性。密码子的第三碱基 对反密码子的第一位碱基,更常出现这种摆动现 象。
摆动规则 Crick于1966年提出,用来解释一种tRNA反密码子如 何能够识别一种氨基酸的几个同义密码子以及某些含有稀 有碱基(如次黄嘌呤)的反密码子是怎样识别由正常碱基 构成的密码子的现象。 该规则的内容是: 密码子在与反密码子之间进行碱基配对的时候,前 两对碱基严格遵守标准的碱基配对规则,第三对碱基则具 有一定的自由度。但并非任何碱基之间都可以配对,当反 密码子第一位碱基是A或C者,只能识别一种密码子;第一 位碱基是G或U者,则能识别两种密码子;第一位碱基是I 者,则能识别三种密码子。
H2N-CH-C-O-tRNA
细胞质中进行
R
O
2、催化氨基酸活化的酶:氨酰-tRNA合成酶
绝对专一性:1种酶只催化1种AA活化。
此酶具有水解活性,有校对功能。 活化一个氨基酸消耗2分子ATP。
甲酰甲硫氨酰-tRNA
3、氨基酸的活化过程
氨基酸羧基通过酸酐键与AMP上的5-磷酸基相连
二、肽链合成的起始 1、起始密码子的识别 原核翻译系统起始密码子的识别主要是依赖于 mRNA 5′-端的SD序列与16S rRNA3′-端的反SD序 列之间的互补配对。 mRNA 的SD序列下游的第一个AUG用作起始密码子。

第十一章 蛋白质的生物合成复习题-带答案

第十一章 蛋白质的生物合成复习题-带答案

第十一章蛋白质的生物合成一、名词解释126、翻译答案:(translanion)以mRNA为模板,氨酰—tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。

127、密码子答案:(codon)mRNA中碱基顺序与蛋白质中氨基酸顺序的对应关系是通过密码实现的,mRNA中每三个相邻的碱基决定一个氨基酸,这三个相邻的碱基称为一个密码子。

128、密码的简并性答案:(degeneracy)一个氨基酸具有两个以上密码子的现象。

129、同义密码子答案:(synonym codon)为同一种氨基酸编码的各个密码子,称为同义密码子。

130、反密码子答案:(anticodon)指tRNA反密码子环中的三个核苷酸的序列,在蛋白质合成过程中通过碱基配对,识别并结合到mRNA的特殊密码子上.131、多核糖体答案:(polysome)mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体。

二、填空题158、在细菌细胞里,独立于染色体之外的遗传因子叫,它是一个状双链DNA,在基因工程中,它作为。

答案:质粒;环;基因载体159、hnRNA加工过程中,在mRNA上出现并代表蛋白质的DNA序列叫,不在mRNA上出现,不代表蛋白质的DNA序列叫。

答案:外显子;内含子160、蛋白质的生物合成是以mRNA为模板,以为原料直接供体,以为合成场所。

答案:氨酰-tRNA;核糖体161、生物界共有个密码子,其中个为氨基酸编码,起始密码子为,终止密码子为,,。

答案:64;61;AUG;UAA、UAG、UGA162、原核生物的起始tRNA以表示,真核生物的起始tRNA以表示,延伸中的甲硫氨酰tRNA以表示。

答案:tRNA f;tRNAi;tRNAm163、植物细胞中蛋白质生物合成可在,和三种细胞器中进行。

答案:核糖体、线粒体、叶绿体164、原核生物中的释放因子有三种,其中RF—1识别终止密码子,;RF—2识别,;真核中的释放因子只有一种。

第十一章 蛋白质的生物合成

第十一章 蛋白质的生物合成

氨基酸活化的总反应式是:
氨基酰-tRNA 合成酶 氨基酸 + ATP + tRNA + H2O 酰-tRNA + AMP + PPi
氨基
2.在核糖体上合成肽链
氨基酰-tRNA通过反密码臂上的三联体反密码 子识别mRNA上相应的遗传密码,并将所携带的 氨基酸按mRNA遗传密码的顺序安臵在特定的位 臵,最后在核糖体中合成肽链。
四、mRNA
是蛋白质合成的直接模板,指导肽链的合 成。 mRNA分子上的核苷酸顺序决定蛋白质分子 的氨基酸顺序。
第二节 遗传密码
mRNA分子中所存储的蛋白质合成信息,是由组成 它的四种碱基(A、G、C和U)以特定顺序排列成 三个一组的三联体代表的,即每三个碱基代表一 个氨基酸信息。 这种代表遗传信息的三联体称为密码子,或三联 体密码子。 因此 mRNA 分子的碱基顺序即表示了所合成蛋白 质的氨基酸顺序。
转肽
肽酰转移酶
肽基转移酶
延长过程中肽链的生成
移位
肽链合成的终止与释放
识别mRNA的终止密码子,水解所 合成肽链与tRNA间的酯键,释放 肽链 R1识别UAA、UAG R2识别UAA、UGA R3影响肽链的释放速度 RR帮助P位点的tRNA残基脱落,而 后核糖体脱落
终止
多核糖体
在细胞内一条mRNA链上结合着多 个核糖体,甚至可多到几百个。 蛋白质开始合成时,第一个核糖 体在mRNA的起始部位结合,引入 第一个蛋氨酸,然后核糖体向 mRNA的3’端移动一定距离后,第 二个核糖体又在mRNA的起始部位 结合,现向前移动一定的距离后, 在起始部位又结合第三个核糖体, 依次下去,直至终止。每个核糖 体都独立完成一条多肽链的合成, 所以这种多核糖体可以在一条 mRNA链上同时合成多条相同的多 肽链,这就大大提高了翻译的效 率

蛋白质生物合成

蛋白质生物合成
(一)翻译的直接模板mRNA
是蛋白质合成的直接模板。是将DNA基因信息传递给蛋白质的“使者”和“通讯员”。
遗传学将编码一个多肽的遗传单位称为顺反子
在原核生物中—多顺反子:数个结构基因常常串联为一个转录单位,转录生成的mRNA可编码几种功能相关的蛋白质,指导多条肽链合成,称为多顺反子
在真核生物中—单顺反子:每种mRNA只能编码一种蛋白质,指导一条多肽链的合成,称为单顺反子。
6.克隆基因的表达经上述过程分离、获得特异序列的基因组DNA或cDNA克隆,即基因克隆。但基因工程的最终目标还是要进行目的基因的表达,以实现生命科学研究、医药或商业目的。
三、基因工程与医学的关系
(一)基因工程用于生产蛋白质类药物
目前用基因工程生产的蛋白质药物已达数十种,已有50多种基因工程药物上市,近千种处于研发状态。已广泛应用于治疗癌症、肝炎、发育不良、糖尿病、囊纤维变性和一些遗传病上。
2.限制性核酸内切酶所谓限制性内切核酸酶就是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。
3.质粒所谓质粒是存在于细菌染色体外的小型环状双链DNA分子。
二、基因工程的主要步骤
1.目的基因的获取目的基因是指为某一特定目的所需要的DNA片段,又称为目应和人工合成等方法。
2.成肽:在大亚基上转肽酶的催化下,P位上起始tRNA所携带的氨基酰与A位上新进入的氨基酸的氨基缩合形成肽键。
3.移位:又称转位,EF-TuGTP复合物与核糖体结合,并水解GTP提供能量,促使核糖体沿mRNA向3'-端移动移动一个密码子的距离。
新生肽链上每增加一个氨基酸残基都要经过进位、成肽、移位三步反应,此过程需要2种EF参与,消耗2分子GTP。
(五)水解修饰:一些多肽链合成后,在特异蛋白水解酶作用下,去除某些肽段或氨基酸残基。

分子生物学蛋白质生物合成

分子生物学蛋白质生物合成

目录
翻译的本质: mRNA 分子中A G C U四种核苷酸序列编码的 遗传信息转换成蛋白质一级结构中20种氨基酸的排 列顺序。
目录
生物学意义
(1)维持多种正常生命活动(生长、发育) (2)适应环境的变化(细菌对乳糖和葡萄糖 的利用) (3)参与组织的更新和修复
目录
第一节
蛋白质生物合成体系
Protein Biosynthesis System
氨基酰-tRNA合成酶的作用特点
原核、真核生物翻译过程的异同
分子伴侣的作用,翻译后修饰的形式
信号肽及其作用,各类蛋白质靶向输送的特点 抗生素、毒素和干扰素抑制翻译的机制
目录
蛋白质生物合成的概念
定义
蛋白质生物合成(protein biosynthesis)也称 翻译(translation),是生物细胞以mRNA为模板, 按照 mRNA 分子中核苷酸的排列顺序所组成的 密码信息合成蛋白质的过程。
目录
和原核生物和真核生物mRNA的比较
目录
(二)遗传密码
密码子(codon)
在mRNA的开放阅读框架区,以每3个相邻的
核苷酸为一组,代表一种氨基酸(或其他信息),这 种三联体形式的核苷酸序列称为密码子。 起始密码子和终止密码子: 起始密码子(initiation codon):AUG(或甲硫氨酸) 终止密码子(termination codon) :UAA、UAG、UGA
密码的通用性进一步证明各种生物进化 自同一祖先。
目录
已发现少数例外,如动物细胞的线粒体、 植物细胞的叶绿体。
通用密码 AUA AGA 异亮 精 线粒体密码 蛋、起始 终止
AGG
UGA

高中生物竞赛蛋白质的生物合成课件

高中生物竞赛蛋白质的生物合成课件
b. 具有转肽酶活性
将给(P)位上的肽酰基转移给受(P)位上的 氨基酰tRNA,形成肽键。具有GTPase活性, 水解GTP,获得能量。具有起始因子、延长 因子及释放因子的结合部位。
四、起始因子
这是一些与多肽链合成起动有关的 蛋白因子。原核生物中存在3种起动因子, 分别称为IF1-3。在真核生物中存在9种 起动因子(eIF)。其作用主要是促进核 蛋白体小亚基与起动tRNA及模板mRNA结 合。
Most identity elements are in the acceptor stem & anticodon loop.
anticodon loop
Aminoacyl-tRNA Synthetases arose
early in evolution. The earliest
aaRSs probably recognized tRNAs
Some amino acids are specified by 2 or more codons.
Synonyms (multiple codons for the same amino acid) in most cases differ only in the 3rd base. Similar codons tend to code for similar amino acids.
GCG Ala GAG Glu
G UGU Cys UGC Cys UGA Stop UGG Trp CGU Arg CGC Arg CGA Arg CGG Arg AGU Ser AGC Ser AGA Arg AGG Arg GGU Gly GGC Gly GGA Gly GGG Gly
3rd base
CCC Pro CAC His

第十一章 蛋白质生物合成

第十一章 蛋白质生物合成
蛋白质合成
遗传信息的传递——中心法则
蛋白质合成的场所是核糖体,原料是20种 L-氨基酸,反应所需能量由ATP、GTP提 供,此外还有Mg2+、K+ 等金属离子参与。 蛋白质合成体系主要由mRNA、tRNA、 rRNA、有关的酶以及几十种蛋白质因子 组成。

A G C C T G
U C G G A C
(三)、rRNA及核糖体
核糖体是由几十种蛋白质和几种rRNA组成的 亚细胞颗粒,其中蛋白质与rRNA的重量比约为 1:2。核糖体是蛋白质合成的场所。
1.不同来源核糖体的大小和RNA组成
核糖体(S) 亚基(S) 50 rRNA (S) 23 5 30 16 28 60
原核生物
70
5.8
5
真核生物
80
终止因子的结合使肽酰转移酶活性变为水解酶活性,肽基不转移
给A位tRNA,而转移给H2O,并把已合成的多肽链从核糖体和 tRNA 上释放出来,无负荷的tRNA随机从核糖体脱落,该核糖体立即离开 mRNA,在IF3存在下,消耗GTP而解离为30S 和50S非功能性亚基。再 重复下一轮过程。
蛋白质的合成是一个高耗能过程
EF-Tu-GTP+下一个要进入的氨酰-tRNA 形成复合物,将这个氨 酰-tRNA 送入核糖体A位,同时GTP GDP + Pi,EFTu-GDP释放。

EF-Tu-GDP+ EF-Ts
EF-Tu-Ts + GDP
EF-Tu-Ts + GTP
EF-Tu-GTP + EF-Ts
重新参与下一轮循环
AA活化 肽链起始 进位 移位
2个高能磷酸键(ATP) 1个(70S复合物形成,GTP) 1个(GTP) 1个(GTP)

动物生物化学课件:蛋白质的生物合成

动物生物化学课件:蛋白质的生物合成
第十二章
蛋白质的生物合成
将mRNA分子中 4 种核苷酸序列 编码的遗传信息,通过遗传密码破译的 方式解读为蛋白质一级结构中20种氨基 酸的排列顺序过程,称为蛋白质的生物 合成或翻译。
参与蛋白质生物合成的物质 蛋白质生物合成的过程
第一节 参与蛋白质生物合成的物质
参与蛋白质合成的物质
• 原料:20种氨基酸 • 模板:mRNA • 运载体:tRNA • 场所:核蛋白体(rRNA与蛋白质构成) • 蛋白质因子:
生物功能
占据A位防止结合其他tRNA 促进起始tRNA与小亚基结合 促进大、小亚基分离,提高P位对结合起始tRNA的 敏感性 促进起始tRNA与小亚基结合 最先结合小亚基促进大、小亚基分离 eIF-4F复合物成分,有解螺旋酶活性,促进mRNA 结合小亚基 结合mRNA,促进mRNA扫描定位起始tRNA eIF-4F复合物成分,结合mRNA5`-帽子 eIF-4F复合物成分,结合eIF-4E和PAB
➢ tRNA凭借自身的反密码子与mRNA链上的密码 子相识别,按照mRNA链上的密码子所决定的氨 基酸顺序将所带氨基酸转运到核糖体的特定部位。
一种氨基酸可以有一种以上tRNA作为 运载工具。通常把携带相同氨基酸而反密 码子不同的一组tRNA称为同功tRNA.
氨基酰tRNA----氨基酸的活化形式。 表示为: tRNAPhe
对应同一种氨基酸的不同密码子,称 为同义密码子。同义密码子使用频率不同.
在蛋白质中出现频率越多的氨基酸, 其密码子的数量越多。
4.密码子使用频率不同
• 在蛋白质合成时,对简并密码子的使用频率是 不同的。
• 如UUU和UUC都为苯丙氨酸编码,但在高表 达的蛋白质中使用UUC的频率明显高于UUU。
5. 密码子与反密码子配对的不严格性

核酸及蛋白质的生物合成

核酸及蛋白质的生物合成

第十一章核酸及蛋白质的生物合成1. DNA的生物合成:以亲代DNA双链为模板按碱基配对原则合成出与亲代链相同的两个DNA双链。

1)半保留复制:DNA复制时以亲代DNA两条链为模板指导合成与其互补的DNA链,在子代DNA 中,一条链来于亲代DNA,另一条链是新合成的。

Cl加入大肠杆菌的培养基中培养12①同位素实验:Meselson 和Stahl将同位素15N标记的15NH4代,使大肠杆菌的DNA都带上15N的标记,然后将该大肠杆菌转入14N的普通培养基中培养后,分离子一代、子二代、子三代、子四代DNA,进行氯化铯密度梯度离心,实验证明DNA的半保留复制。

②意义:表明DNA在代谢上的稳定性,保证亲代的遗传信息稳定地传递给后代。

2)DNA复制的起点和方向:能独立复制的单位叫复制子,每个复制子都含有控制复制起始的起始点。

原核生物的染色体只有一个复制子;真核生物DNA有多个复制子。

双链DNA解开形成两条单链,分别作模板进行复制,此结构为复制叉。

大多数生物的DNA复制是双向、对称的。

3)半不连续复制:DNA复制时,两条链都能作为模板同时合成两条新的互补链,一条连续复制,另一条则不连续。

领头链是不间断延长的,随从链则生成一个个冈崎片段后连接成一条。

①前导链/领头链:两条链均按5’→3’方向合成,一条链3’末端的方向朝复制叉前进的方向,可连续合成;②滞后链/随从链:另一条5’末端朝着复制叉前进的方向,不连续合成。

4)DNA复制的酶系四种脱氧三磷酸核苷酸DNA pol/DDDP催化dNTP聚合到核酸链①5’→3’聚合活性②核酸外切酶活性5)DNA聚合酶:原核生物DNA polⅠ——聚合作用5´→3´外切酶活性:切除引物、切除突变的片段;3’→5’外切酶活性:校对功能。

引物酶:一种特殊的RNA聚合酶;在DNA复制开始时,在5´–端(5´3´方向)合成一小段RNA引物,确定起始部位、引导复制开始。

生物化学 第十一章

生物化学  第十一章

16SRNA 3′ HO-A-U-U-C-C-U-C-C-A-C-U-A…… 5′
细 菌 mRNA 5′ ……C-C-U-A-G-G-A-G-G-U-U-U-G-A-C-C-U-A-U-G-…… 3′
噬菌体
SD序 mRNA 5′ ……C-U-U-G-G列-A-G-G-C-U-U-U-U-U-U-A-U-G-…… 3′
精氨酸 精氨酸 终止密码 异亮氨酸
终止密码 终止密码
色氨酸 起始密码
二、核糖体 大肠杆菌核糖体
1. 组成与结构
真核细胞核糖体
16SrRNA 21种蛋白质
23SrRNA
5SrRNA
34种蛋白 质
18SrRNA ~33种蛋白质
28SrRNA 5SrRNA 5.8SrRNA 49种蛋白质
70S 80S
2. 功能位点
分类标志
反密码子:位于 tRNA反密码环可 与mRNA 的密码子 碱基配对的三个碱 基称为反密码子
2. 同工受体tRNA 概念:结合同一种氨基酸的tRNA
原因:tRNA 的数目(30余种)大于氨基酸数 3. 起始tRNA 概念:专一性识别起始密码子(AUG)tRNA
真核细胞: tRNA携带的是甲硫氨酸(Met) 原核细胞:tRNA携带的是甲酰甲硫氨酸(fMet)
2. 遗传密码 概念:mRNA编码区核苷酸的排列顺序与肽链中氨基酸的排列顺序的对应方
式为遗传密码。现已知,mRNA编码区三个相邻的核苷酸对应一个氨基酸,即三个 相邻的核苷酸为一个遗传密码,也称为三联体密码
mRNA 5′碱基 U
C
A
G
U 苯丙 苯丙 亮 亮 亮 亮 亮 亮 异亮 异亮 异亮 蛋(甲硫) 缬 缬 缬 缬
密码的特点: (1)无间断性。密码阅读方向5′-3′,密码之间无标点符号。

第十一章 蛋白质代谢(一)

第十一章 蛋白质代谢(一)

胺的代谢
大多数胺类对动物有毒,去向: 1)随尿排出; 2)在胺氧化酶作用下可进一步氧化分解:
合成尿素

新氨基酸
糖 葡萄糖或糖原
甘油三酯
脂肪

磷酸丙糖

α-磷酸甘油
脂肪酸

磷酸烯醇丙酮酸
、 丙氨酸 糖 半胱氨酸
丙酮酸
及 丝氨酸
异亮氨酸 乙酰CoA
乙酰乙酰CoA
酮体
脂 苏氨酸
亮氨酸
肪 色氨酸 代 谢
色氨酸 草酰乙酸
亮氨酸 赖氨酸
柠檬酸
酪氨酸 色氨酸 苯丙氨酸
的 联
天冬氨酸 天冬酰胺
TAC
CO2

延胡索酸
α-酮戊二酸
三、氨基酸的一般代谢
生物合成 蛋白质
氨基酸 脱氨 氨、α-酮酸
分解代谢 脱羧 CO2、胺能源
三大代谢
氨基酸代谢概况
食物蛋白质
消化吸收
合成
组织蛋白质
分解
尿素
氨 a-酮酸
脱氨基
氨基酸代谢库
酮体 氧化供能 糖
代谢转变
脱羧基
体内合成氨基酸 (非必需aa)
其它含氮化合物( 嘌呤、嘧啶等)
胺类
(一)脱氨基作用
(一)胃内消化: 1、胃蛋白酶(pepsin): 胃蛋白酶元→胃酸( H+) → 胃蛋白酶
2、胃酶作用:
蛋白质 胃蛋白酶 小分子肽→肠道 胃酶作用于:Phe(苯丙), Tyr(酪), Trp(色).( 芳香族)
Glu(谷), Gln(谷氨酰胺).(酸性氨基酸)。
(二)小肠消化
1、来自胰腺的酶: 1)内肽酶:水解pro内部肽键。 胰蛋白酶:Lys(赖)、Arg(精)羧基端肽键;(碱性) 糜蛋白酶:Phe(苯丙)、Tyr(酪)、Trp(色)肽键(芳香族) 弹性蛋白酶:Val(缬)、Leu(亮)、Ser(丝)、Ala(丙)肽

第十一章 蛋白质的生物合成及加工修饰

第十一章 蛋白质的生物合成及加工修饰

第十一章蛋白质的生物合成及加工修饰(The Biosynthesis and transport of protein)在不同的蛋白质分子中,氨基酸有着特定的排列顺序,这种特定的排列顺序不是随机的,而是严格按照蛋白质的编码基因中的碱基排列顺序决定的。

基因的遗传信息在转录过程中从DNA转移到mRNA,再由mRNA将这种遗传信息表达为蛋白质中氨基酸顺序的过程叫做翻译。

翻译的过程也就是蛋白质分子生物合成的过程,在此过程中需要200多种生物大分子参加,其中包括核糖体、mRNA、tRNA及多种蛋白质因子。

第一节参与蛋白质生物合成的物质一、合成原料自然界由mRNA编码的氨基酸共有20种,只有这些氨基酸能够作为蛋白质生物合成的直接原料。

某些蛋白质分子还含有羟脯氨酸、羟赖氨酸、γ-羧基谷氨酸等,这些特殊氨基酸是在肽链合成后的加工修饰过程中形成的。

下图给出部分特殊氨基酸分子式:二、mRNA是合成蛋白质的直接模板蛋白质是在胞质中合成的,而编码蛋白质的信息载体DNA 却在细胞核内,所以必定有一种中间物质用来传递DNA 上的信息,实验证明:mRNA 是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板,因此得名信使RNA。

原核细胞中每种mRNA分子常带有多个功能相关蛋白质的编码信息,以一种多顺反子的形式排列,在翻译过程中可同时合成几种蛋白质;而真核细胞中,每种mRNA一般只带有一种蛋白质编码信息,是单顺反子的形式。

mRNA以它分子中的核苷酸排列顺序携带从DNA传递来的遗传信息,作为蛋白质生物合成的直接模板,决定蛋白质分子中的氨基酸排列顺序。

不同的蛋白质有各自不同的mRNA,mRNA除含有编码区外,两端还有非编码区。

非编码区对于mRNA的模板活性是必需的,特别是5'端非编码区在蛋白质合成中被认为是与核糖体结合的部位。

mRNA特点:短命原核:半衰期几秒-几分钟真核:半衰期数小时。

功能是蛋白质合成的模板,多肽链氨基酸排列顺序就取决于mRNA 的核苷酸的排列顺序。

核酸与蛋白质的生物合成

核酸与蛋白质的生物合成
RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。RNA引物的碱基顺序,与其模板DNA的碱基顺序相配对。
3、需要引物primer
4、双向复制与复制叉
DNA复制时,局部双链解开形成两条单链,这种叉状结构称为复制叉。
DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制(如滚环复制)。
02
中心法则
反中心法则
在RNA病毒中,其遗传信息贮存在RNA分子中。因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代,通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。
第一节 DNA的复制与修复 一、DNA复制的特点 1、半保留复制 DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semi-conservative replication)。
02
真核生物DNA聚合酶
2)DNA复制的保真性
为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关: 遵守严格的碱基配对规律; DNA聚合酶在复制时对碱基的正确选择; 对复制过程中出现的错误及时进行校正。
5、DNA连接酶ligase
DNA连接酶(DNA ligase)可催化两段DNA片段之间磷酸二酯键的形成,从而使两段DNA连接起来。 DNA连接酶催化的条件是: 需一段DNA片段具有3‘-OH,而另一段DNA片段具有5’-Pi基; 未封闭的切口位于双链DNA中,即其中有一条链是完整的,但T4 DNA连接酶能连接平头双链DNA; 需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。

蛋白质的生物合成与修饰

蛋白质的生物合成与修饰
述 • 氨基酸的活化与转运 • 肽链的合成与延伸 • 蛋白质的翻译后修饰 • 蛋白质生物合成的调控机制 • 蛋白质生物合成的应用与展望
01
蛋白质生物合成概述
蛋白质生物合成的重要性
维持生命活动
蛋白质是生物体结构和功能的基 础,参与细胞代谢、信号传导、 免疫应答等生命活动。
肽键的形成
通过转肽反应,新加载的氨基酸与前一个氨基酸形成肽键,使肽链不 断延伸。
肽链合成的终止和释放
终止阶段
当遇到终止密码子时,释放因子识别并与之结合,导致肽链合成 的终止。
肽链的释放
在释放因子的作用下,完成合成的肽链从核糖体上释放出来。
后续修饰
释放后的肽链可能还需要经过一系列的修饰和加工,如剪切、折叠、 磷酸化等,才能成为具有生物活性的蛋白质。
合形成活化形式的过程。
活化反应的机制
02
氨基酸活化通常涉及与ATP等核苷酸的反应,形成氨酰-AMP等
中间产物,再进一步与特定tRNA结合。
活化反应的意义
03
活化后的氨基酸才能被用于蛋白质的生物合成,保证合成过程
的顺利进行。
tRNA的转运机制
tRNA的结构与功能
tRNA是一种小分子RNA,具有特定的三叶草结构,能够识别并 携带特定的氨基酸。
合成生物学
利用合成生物学技术设计和构建人工生物系统,实现高效、 可持续的蛋白质生产。
01
精准医疗
基于蛋白质生物合成的精准医疗将实现 个性化诊断和治疗,提高医疗效果。
02
03
伦理与法规
随着蛋白质生物合成技术的不断发展, 相关伦理和法规问题也日益凸显,需 要加强监管和公众科普教育。
THANKS
感谢观看
修饰

第蛋白质的生物合成(共23张PPT)

第蛋白质的生物合成(共23张PPT)
在一条mRNA链上可结合多个核糖体,各自独立进 行多肽的合成,能提高mRNA的翻译效率。
6 多肽链的加工
1)N-端甲酰基及多余氨基酸的切除 按蛋白质合成机理,蛋白质N-端氨基酸应是甲酰蛋 氨酸(原核)或蛋氨酸(真核),但事实上并非如此。这是由 于脱甲酰酶除去了N-端的甲酰基,氨肽酶切除了N-端 一或几个多余氨基酸。此过程常在肽链延伸约有40个
氨基酸左右就开始了。
2)蛋白质内部某些氨基酸的修饰
被修饰的部位通常是丝氨酸或苏氨酸铡链上 的羟基;天冬氨酸、谷氨酸铡链上的羧基;天冬 酰胺铡链上的酰胺基;精氨酸、赖氨酸上的氨基; 半胱氨酸上的巯基等。修饰作用是在专一性的酶 催化下进行的。
3)切除非必需肽段 有些酶、激素等要经过此加工过程。如胃蛋白酶、 胰蛋白酶等,初合成的是没有活性的酶原,在一定条 件下除去一段肽才能转变为有活性的酶。如胰岛素, 初产物为前胰岛素原,经切除N-端信号肽变为胰岛素 原,再切除C肽成为有活性的胰岛素。
在结构上类似于遗传信息传递中的某些底物的物质可用于治疗肿瘤,如6-巯基嘌呤、5-氟尿嘧啶等碱基类似物可抑制DNA的复制。
此过程常在肽链延伸约有40个氨基酸左右就开始了。
tRNA合成酶的催化下先生成氨酰-AMP 逆转录病毒以RNA基因组合成cDNA时以tRNA为引物;
有些酶、激素等要经过此加工过程。
,再将活化的氨
2 核糖体
核糖体是细胞内合成蛋白质的场所,在蛋白质生 物合成过程中,将tRNA、mRNA及多种酶和蛋白质因 子的作用协调起来。核糖体由rRNA和蛋白质组成,有 大小两个亚基。
核糖体的功能:①识 别mRNA上的起始点,②使 mRNA 上 的 密 码 子 与 tRNA
上的反密码子配对,③合成肽 键。
核糖体的种类、结构和组分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

商洛职业技术学院教案教案首页
教案续页
基酸的工具,以核蛋白体为合成场所,在多种酶和辅助因子等200多种成分共同参与下完成。

准备过程:氨基酸的活化与转运氨基酰-tRNA合成酶具有绝对专一性,对氨基酸、tRNA两种底物都有高度特异的识别功能,并将氨基酸连接在对应的tRNA上,从而保证了遗传信息的准确翻译。

一、
一、肽链合成的起始
由核糖体、大小亚基,模板mRNA及起始tRNA组装形成起始复合物的过程,需GTP、三种IF及Mg2+的参与。

1. 核糖体大、小亚基分离
2. mRNA 在小亚基上定位结合
3. 起始氨基酰-tRNA的结合
4. 核糖体大亚基结合
二、肽链合成的延长
1.注册:又称进位,按照A位处对应的mRNA第2个密码子,相应的氨基酰tRNA与EF-TuGTP构成复合物,并通过反密码识别mRNA模板上的密码子。

2.成肽:在大亚基上转肽酶的催化下,P位上起始tRNA所携带的氨基酰与A位上新进入的氨基酸的氨基缩合形成肽键。

3.移位:又称转位,EF-TuGTP复合物与核糖体结合,并水解GTP 提供能量,促使核糖体沿mRNA向3'-端移动移动一个密码子的距离。

新生肽链上每增加一个氨基酸残基都要经过进位、成肽、移位三步反应,此过程需要2种EF参与,消耗2分子GTP。

三、肽链合成的终止
当核蛋白体的A位出现mRNA的终止密码后,多肽链合成停止,肽链从肽酰-tRNA中释出,mRNA大小亚基等分离,这些过程称为肽链合成终止。

蛋白质的生物合成
以上所述是单个核蛋白体合成肽链(单个核蛋白体循环)的情况。

每条mRNA模板在蛋白质合成过程中同时与多个核蛋白体结合所形成
的念珠状结构称为多聚核蛋白体,是多肽链合成的功能单位。

由此可见,多个核蛋白体利用同一条mRNA模板,按不同进度各
自合成多条相同的肽链,从而提高了翻译的效率。

蛋白体合成的速度很
快,据估算,每一个核蛋白体每秒钟可翻译约40个密码,即每秒合成
相当于40个左右氨基酸残基组成的多肽链。

第三节翻译后加工
包括一级结构的修饰和空间结构的修饰:
(一)新生肽链的折叠:新合成的肽链需经过折叠形成特定空间
结构才具有生物活性。

这一过程主要在细胞内质网中进行,一般需要在
折叠酶和分子伴侣参与下才能完成。

(二) N端甲酰蛋氨酸或蛋氨酸的切除:在肽链合成后或肽链延长
过程中,由脱甲酰基酶或氨基肽酶催化,将甲酰蛋氨酸或蛋氨酸残基水
解切除掉。

(三)氨基酸残基侧链的修饰:例如,丝氨酸和苏氨酸残基的磷
酸化;脯氨酸和赖氨酸残基的羟基化;组氨酸残基的甲基化;谷氨酸残
基的羧基化等。

10分钟
教案末页。

相关文档
最新文档