11章蛋白质的生物合成

合集下载

第十一章多聚核糖体与蛋白质的合成

第十一章多聚核糖体与蛋白质的合成

第十一章核糖体● 核糖体是细胞质中普遍存在的一种非膜性细胞器,由RNA和蛋白质组成,是细胞内蛋白质合成的场所。

● 多聚核糖体是由多个甚至是几十个核糖体串联在一条mRNA上构成的,能高效的进行肽链的合成。

● 蛋白质合成是以各种氨基酸为原料,mRNA为模板,tRNA 作为“搬运工具”以及核糖体作为“装配机” 合成肽链的过程。

● RNA可能是生命起源中最早的生物大分子。

关键词:核糖体;多聚核糖体;蛋白质合成第二节多聚核糖体与蛋白质的合成核糖体(ribosome)是合成蛋白质的细胞器,其功能是以mRNA为模板,以氨基酸为原料高效且精确地合成蛋白质多肽链。

在真核细胞中,核糖体以多聚核糖体的形式存在能高效的进行肽链的合成。

一、多聚核糖体核糖体往往并不是单个独立地执行功能,而是由多个核糖体串连在一条mRNA 分子上高效地进行肽键的合成。

这种具有特殊功能与形态的核糖体与mRNA的聚合体称为多聚核糖体(polyribosome)。

图11-2-1多聚核糖体二、蛋白质的合成蛋白质合成是以各种氨基酸为原料,mRNA为模板,tRNA 作为“搬运工具”以及核糖体作为“装配机” 合成肽链的过程。

原核细胞蛋白质合成的过程已比较清楚,包括3个阶段:肽链合成的起始,延伸和终止。

在起始之前还要进行氨基酸的活化(一)氨基酸的活化1. 定义氨基酸的活化是指各种参加蛋白质合成的AA与携带它的相应的tRNA结合成氨酰- tRNA的过程。

活化反应在氨酰-tRNA 合成酶的催化下进行。

2.过程活化反应分两步进行:活化:AA-AMP-E复合物的形成转移:氨酰-tRNA形成20种氨基酸中每一种都有各自特异的氨酰-tRNA合成酶。

氨酰-tRNA合成酶具有高度的专一性,它既能识别相应的氨基酸(L-构型),又能识别与此氨基酸相对应的一个或多个tRNA 分子;即使AA识别出现错误,此酶具有水解功能,可以将其水解掉。

这种高度的专一性保证了氨基酸与其特定的tRNA准确匹配,从而使蛋白质的合成具有一定的保真性。

生物化学-生化知识点_第十一章 蛋白质的生物合成

生物化学-生化知识点_第十一章  蛋白质的生物合成

第十一章蛋白质的生物合成11-1 遗传密码(下册 P504,37章)蛋白质是生物主要的功能分子,它参与所有的生命活动过程,并起着主导作用。

蛋白质的合成由核酸所控制,决定蛋白质结构的遗传信息编码在核酸分子中。

遗传密码:编码氨基酸的核苷酸序列,通常指核苷酸三联体决定氨基酸的对应关系。

一一一三联密码:核酸分子中只有四种碱基,要为蛋白质分子20种氨基酸编码。

三个碱基编码64个,又称三联密码。

密码子:mRNA上有三个相邻核苷酸组成一个密码子,代表某种氨基酸、肽链合成的起始或终止信号。

蛋白质翻译:在RNA控制下根据核酸链上每3个核苷酸决定一种氨基酸的规则,合成出具有特定氨基酸顺序的蛋白质过程。

全部64个密码子破译后,编写出的遗传密码字典。

见P511 表37-5。

一一一遗传密码的基本特性一1一密码的基本单位遗传密码按5‘→3‘方向编码,为不重叠、无标点的三联体密码子。

起始密码子兼Met:AUG。

终止密码子:UAA、UAG和UGA。

其余61个密码子对应20种氨基酸。

一2一密码的简并性同一种氨基酸有两个或更多密码子的现象称为密码的简并性。

同一种氨基酸不同密码子称为同义密码子,氨基酸密码子的简并见P512表37-6。

简并可以减少有害突变,对物种稳定有一定作用。

一3一密码的变偶性(摆动性)编码同一个氨基酸的密码子前两位碱基都相同,第三位碱基不同,为变偶性。

即密码简并性往往表现在密码子第三位碱基上,如Gly的密码子为GGU、GGC、和GGA。

一4一密码的通用性和变异性通用性:各种低等和高等生物,包括病毒、细菌及真核生物基本上共用一套遗传密码。

变异性:已知线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。

一5一密码的防错系统密码的编排方式使得密码子中一个碱基被置换,其结果常常是编码相同的氨基酸或是为物理化学性质接近的氨基酸取代。

11-2 蛋白质合成及转运下册 P5171、氨基酸是怎样被选择及掺入到多肽链当中去的。

生物化学第十一章 蛋白质的生物合成(共65张PPT)全

生物化学第十一章 蛋白质的生物合成(共65张PPT)全

原核、真核生物各种起始因子的生物功能
起始因子
生物功能
IF-1
占 据 A 位 防 止 结 合 其 他 tRN A
原核
生物
EIF-2
促进起始tRNA与小亚基结合
EIF-3
促 进 大 小 亚 基 分 离 , 提 高 P位 对 结 合 起 始 tRNA 敏 感 性
eIF-2
促进起始tRNA与小亚基结合
eIF-2B,eIF-3
eEF-1-A
EF-Ts 再生EF-Tu
eEF-1-B
EFG
有转位酶活性,促进mRNA肽酰-tRNA由A位前移到P位, 促进卸载tRNA释放
eEF-2
(一)进位(P607 609)
又称注册(registration)
指根据mRNA下一组遗传密 三
码指导,使相应氨基酰-tRNA进 元
入核蛋白体A位。
第一节 蛋白质合成体系
一、翻译模板mRNA及遗传密码
二、核蛋白体是多肽链合成的装置 三、tRNA与氨基酸的活化
P602
一、翻译模板mRNA及遗传密码
(一) mRNA是遗传信息的携带者
1.顺反子(cistron):将编码一个多肽的遗传单位称为顺反
子。
2. 开放阅读框架(open reading frame, ORF):从mRNA 5 端起始密码子AUG到3端终止密码子之间的核苷酸序列。
mRNA 的结构
原核生物的多顺反子
5 PPP
ORF
ORF
真核生物的单顺反子
5 mG - PPP
3
ORF
蛋白质
3
蛋白质
非编码序列
核蛋白体结合位点
编码序列
起始密码子

第十一章 蛋白质的生物合成复习题-带答案

第十一章 蛋白质的生物合成复习题-带答案

第十一章蛋白质的生物合成一、名词解释126、翻译答案:(translanion)以mRNA为模板,氨酰—tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。

127、密码子答案:(codon)mRNA中碱基顺序与蛋白质中氨基酸顺序的对应关系是通过密码实现的,mRNA中每三个相邻的碱基决定一个氨基酸,这三个相邻的碱基称为一个密码子。

128、密码的简并性答案:(degeneracy)一个氨基酸具有两个以上密码子的现象。

129、同义密码子答案:(synonym codon)为同一种氨基酸编码的各个密码子,称为同义密码子。

130、反密码子答案:(anticodon)指tRNA反密码子环中的三个核苷酸的序列,在蛋白质合成过程中通过碱基配对,识别并结合到mRNA的特殊密码子上.131、多核糖体答案:(polysome)mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体。

二、填空题158、在细菌细胞里,独立于染色体之外的遗传因子叫,它是一个状双链DNA,在基因工程中,它作为。

答案:质粒;环;基因载体159、hnRNA加工过程中,在mRNA上出现并代表蛋白质的DNA序列叫,不在mRNA上出现,不代表蛋白质的DNA序列叫。

答案:外显子;内含子160、蛋白质的生物合成是以mRNA为模板,以为原料直接供体,以为合成场所。

答案:氨酰-tRNA;核糖体161、生物界共有个密码子,其中个为氨基酸编码,起始密码子为,终止密码子为,,。

答案:64;61;AUG;UAA、UAG、UGA162、原核生物的起始tRNA以表示,真核生物的起始tRNA以表示,延伸中的甲硫氨酰tRNA以表示。

答案:tRNA f;tRNAi;tRNAm163、植物细胞中蛋白质生物合成可在,和三种细胞器中进行。

答案:核糖体、线粒体、叶绿体164、原核生物中的释放因子有三种,其中RF—1识别终止密码子,;RF—2识别,;真核中的释放因子只有一种。

第十一章 蛋白质的生物合成

第十一章 蛋白质的生物合成

氨基酸活化的总反应式是:
氨基酰-tRNA 合成酶 氨基酸 + ATP + tRNA + H2O 酰-tRNA + AMP + PPi
氨基
2.在核糖体上合成肽链
氨基酰-tRNA通过反密码臂上的三联体反密码 子识别mRNA上相应的遗传密码,并将所携带的 氨基酸按mRNA遗传密码的顺序安臵在特定的位 臵,最后在核糖体中合成肽链。
四、mRNA
是蛋白质合成的直接模板,指导肽链的合 成。 mRNA分子上的核苷酸顺序决定蛋白质分子 的氨基酸顺序。
第二节 遗传密码
mRNA分子中所存储的蛋白质合成信息,是由组成 它的四种碱基(A、G、C和U)以特定顺序排列成 三个一组的三联体代表的,即每三个碱基代表一 个氨基酸信息。 这种代表遗传信息的三联体称为密码子,或三联 体密码子。 因此 mRNA 分子的碱基顺序即表示了所合成蛋白 质的氨基酸顺序。
转肽
肽酰转移酶
肽基转移酶
延长过程中肽链的生成
移位
肽链合成的终止与释放
识别mRNA的终止密码子,水解所 合成肽链与tRNA间的酯键,释放 肽链 R1识别UAA、UAG R2识别UAA、UGA R3影响肽链的释放速度 RR帮助P位点的tRNA残基脱落,而 后核糖体脱落
终止
多核糖体
在细胞内一条mRNA链上结合着多 个核糖体,甚至可多到几百个。 蛋白质开始合成时,第一个核糖 体在mRNA的起始部位结合,引入 第一个蛋氨酸,然后核糖体向 mRNA的3’端移动一定距离后,第 二个核糖体又在mRNA的起始部位 结合,现向前移动一定的距离后, 在起始部位又结合第三个核糖体, 依次下去,直至终止。每个核糖 体都独立完成一条多肽链的合成, 所以这种多核糖体可以在一条 mRNA链上同时合成多条相同的多 肽链,这就大大提高了翻译的效 率

第十一章 蛋白质生物合成

第十一章 蛋白质生物合成
蛋白质合成
遗传信息的传递——中心法则
蛋白质合成的场所是核糖体,原料是20种 L-氨基酸,反应所需能量由ATP、GTP提 供,此外还有Mg2+、K+ 等金属离子参与。 蛋白质合成体系主要由mRNA、tRNA、 rRNA、有关的酶以及几十种蛋白质因子 组成。

A G C C T G
U C G G A C
(三)、rRNA及核糖体
核糖体是由几十种蛋白质和几种rRNA组成的 亚细胞颗粒,其中蛋白质与rRNA的重量比约为 1:2。核糖体是蛋白质合成的场所。
1.不同来源核糖体的大小和RNA组成
核糖体(S) 亚基(S) 50 rRNA (S) 23 5 30 16 28 60
原核生物
70
5.8
5
真核生物
80
终止因子的结合使肽酰转移酶活性变为水解酶活性,肽基不转移
给A位tRNA,而转移给H2O,并把已合成的多肽链从核糖体和 tRNA 上释放出来,无负荷的tRNA随机从核糖体脱落,该核糖体立即离开 mRNA,在IF3存在下,消耗GTP而解离为30S 和50S非功能性亚基。再 重复下一轮过程。
蛋白质的合成是一个高耗能过程
EF-Tu-GTP+下一个要进入的氨酰-tRNA 形成复合物,将这个氨 酰-tRNA 送入核糖体A位,同时GTP GDP + Pi,EFTu-GDP释放。

EF-Tu-GDP+ EF-Ts
EF-Tu-Ts + GDP
EF-Tu-Ts + GTP
EF-Tu-GTP + EF-Ts
重新参与下一轮循环
AA活化 肽链起始 进位 移位
2个高能磷酸键(ATP) 1个(70S复合物形成,GTP) 1个(GTP) 1个(GTP)

生物化学 第十一章

生物化学  第十一章

16SRNA 3′ HO-A-U-U-C-C-U-C-C-A-C-U-A…… 5′
细 菌 mRNA 5′ ……C-C-U-A-G-G-A-G-G-U-U-U-G-A-C-C-U-A-U-G-…… 3′
噬菌体
SD序 mRNA 5′ ……C-U-U-G-G列-A-G-G-C-U-U-U-U-U-U-A-U-G-…… 3′
精氨酸 精氨酸 终止密码 异亮氨酸
终止密码 终止密码
色氨酸 起始密码
二、核糖体 大肠杆菌核糖体
1. 组成与结构
真核细胞核糖体
16SrRNA 21种蛋白质
23SrRNA
5SrRNA
34种蛋白 质
18SrRNA ~33种蛋白质
28SrRNA 5SrRNA 5.8SrRNA 49种蛋白质
70S 80S
2. 功能位点
分类标志
反密码子:位于 tRNA反密码环可 与mRNA 的密码子 碱基配对的三个碱 基称为反密码子
2. 同工受体tRNA 概念:结合同一种氨基酸的tRNA
原因:tRNA 的数目(30余种)大于氨基酸数 3. 起始tRNA 概念:专一性识别起始密码子(AUG)tRNA
真核细胞: tRNA携带的是甲硫氨酸(Met) 原核细胞:tRNA携带的是甲酰甲硫氨酸(fMet)
2. 遗传密码 概念:mRNA编码区核苷酸的排列顺序与肽链中氨基酸的排列顺序的对应方
式为遗传密码。现已知,mRNA编码区三个相邻的核苷酸对应一个氨基酸,即三个 相邻的核苷酸为一个遗传密码,也称为三联体密码
mRNA 5′碱基 U
C
A
G
U 苯丙 苯丙 亮 亮 亮 亮 亮 亮 异亮 异亮 异亮 蛋(甲硫) 缬 缬 缬 缬
密码的特点: (1)无间断性。密码阅读方向5′-3′,密码之间无标点符号。

第十一章 蛋白质的生物合成及加工修饰

第十一章 蛋白质的生物合成及加工修饰

第十一章蛋白质的生物合成及加工修饰(The Biosynthesis and transport of protein)在不同的蛋白质分子中,氨基酸有着特定的排列顺序,这种特定的排列顺序不是随机的,而是严格按照蛋白质的编码基因中的碱基排列顺序决定的。

基因的遗传信息在转录过程中从DNA转移到mRNA,再由mRNA将这种遗传信息表达为蛋白质中氨基酸顺序的过程叫做翻译。

翻译的过程也就是蛋白质分子生物合成的过程,在此过程中需要200多种生物大分子参加,其中包括核糖体、mRNA、tRNA及多种蛋白质因子。

第一节参与蛋白质生物合成的物质一、合成原料自然界由mRNA编码的氨基酸共有20种,只有这些氨基酸能够作为蛋白质生物合成的直接原料。

某些蛋白质分子还含有羟脯氨酸、羟赖氨酸、γ-羧基谷氨酸等,这些特殊氨基酸是在肽链合成后的加工修饰过程中形成的。

下图给出部分特殊氨基酸分子式:二、mRNA是合成蛋白质的直接模板蛋白质是在胞质中合成的,而编码蛋白质的信息载体DNA 却在细胞核内,所以必定有一种中间物质用来传递DNA 上的信息,实验证明:mRNA 是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板,因此得名信使RNA。

原核细胞中每种mRNA分子常带有多个功能相关蛋白质的编码信息,以一种多顺反子的形式排列,在翻译过程中可同时合成几种蛋白质;而真核细胞中,每种mRNA一般只带有一种蛋白质编码信息,是单顺反子的形式。

mRNA以它分子中的核苷酸排列顺序携带从DNA传递来的遗传信息,作为蛋白质生物合成的直接模板,决定蛋白质分子中的氨基酸排列顺序。

不同的蛋白质有各自不同的mRNA,mRNA除含有编码区外,两端还有非编码区。

非编码区对于mRNA的模板活性是必需的,特别是5'端非编码区在蛋白质合成中被认为是与核糖体结合的部位。

mRNA特点:短命原核:半衰期几秒-几分钟真核:半衰期数小时。

功能是蛋白质合成的模板,多肽链氨基酸排列顺序就取决于mRNA 的核苷酸的排列顺序。

第11章 蛋白质的生物合成(共96张PPT)

第11章 蛋白质的生物合成(共96张PPT)

携带Met的tRNA有两种:
甲硫氨酸tRNAm:tRNAmMet 甲酰甲硫氨酸tRNAf:tRNAfMet
甲酰FH4
蛋白质生物合成:
原核细胞以fMet- tRNAf为起点; 真核细胞以Met- tRNAm为起点
甲酰基转移酶
甲酰甲硫 氨酰tRNAf
(2)起始
1 核糖体大小亚基分离 2 mRNA在核糖体小亚基定位结合 3 起始氨基酰-tRNA与起始密码子结合 4 核糖体大亚基结合,形成70S起始复合物
内含肽与外显肽基因进行同步转录和翻译,当翻译形成蛋白质前体 后,内含肽具有自我催化功能,可从蛋白质中自体切除,形成成熟 的具有活性的蛋白。
内含肽剪接是自我催化,机制不详。
2.二硫键的形成
mRNA中没有胱氨酸的密码子,而不少蛋白质都含有二硫 键,这是蛋白质合成后通过两个半胱氨酸的氧化作用生成的。
核糖体亚基
rRNAs
蛋白
RNA的特异顺序和功能
细菌
70S 50S 23S=2904b 31种(L1-L31)含CGAAC和GTψCG互补
2.5×106D
5S=120b
66%RNA 30S 16S=1542b 21种(S1-S21) 16SRNA(CCUCCU)和S-D
顺序(AGGAGG)互补
哺乳动物
一级结构的核苷酸序列。 含量少,占总RNA的5%,容易降解。
开放阅读框
与蛋白质合成的正确起始有关。 避免mRNA被核酸酶降解,增强其稳定性。
遗传密码子(genetic codon)
mRNA分子中,从5’-3’ 每三个相邻的核苷酸组成的三联体,代表某个氨基酸或 其它信息,称为遗传密码子,也称三联体密码子。
U G AC
2. tRNA的功能

【生物化学简明教程】第四版11章 蛋白质分解和氨基酸代谢

【生物化学简明教程】第四版11章 蛋白质分解和氨基酸代谢

11 蛋白质分解和氨基酸代谢1.蛋白质在细胞内不断地降解又合成有何生物学意义?解答:细胞不停地将氨基酸合成蛋白质,并又将蛋白质降解为氨基酸。

这种看似浪费的过程对于生命活动是非常必要的。

首先可去除那些不正常的蛋白质,它们的积累对细胞有害。

其次,通过降解多余的酶和调节蛋白来调节物质在细胞中的代谢。

研究表明降解最迅速的酶都位于重要的代谢调控位点上,这样细胞才能有效地应答环境变化和代谢的需求。

另外细胞也可以蛋白质的形式贮存养分,在代谢需要时将其降解产生能量供机体需要。

2.何谓氨基酸代谢库?解答:所谓氨基酸代谢库即指体内氨基酸的总量。

3.氨基酸脱氨基作用有哪几种方式?为什么说联合脱氨基作用是生物体主要的脱氨基方式?解答:氨基酸的脱氨基作用主要有氧化脱氨基作用、转氨基作用、联合脱氨基作用和非氧化脱氨基作用。

生物体内L-氨基酸氧化酶活力不高,而L-谷氨酸脱氢酶的活力却很强,转氨酶虽普遍存在,但转氨酶的作用仅仅使氨基酸的氨基发生转移并不能使氨基酸真正脱去氨基。

故一般认为L-氨基酸在体内往往不是直接氧化脱去氨基,主要以联合脱氨基的方式脱氨。

详见11.2.1氨基酸的脱氨基作用。

4.试述磷酸吡哆醛在转氨基过程中的作用。

解答:转氨酶的种类虽多,但其辅酶只有一种,即吡哆醛-5'-磷酸,它是维生素B6的磷酸酯。

吡哆醛-5'-磷酸能接受氨基酸分子中的氨基而变成吡哆胺-5'-磷酸,同时氨基酸则变成α-酮酸。

吡哆胺-5'-磷酸再将其氨基转移给另一分子α-酮酸,生成另一种氨基酸,而其本身又变成吡哆醛-5'-磷酸,吡哆醛-5'-磷酸在转氨基作用中起到转移氨基的作用。

5.假如给因氨中毒导致肝昏迷的病人注射鸟氨酸、谷氨酸和抗生素,请解释注射这几种物质的用意何在?解答:人和哺乳类动物是在肝中依靠鸟氨酸循环将氨转变为无毒的尿素。

鸟氨酸作为C 和N的载体,可以促进鸟氨酸循环。

谷氨酸可以和氨生成无毒的谷氨酰胺。

11第十一章 蛋白质的降解和氨基酸的分解代谢

11第十一章 蛋白质的降解和氨基酸的分解代谢

2. 转氨基作用
转氨基作用是α-氨基酸和α-酮酸之间的氨基转移反 应。 催化转氨基作用的酶叫做转氨酶或氨基移换酶。 转氨酶广泛存在于生物体内。已经发现的转氨酶至 少有50多种。用15N 50 N标记的氨基酸证明,除甘氨酸、赖氨 酸和苏氨酸外,其余的α-氨基酸都可参加转氨基作用,其 中以谷丙转氨酶(GPT)和谷草转氨酶(GOT)最重要。
第十一章 蛋白质的降解和氨基酸的代谢
(二)脱羧基作用
1.直接脱羧基作用 2.羟化脱羧基作用
第十一章 蛋白质的降解和氨基酸的代谢
1.直接脱羧基作用
氨基酸在脱羧酶作用下,进行脱羧反应生成胺类 化合物。 氨基酸脱羧酶广泛存在于动植物和微生物体内, 以磷酸吡哆醛作为辅酶。 植物体内谷氨酸脱羧酶催化谷氨酸脱去羧基生成 γ-氨基丁酸。组氨酸脱羧生成组胺,酪氨酸脱羧生成酪 胺,赖氨酸脱羧生成戊二胺(尸胺),鸟氨酸脱羧生成丁 二胺(腐胺)等。所生成的胺类很多都具有活跃的生理作 用。
第十一章 蛋白质的降解和氨基酸的代谢
第十一章 蛋白质的降解和氨基酸的代谢
4. 非氧化脱氨基作用
微生物中主要进行非氧化脱氨基作用,方式有3 种: ①还原脱氨基作用 在无氧条件下,某些含有氢化酶的微生物能利用 还原脱氨基方式使氨基酸脱去氨基。
第十一章 蛋白质的降解和氨基酸的代谢
②脱水脱氨基作用 丝氨酸和苏氨酸的脱氨基也可经脱水的方式完 成,催化该反应的酶以磷酸吡哆醛为辅酶。
第十一章 蛋白质的降解和氨基酸的代谢
含蛋白质丰富的物质经腐败细菌作用时,常发生氨基酸 的脱羧反应,生成这些胺类。
第十一章 蛋白质的降解和氨基酸的代谢
2.羟化脱羧基作用
酪氨酸在酪氨酸酶的催化下可发生羟化作 用而生成3,4-二羟苯丙氨酸,简称多巴(dopa), 它可进一步脱羧生成3,4-二羟苯乙胺,简称多巴 胺(dopamine)。

生物化学第十一章蛋白质的分解代谢

生物化学第十一章蛋白质的分解代谢

目录
(三)蛋白酶体: 存在于细胞核和胞浆内,主要降解异常蛋白质和短寿蛋白

26S蛋白 质酶体
20S的核心 2个α环:7个α亚基 颗粒(CP) 2个β环:7个β亚基
19S的调节颗粒(RP) : 18个亚基, 6 个亚基具有ATP酶活性
目录
目录
三、细胞内蛋白质降解过程
泛素介导的蛋白质降解过程
泛素与选择性被降解蛋白质形成共价连接,并使 其激活,即泛素化,包括三种酶参与的3步反应, 并需消耗ATP。
CHNH2 CH2 CH2 C NH
γ-谷氨酰 氨基酸
COOH CH
γ-谷氨 酰环化 转移酶
氨基酸 COOH
H2NCH R
COOH
H2NCH R
氨基酸
γ-谷 氨酰 基转 移酶
O
半胱氨酰甘氨酸 (Cys-Gly)
谷胱甘肽 GSH
甘氨酸
R
5-氧脯氨酸
肽酶 半胱氨酸
5-氧脯 氨酸酶
ATP ADP+Pi
γ-谷氨酰
通过此种方式并未产生游离的氨。
目录
(三)联合脱氨基作用 定义 两种脱氨基方式的联合作用,使氨基酸 脱下α-氨基生成α-酮酸的过程。
目录
转氨基偶联氧化脱氨基作用
氨基酸
转氨酶
α-酮酸
α-酮戊二酸
谷氨酸
NH3+NADH+H+
L-谷氨酸脱氢酶
H2O+NAD+
此种方式既是氨基酸脱氨基的主要方式,也 是体内合成非必需氨基酸的主要方式。
(CH2)2 COOH
α-酮戊二酸
催化酶:
存在于肝、脑、肾中 辅酶为 NAD+ 或NADP+

蛋白质的生物合成与修饰

蛋白质的生物合成与修饰
述 • 氨基酸的活化与转运 • 肽链的合成与延伸 • 蛋白质的翻译后修饰 • 蛋白质生物合成的调控机制 • 蛋白质生物合成的应用与展望
01
蛋白质生物合成概述
蛋白质生物合成的重要性
维持生命活动
蛋白质是生物体结构和功能的基 础,参与细胞代谢、信号传导、 免疫应答等生命活动。
肽键的形成
通过转肽反应,新加载的氨基酸与前一个氨基酸形成肽键,使肽链不 断延伸。
肽链合成的终止和释放
终止阶段
当遇到终止密码子时,释放因子识别并与之结合,导致肽链合成 的终止。
肽链的释放
在释放因子的作用下,完成合成的肽链从核糖体上释放出来。
后续修饰
释放后的肽链可能还需要经过一系列的修饰和加工,如剪切、折叠、 磷酸化等,才能成为具有生物活性的蛋白质。
合形成活化形式的过程。
活化反应的机制
02
氨基酸活化通常涉及与ATP等核苷酸的反应,形成氨酰-AMP等
中间产物,再进一步与特定tRNA结合。
活化反应的意义
03
活化后的氨基酸才能被用于蛋白质的生物合成,保证合成过程
的顺利进行。
tRNA的转运机制
tRNA的结构与功能
tRNA是一种小分子RNA,具有特定的三叶草结构,能够识别并 携带特定的氨基酸。
合成生物学
利用合成生物学技术设计和构建人工生物系统,实现高效、 可持续的蛋白质生产。
01
精准医疗
基于蛋白质生物合成的精准医疗将实现 个性化诊断和治疗,提高医疗效果。
02
03
伦理与法规
随着蛋白质生物合成技术的不断发展, 相关伦理和法规问题也日益凸显,需 要加强监管和公众科普教育。
THANKS
感谢观看
修饰

第11章 蛋白质的生物合成-翻译

第11章 蛋白质的生物合成-翻译

(二) tRNA转运活化的氨基酸至mRNA模板上
Phe 5„ 3„
与多肽合成有关的位点:
3„端-CCA氨基酸接受位点 识别氨酰-tRNA合成酶位点 识别核糖体的位点 反密码子 (与密码子碱基互补)
12 3
书3 2 1
tRNA的L形三级结构
酵母和大肠杆菌 tRNA的三级结构都呈L 形折叠式。这种结构是 靠氢键来维持的,tRNA 的三级结构与AA- tRNA 合成酶的识别有关。
E 位点 肽酰基转移 酶 EF-Tu 结合 位点 EF-G 结合 位点 L7/L12
结合脱酰 tRNA 将肽链转移到氨基 酰-tRNA上 氨基酰-tRNA 的进 入 移位
GTP 酶需要
L7、L12
核糖体分子中至少可 容纳两个tRNA和约 40bp长的mRNA。
真核生物细胞中发现 的多聚核糖体现象。
肽链的终止及释放
核糖体从mRNA上 解离,准备新一 轮合成反应。
二、蛋白质合成的分子基础
翻译(蛋白质的生物合成):





以氨基酸为原料 以mRNA为模板 以tRNA为运载工具 以核糖体为合成场所 需Mg2+和适当缓冲体系 起始、延长、终止各阶段蛋白因子参与 合成后加工成为有活性蛋白质
2.序列富含嘌呤(如AGGA /GAGG)的一段序列。 3.能和原核生物16s rRNA相应的富含嘧啶序列 互补。
起始密码
SD序列
Initiation codon
30S亚基具有专一性的识别和选择mRNA起始位点的性质 ,而IF3能协助该亚基完成这种选择。研究发现,30S亚基通 过其16S rRNA的3’末端与mRNA5’端起始密码子上游碱基配对结 合。Shine及Dalgarno等证明几乎所有原核生物mRNA上都有一 个5’-AGGAGGU-3’序列,这个富含嘌呤区与30S亚基上16S rRNA 3’末端的富含嘧啶区序列5’-GAUCACCUCCUUA-3’相互补。

第十二章 蛋白质的生物合成(11采用)

第十二章 蛋白质的生物合成(11采用)

延长因子(elongation factor,EF) 释放因子(release factor,RF)
延长因子
IF-3 促进大小亚基分离,提高P位对结合起始tRNA的敏感 性 EF-Tu 促进氨基酰-tRNA进入A位,结合并分解GTP EF-Ts EF-G 调节亚基 有转位酶活性,促进mRNA-肽酰-tRNA由A位移至P 位,促进tRNA卸载与释放 特异识别UAA、UAG,诱导转肽酶转变为酯酶 特异识别UAA、UGA,诱导转肽酶转变为酯酶 可与核蛋白体其他部位结合,有 GTP酶活性,能介导 RF-1及RF-2与核蛋白体的相互作用
是蛋白质生物合成的直接模板
mRNA种类多,大小不一,半衰期短 占RNA总量1%-2%
原核生物的多顺反子
5 PPP 3
蛋白质
真核生物的单顺反子
5 mG - PPP
AAA …
3
蛋白质 非编码序列 编码序列 核蛋白体结合位点 起始密码子 终止密码子

mRNA上存在遗传密码
mRNA分子上从5至3方向,由AUG开始,每
简并性(degeneracy)
通用性(universality)
摆动性(wobble)
(一)方向性
翻译时遗传密码的本身及阅读方向是5’→3’,
即读码从mRNA的起始密码子AUG开始,按
5’→3’的方向逐一阅读,直至终止密码子。
5′ 读码方向 3′
N
肽链延伸方向
C
(二)连续性
编码蛋白质氨基酸序列的各个三联体密码 从5’ 3’连续阅读,密码间既无间断也无交叉。
5’…….A U G G C A G U A C A U …… U A A 3’
Met Ala Val His 终止密码
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mRNA只编码一种蛋白质。
目录
原核生物的多顺反子
5 PPP
3
真核生物的单顺反子
5 mG - PPP
蛋白质
3
蛋白质
非编码序列
核蛋白体结合位点
编码序列
起始密码子
终止密码子
目录
2. mRNA上存在遗传密码 mRNA分子上从5至3方向,由AUG开始,每3 个核苷酸为一组,决定肽链上某一个氨基酸或 蛋白质合成的起始、终止信号,称为三联体密 码(triplet coden)。
Posttranslational Processing
目录
蛋白质前体的加工
内质网中,小的分泌性蛋白质和病毒膜蛋白---带有信号序列
蛋白酶 切除信号序列
成熟蛋白
质膜蛋白 分泌性蛋白
区别
目录
目录
应用区别
古细菌
起始
延伸
目录
第二节 蛋白质生物合成过程
The Process of Protein Biosynthesis
目录
翻译过程从阅读框架的5´-AUG开始, 按mRNA模板三联体密码的顺序延长肽链, 直至终止密码出现。
整个翻译过 • 氨基酸的活化 程可分为: • 翻译的起始 (initiation)
Met
大亚基
真核生物翻译起始 复合物形成过程
三、肽链合成延长
• 肽链延长在核蛋白体上连续性循环式进行, 又称为核糖体循环(ribosomal cycle),每次循 环增加一个氨基酸,包括以下三步: – 进位(entrance) – 成肽(peptide bond formation) – 转位(translocation)
目录
一、翻译模板mRNA及遗传密码
1.mRNA是遗传信息的携带者
• 顺反子(cistron) 编码一个多肽的遗传单位 。
• 多顺反子(polycistron) 原核 数个结构基因常串联为一个转录单位,转录生
成的mRNA可编码几种功能相关的蛋白质。 • 单顺反子(single cistron) 真核
A位:氨酰基位 (aminoacyl site)
E位:排出位 (exit site)
目录
三、tRNA与氨基酸的活化
氨基酸臂
反密码环
目录
目录
结合氨基酸:一种氨基酸有几种 tRNA携带,结合需要ATP供能,氨 基酸结合在tRNA3‘-CCA的位置。
反密码子:每种tRNA的反密码子, 决定了所带氨基酸能准确的在 mRNA上对号入座 。
氨酰- tRNA
ATP
AMP+PPi
目录
氨基酸 +ATP-E —→ 氨酰-AMP-E + AMP + PPi
第 一 步 反 应
目录
第二步反应
氨酰-AMP-E +
tRNA ↓
氨酰-tRNA +
AMP + E
目录
二、肽链合成起始
指mRNA和起始氨基酰-tRNA分别 与核蛋白体结合而形成翻译起始复合 物 (translational initiation complex)。
目录
(一)原核生物翻译起始复合物形成
• 核蛋白体大小亚基分离; • mRNA在小亚基定位结合; • 起始氨酰-tRNA的结合; • 核蛋白体大亚基结合。
目录
小亚基
起始因子
起始因子 小亚基
起始因子
起始复合物
目录
1. 核蛋白体大小亚基分离
IF-1 IF-3
目录
2. mRNA在小亚基定位结合
5' IF-3
目录
识别1个 识别2个
识别3个
目录
8.
目录
9.
目录
10.

目录

l-pyrrolysine
目录
二、
目录
(一) rRNA与核蛋白体
1.rRNA 与蛋白质一起构成核糖体——蛋白质合成“工厂”
存在:核糖体可游离存在,
真核中,也可同内质网结合,
形成粗糙的内质网。
原核中,与mRNA形成串状——多核糖体
AUG
IF-1
3'
目录
S-D序列
识别起点
(mRNA上位于起始位点上游 4-13个富含嘌呤的核苷酸序列)
目录
S-D序列
小亚基
S-D
小亚基
目录
S-D
小亚基
S-D
小亚基
目录
S-D
小亚基 大亚基
大亚基
S-D
小亚基
目录
3. 起始氨酰tRNA( fMet-tRNAimet ) 结合到小亚基
IF-2 GTP
目录
2、 核 蛋 白 体 的 组 成
目录
(二)
目录
目录
核糖体RNA三维折叠
目录
电 镜 图 片
目录
X 射 线 衍 射 结 构
目录
(三)
目录
rRNA二级结构
目录
核糖体的蛋白RNA组成比较
原核
真核
大亚基
小式:
P位:肽酰基位 (peptidyl site)、 起始氨酰基位
目录
目录
• 延伸过程所需蛋白因子称为延长因 子(elongation factor, EF) 原核生物:EF-T (EF-Tu, EF-Ts) EF-G 真核生物:eEF-1 、eEF-2
目录
(一)进位 指根据mRNA下 一组遗传密码指导, 使相应氨酰-tRNA进 入核蛋白体A位。
目录
延长因子EF-T 催化进位
目录
6.
目录
破译遗传密码
目录
➢UUU为phe的三联体密码。 ➢发现具有密码子功能的最短链为三个核苷酸,并且 含3 -OH和5 -磷酸基的三核苷酸最有效。 ➢阅读方向为5-3 。至1966年,20中氨基酸对应的 61个密码子和三个终止密码子全部被查清。
目录
在遗传密码的破译中,美国科学家 M.W.Nirenberg 等 人 做 出 了 重 要 贡 献 , 并 于 1968年获得了诺贝尔生理医学奖.
目录
tRNA
tRNA与酶 结合的模型
氨酰-tRNA合成酶
ATP
目录
识别配对对号入座
目录
• 氨酰-tRNA合成酶对底物氨基酸和 tRNA都有高度特异性。
• 氨酰-tRNA合成酶具有校正活性 (proofreading activity) 。
• 氨酰-tRNA的表示方法:
Ala-tRNAAla Ser-tRNASer
(原核生物)
进位
目录
延长因子循环
目录
进 位 过 程
进位
延长因子循环
目录
Tu TGsTP
Tu GDP
Ts GTP
5'
AUG
3'
目录
(二)成肽
是由转肽酶(transpeptidase)催化的肽键形成过程。
目录
P sit
A sit
P sit
A sit
延长过程中肽链的生成
肽基转移酶
目录
延长因子EF-G有转位酶( translocase )活 性,可结合并水解1分子GTP,促进核蛋白体 向mRNA的3'侧移动 。
起始密码( initiation coden ): AUG , GUG 终止密码( termination coden ):
UAA,UAG,UGA
目录
3.
核 酸 蛋 白
目录
4.
目录
5. 遗传密码的发现 ➢1961年,M.Nirenberg等人提出。 43 =64 ➢大肠杆菌中,以多聚U做为mRNA,即polyU+20 种放射性同位素标记的氨基酸,大肠杆菌合成体 系,在外界环境合适下,合成了一条多聚苯丙氨 酸(phe)肽链。
编码同一个氨基酸的一组密码子被称 为同义密码子。
意义:维持生物物种的稳定性。
目录
(3) 通用性(universal)和例外
• 少数例外,如动物细胞的线粒体、植物细胞的 叶绿体。
• 密码的通用性进一步证明各种生物进化
自同一祖先。
目录
线粒体
目录
(4) 摆动性(wobble)
转运氨基酸的tRNA的反密码需要通过 碱基互补与mRNA上的遗传密码反向配对 结合,但反密码与密码间不严格遵守常见 的碱基配对规律,称为摆动配对。
5'
AUG
3'
IF-1
IF-3
目录
4. 核蛋白体大亚基结合 起始复合物形成
IF-2 GGDTPPPi
5'
AUG
3'
IF-1
IF-3
目录
IF-2G-GGDTTPPPi
5'
AUG
3'
IF-3
IF-1
目录
(二)真核生物翻译起始复合物形成
• 核蛋白体大小亚基分离; • 起始氨酰-tRNA结合; • mRNA在核蛋白体小亚基就位; • 核蛋白体大亚基结合。
目录
❖ 蛋白质的合成是一个高耗能过程
AA活化 肽链起始 进位 移位
2个高能磷酸键(ATP) 1个(70S复合物形成,GTP) 1个(GTP) 1个(GTP
第一个氨基酸参入需消耗3个(活化2+起始1 )
以后每掺入一个AA需要消耗4个(活化2 +进 位 1个 +移位1个)。
消耗能量计算=4n-1
目录
第三节 蛋白质合成后加工
目录
参与蛋白质生物合成的物质包括
三种RNA –mRNA(messenger RNA, 信使RNA) –rRNA(ribosomal RNA, 核糖体RNA) –tRNA(transfer RNA, 转移RNA)
相关文档
最新文档