发酵工程复习
发酵工程复习
1发酵工程:采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种技术。
其研究内容包括菌种选育、培养基的配置、灭菌、种子扩大培养和接种、发酵过程和产品的分离提纯(生物分离工程)等方面。
2种子扩大培养:是指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,在经过扁瓶或摇瓶及种子罐逐级放大培养而获得一定数量和质量的纯种过程。
这些纯种培养物称为种子。
3菌种衰退:菌种经过长期人工培养或保藏,由于自发突变的作用而引起某些优良特性变弱或消失的现象。
4前体:指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
5促进剂:是指那些非细胞生长所必须的营养物,又非前体,但加入后可以影响微生物的正常代谢,促进中间代谢物的积累,或提高次级代谢产物的产量。
6微生物代谢的控制:指运用人为的方法对微生物的代谢调节进行遗传改造和条件的控制,以期按照人们的愿望,生产有用的微生物制品。
7生物热:生物热是生产菌在生长繁殖时产生的大量热量。
培养基中碳水化合物,脂肪,蛋白质等物质被分解为CO2, NH3时释放出的大量能量。
8发酵热:所谓发酵热就是发酵过程中释放出来的净热量。
在发酵过程中产生菌分解基质产生热量,机械搅拌产生热量,而罐壁散热、水分蒸发、空气排气带走热量。
这各种产生的热量和各种散失的热量的代数和就叫做净热量。
发酵热引起发酵液的温度上升。
发酵热大,温度上升快,发酵热小,温度上升慢。
9搅拌热:在机械搅拌通气发酵罐中,由于机械搅拌带动发酵液作机械运动,造成液体之间,液体与搅拌器等设备之间的摩擦,产生的热量。
搅拌热与搅拌轴功率有关。
10分批培养:简单的过程,培养基中接入菌种以后,没有物料的加入和取出,除了空气的通入和排气。
整个过程中菌的浓度、营养成分的浓度和产物浓度等参数都随时间变化。
发酵工程复习资料
发酵工程复习资料1.发酵工业的特点:1.一步生产:微生物发酵是由一系列极其复杂的生化反应组成,反应所需的各种酶均包含在微生物细胞内。
2.反应条件温和3.原料纯度要求低:常以农副产品作原料,如薯干、麸皮等。
原料来源丰富,价格低廉。
4.设备的通用性高:对微生物发酵来说,无论好氧发酵还是厌氧发酵,它们的发酵设备都大同小异,即好氧的一般都用搅拌式发酵罐加空气过滤系统。
厌氧发酵都用密封式发酵罐。
5.对环境的污染相对较小:发酵所用的原料是农副产品,废水中虽然生物需氧量(BOD)、化学需氧量(COD)较高,但有毒物质少。
6.生产受自然条件限制小2.发酵工业常用菌种类型:细菌: 枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等放线菌: 链霉菌属、小单胞菌属酵母菌: 啤酒酵母、假丝酵母、类酵母等霉菌: 根霉、毛霉、犁头霉、红曲霉、曲霉及青霉等未培养微生物3.发酵工业对菌种的要求:1,能够利用廉价的原料,简单的培养基,大量高效地合成产物2,有关合成产物的途径尽可能地简单,或者说菌种改造的可操作要强3,遗传性能要相对稳定4,不易感染它种微生物或噬菌体5,产生菌及其产物的毒性必须考虑(在分类学上最好与致病菌无关)6,生长快,发酵周期短,生产特性要符合工艺要求7,培养条件易于控制4.微生物菌种的分离筛选的步骤:样品采集→样品的预处理→目的菌富集培养→菌种初筛→菌种复筛→菌种发酵性能鉴定→菌种保藏。
5.诱变育种的基本步骤:出发菌株的选择处理菌悬液的制备诱变处理中间培养分离和筛选6.菌种变异及退化机理及其防止措施:菌种退化主要指生产菌种或选育过程中筛选出来的较优良菌株,由于进行接种传代或保藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象。
主要原因:基因突变、连续传代。
防止措施:采用减少传代、经常纯化、创造良好的培养条件、用单细胞移植传代以及科学保藏等措施,不但可以使菌种保持优良的生产能力,而且还能使已退化的菌种得到恢复提高。
发酵工程完整版考试复习资料
一、名词解释1传统发酵工程:通过微生物生长的繁殖和代谢活动,产的生物反应过程。
将DNA重组细胞融合技术、酶工程技综合对发酵过程控制、优化及放大指迄今所采用的微生物培养分离及培养微生物。
(特别是极端微生物)4富集培养主要方法:是利用不同种类的微生物其生长繁求不同,如温度、PH、培养基C/N等,是目的微生物在最适条件下迅速生长繁殖,数量增加,成为人工环境下的优势种。
方法:⑴控制培养基的营养成消毒仅仅是杀死生物体或非生物体表死营养细胞,而不能杀死细菌芽孢和真菌孢子等,特别适合与发酵车间的环境和发酵设备、器具的灭菌处理。
灭菌杀灭所有的生命体,因此灭菌特别适的灭菌处理。
法及其区别:湿热灭菌法:指将物品置高压饱和蒸汽、过热水喷淋等手段使微生物菌体中的蛋白质、核酸发生变性而杀灭微生物的方法。
该法灭菌能力强,为热力灭菌中最有效、应用最广泛的灭菌方法。
药品、容器、培养基、无菌衣、胶塞以及其他遇高温和潮湿不发生变化或损坏的物品,均可采用本法灭菌。
干热灭菌法:指将物品置于干热灭菌柜、隧道灭菌器等设备中,利用干热空气达到杀灭微生物或消除热原物质的方法。
适用于耐高温但不宜用湿热灭菌法灭菌的物品灭菌,如玻璃器具、金属制容器、纤维制品、固体试药、液用本法灭菌。
即在规定温度下杀死一定比例的微生物所用8致死温度:杀死微生物的极限温在致死微生物所需要对的致死时间。
制好的培养基放入发酵罐或其他装置中,基和所用设备一起(实罐灭菌)进行灭菌10连续灭菌:将配制好的培养基向发酵罐等培养装置输热、保温盒冷却等灭菌操作过程。
是指将冷冻干燥管,沙土管中处于休眠状入试管斜面活化后,再经过摇瓶及种子罐逐级扩大培养而和质量的纯种的过程纯培养物称为种是指种子的龄:是指种子始移入下一级的培养是指移入的种子液体积和影响呼吸所能允许的最低溶氧浓13稀释度D:单位时间内连续连续流入发酵罐中的新鲜的培养总体积的比值。
把导致菌体开始从系统中洗出时的稀发酵过程中,引起温度变化的原因是由于生的净物在生长繁殖过程中,本身产生的耗氧培养的发酵罐都有一定功率的做机械运动,造成液体之间、液体与设备之间的摩擦,由此产生。
发酵工程复习
一、填空题1、根据搅拌方式的不同,好氧发酵设备可分为机械搅拌式发酵罐和通风搅拌式发酵罐两种。
2、常用工业微生物可分为:细菌、酵母菌、霉菌、放线菌四大类。
3、根据工业微生物对氧气的需求不同,培养法可分为好氧培养和厌氧培养两种。
4、菌种分离的一般过程:采样、富集、分离、目的菌的筛选。
5、环境无菌的检测方法有:显微镜检查法、肉汤培养法、平板培养法等。
6、培养基灭菌的方法:加热灭菌、过滤灭菌、紫外线灭菌、化学药物消毒与灭菌。
7、当前发酵工业所用的菌种总趋势是从野生菌转向变异菌,从自然选育转向代谢调控育种,从诱发基因突变转向基因重组的定向育种。
8、根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵、补料分批发酵。
9、依据培养基在生产中的用途,可将其分成孢子培养基、种子培养基、发酵培养基三种。
10、分批发酵中微生物处于限制性的条件下生长,其生长周期分为延滞期、对数生长期、稳定期、衰亡期。
11、微生物发酵培养(过程)方法主要有分批培养、补料分批培养、连续培养、半连续培养四种。
12、发酵高产菌种选育方法包括自然选育、诱变育种、杂交育种、原生质体融合、基因工程育种、(抗噬菌体菌种选育;基因重组)。
13、水解三类方法:酸水解,酶水解,酸酶结合水解法。
14、工业微生物菌种保藏技术:①冷冻干燥或真空干燥保藏;②超低温或液氮冷冻保藏;③转接培养或斜面传代保藏;④土壤保藏。
15、影响发酵温度的因素(发酵热,包括):生物热、搅拌热、蒸发热、辐射热。
二、名词解释1、发酵工程:主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。
2、菌种退化:指在经过较长时间传代保藏之后,菌株的一个或多个生理性状和形态特征逐渐减退或消失的现象。
3、退化菌种的复壮:使退化的菌种重新恢复原来的优良特征,叫做复壮。
4、诱变育种:利用各种被称为诱变剂的物理因素和化学试剂处理微生物细胞,提高基因突变频率,再通过适当的筛选方法获得所需的高产优良菌种的育种方法。
发酵工程章节复习资料
发酵⼯程章节复习资料第⼀章绪论1、发酵及发酵⼯程的概念1、传统发酵最初发酵是⽤来描述酵母菌作⽤于果汁或麦芽汁产⽣⽓泡的现象,或者是指酒的⽣产过程。
2、⽣化和⽣理学意义的发酵指微⽣物在⽆氧条件下,分解各种有机物质产⽣能量的⼀种⽅式,或者更严格地说,发酵是以有机物作为电⼦受体的氧化还原产能反应。
如葡萄糖在⽆氧条件下被微⽣物利⽤产⽣酒精并放出CO2。
3、⼯业上的发酵泛指利⽤微⽣物制造或⽣产某些产品的过程包括:1. 厌氧培养的⽣产过程,如酒精,乳酸等。
2. 通⽓(有氧)培养的⽣产过程,如抗⽣素、氨基酸、酶制剂等。
产品有细胞代谢产物,也包括菌体细胞、酶等。
发酵⼯程(Fermentation Biotechnology): 应⽤微⽣物学等相关的⾃然科学以及⼯程学原理,利⽤微⽣物等⽣物细胞进⾏酶促转化,将原料转化成产品或提供社会性服务的⼀门科学。
2、发酵⼯程技术的发展⼤致可分为哪⼏个阶段,每段的技术特点是什么?1. ⾃然发酵时期:嫌⽓性发酵⽤于酒类酿造,好⽓性发酵⽤于酿醋、制曲。
2. 纯培养技术的建⽴:⼈⼯控制环境条件使发酵效率迅速提⾼。
3.通⽓搅拌好⽓发酵过程技术的建⽴:从分解代谢转为⽣物合成代谢,可以利⽤微⽣物合成积累⼤量有⽤的代谢产物。
4.⼈⼯诱变育种与代谢控制发酵⼯程技术的建⽴:遗传⽔平上控制微⽣物代谢。
5. 发酵动⼒学、发酵⼯程连续化、⾃动化⼯程:以数学、动⼒学、化⼯原理等为基础,通过计算机实现发酵过程的⾃动化控制的研究,使发酵过程的⼯艺控制更为合理。
6. 微⽣物酶反应⽣物合成与化学合成反应结合⼯程技术:可⽣产许多过去不能⽣产的有⽤物质。
3、发酵⼯业的应⽤范围1. 酿酒⼯业(啤酒、葡萄酒、⽩酒)2. ⾷品⼯业(酱、酱油、⾷醋、腐乳、⾯包、乳酸)3. 抗⽣素⼯业(青霉素、链霉素、⼟霉素)4. 有机酸⼯业(柠檬酸、葡萄糖酸)5. 酶制剂⼯业(淀粉酶、蛋⽩酶)6. 氨基酸⼯业(⾕氨酸、赖氨酸)7. 核苷酸发酵⼯业(肌苷酸、肌苷)8. 有机溶剂⼯业(酒精、丙酮)9. 维⽣素⼯业(VB2、VB12)10.⽣物能源⼯业(沼⽓、⽣物柴油)11.环境保护产业(废⽔⽣物处理)12.⽣理活性物质发酵⼯业(激素)13. 冶⾦⼯业(微⽣物探矿、⽯油脱硫)14.微⽣物菌体蛋⽩发酵⼯业(酵母、单细胞蛋⽩)4、发酵⼯业的特点与化学⼯程相⽐,发酵⼯程具有以下特点:1、发酵过程是极其复杂的⽣物化学反应,与微⽣物细胞息息相关2、通常在常温常压下进⾏,反应安全,需求条件也⽐较简单3、发酵醪(包括固相、液相、⽓相,还含有活细胞体或菌丝体),属⾮⽜顿流体,其特性影响因素很多,对发酵⼯程都有关联4、具有严格的灭菌系统,以防⽌杂菌污染如空⽓除菌系统、培养基灭菌系统、设备的冲洗灭菌等5、反应以⽣命体的⾃动调节⽅式进⾏,因此数⼗个反应过程能够像单⼀反应⼀样,在同⼀发酵罐内进⾏6、后处理阶段,为了适应菌体与发酵产物的特点,需采取⼀些特殊的⼯艺措施并选⽤合适的设备。
发酵工程复习
发酵工程复习生物技术的关系:微生物工程是生物技术的重要组成和基础,是生物技术产业化的重要环节。
它将微生物学、生物化学和化学工程的基本原理有机结合起来,广泛而深入地揭示了发酵过程的本质。
巴斯德效应是在厌氧条件下,向高速发酵的培养基中通入氧气,则葡萄糖消耗减少。
这种抑制发酵产物积累的现象生长曲线:有延滞期、指数期、稳定期、衰亡期组成。
延滞期特点:生长速率常数为零,细胞形态变大或增长,细胞内RNA含量增高,原生质呈嗜碱性,合成代谢活跃,对外界不良条件反应敏感。
影响延滞期的因素:1.接种龄 2.接种量3.培养基成分。
4.种子损伤度指数期特点:生长速率常数R最大,细胞进行平衡生长,酶系活跃,代谢旺盛。
影响指数期的因素:1.菌种2.营养成分3.营养物浓度4.培养温度稳定期生长速率常数为零。
衰亡期细胞发生多形化,有的微生物发生自溶。
发酵工程产品的分离方法:沉淀法、溶剂萃取法、双水相萃取法、吸附法、离子交换法、结晶法。
现代发酵工程是纯培养技术的建立,是第一代微生物发酵技术,具有划时代的意义。
营养缺陷型菌株是的特性:原菌株因基因突变致使合成途径中断,丧失了合成某种必须物质的能力,而必须在培养基中加入相应物质才能正常生长的突变菌株。
生长因子:概念:微生物生长不可缺少的微量有机物质。
类别:维生素、氨基酸、嘌呤嘧啶及其衍生物.在发酵工程中,污染控制:1.保证菌种制备的安全性2.培养基灭菌的污染防止3.灭菌锅的冷点防治4.菌种培养基的空培5.无菌室的安全及防护6.种子罐的污染防治7.无菌空气的污染防止8.营养条件的控制pH对发酵的影响与引起pH变化的因素: pH对发酵的影响:pH对菌体生长和产物合成的影响1)pH影响酶的活性、当pH抑制菌体中某些酶的活性时,使菌体的新陈代谢受阻。
2)pH影响微生物细胞膜所带电荷的状态,从而改变细胞膜的渗透性,影响微生物对营养物质的吸收及代谢产物的排泄,因此影响代谢的正常进行。
3)影响培养基某些组分和中间产物的离解,从而影响微生物对这些物质的利用。
发酵工程复习
1. 发酵工程概念:发酵工程是生物技术的重要组成和基础,是生物技术产业化的重要环节。
它将微生物学、生物化学和化学工程的基本原理有机结合起来,广泛而深入地揭示了发酵过程的本质。
狭义的发酵概念:微生物培养和代谢过程。
广义的概念:生物学( ( 微生物学、生物化学) ) 和工程学( ( 化学工程) ) 结合。
2.发酵工程的应用:在食品工业中的应用:食品加工、发酵乳制品、调味品、食品添加剂、检验在医药卫生中的应用:抗生素、氨基酸、维生素、甾体激素、生物制品、治疗用酶在轻工业中的应用:各类酶(糖酶、蛋白酶、果胶酶、脂肪酶等、酶抑制剂)在化工能源中的应用:醇及溶剂,有机酸,多糖,清洁能源在农业中的应用:生物农药,生物除草剂、增产剂,食用菌在环境保护中的作用在细菌冶金中的应用在高技术研究中的应用3.微生物代谢产物类型:包括初级代谢产物、中间代谢产物和次级代谢产物。
4.发酵方法的类别:根据对氧的需要区分:厌氧和有氧发酵根据培养基物理性状区分:液体和固体发酵根据从微生物生长特性区分:分批发酵和连续发酵、补料分批发酵按发酵原料来区分:糖类物质发酵、石油发酵、废水发酵5. 发酵生产的条件:•某种适宜的微生物•保证或控制微生物进行代谢的各种条件•进行微生物发酵的设备•提取菌体或代谢产物并精制成产品的方法和设备6.组成典型的发酵过程可以划分成六个基本组成部分:(1)繁殖种子和发酵生产所用的培养基组份设定;(2 )培养基、发酵罐及其附属设备的灭菌;(3)培养出有活性、适量的纯种,接种入生产的容器中;(4 )微生物在最适合于产物生长的条件下,在发酵罐中生长;(5)产物萃取和精制;(6)过程中排出的废弃物的处理。
7.决定微生物工程工业生产水平的三个要素:生产菌种的性能、发酵及提纯工艺条件、生产设备。
8.工业微生物菌种的基本要求:1. 菌种生长繁殖能力强,能够在较短的发酵周期内产生大量有价值的发酵产物,因为高产菌株的运用可以在不增加投资的情况下大幅度提高生产能力。
发酵工程复习
发酵工程复习资料第一章绪论1、发酵及发酵产品各包括哪些类型?答案要点:一)发酵的类型:按发酵原料分类:糖类物质发酵、石油发酵、废水发酵;按发酵形式分类:固体发酵、液体发酵;按发酵工艺流程分类:分批发酵、连续发酵、流加发酵;按发酵过程对氧的需求分类:厌氧发酵、通风发酵;按发酵产物分类:氨基酸发酵、有机酸发酵、抗生素发酵、酒精发酵、维生素发酵、酶制剂发酵二)发酵产品的类型:以菌体为产品、以微生物的酶为产品、以微生物的代谢产物为产品、生物转化过程2、了解发酵工程的组成、基本要求及主要特点。
答案要点:一)组成:上游工程:菌种选育、种子培养、培养基设计与制作、接种等。
发酵工程:发酵培养。
下游工程:产物的提取纯化、副产品的回收、废物处理等。
二)基本要求:发酵设备、合适的菌种、合适的培养基、有严格的无菌生长环境三)主要特点:1)发酵过程一般来说都是在常温常压下进行的生物化学反应,反应安全,要求条件简单;2)发酵所用的原料主要以再生资源为主;3)发酵过程通过生物体的自动调节方式来完成的,反应的专一性强,因而可以得到较为单一的代谢产物;4)获得按常规方法难以生产的产品;5)投资少,见效快,经济效率高;6)维持无菌条件是发酵成败的关键;7)环境污染小。
3、为什么说发酵工程在国民经济中有着重要的地位?答案要点:因为发酵工程在医药、食品、能源、化工、冶金、农业、环境保护等方面均有着十分重要的作用,例如:抗生素的生产;饮料食品等的制造;沼气、微生物采油、生物肥料、生物农药以及三废处理等方面都有很重要的应用。
所以说发酵工程在国民经济中有着重要的地位。
4、了解发酵工业的类型及必备条件。
答案要点:一)发酵工业类型:食品发酵工业:食品、酒类1)传统分类非食品发酵工业:抗生素、有机酸、氨基酸、酶制剂、核苷酸、单细胞蛋白酿造业:利用微生物生产具有较高风味要求的发酵食品。
2)现代分类发酵工业:经过微生物纯种培养后,提炼、精制而获得成分单纯、无风味要求的产品。
发酵工程复习资料
一、填空(20分)1.酶的调节控制是代谢调控最重要和最有效的调节方式,涉及酶合成的调节和酶分子催化活性的调节。
2.酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种在基因水平上(原核生物重要在转录水平上)的代谢调节。
一般将能促进酶生物合成的调节称为诱导,而能阻碍酶生物合成的调节称为阻遏。
3.酶分子催化活性调节是一种较灵敏的调节方式,而酶合成的调节是一种相对较慢的调节方式。
4.根据酶的合成是否收到环境中所存在的诱导物的诱导作用,可把酶划提成组成型酶和诱导型酶。
5.组成型酶是微生物细胞生长繁殖过程中一直存在的酶类,其合成不受诱导物诱导作用的影响。
诱导型酶是微生物细胞在诱导物存在的情况下诱导合成的一类酶。
6.阻遏作用有助于生物体节省有限的养料和能量,其类型重要有末端代谢产物阻遏和分解代谢产物阻遏两种。
7.代谢工程育种又称为第三代基因工程,是根据代谢途径进行定向选育,获得某种特定的突变株。
其重要优点是减少育种工作的盲目性,提高育种效率。
8.组成型突变株是指操纵子或调节基因突变引起酶合成诱导机制失灵,菌株不经诱导也能合成酶,或不受终产物阻遏的调节突变型。
9.抗分解调节突变株重要解决分解阻遏和分解克制问题。
在实际生产中,最常见的是解除碳源分解调节突变株和解除氮源分解调节突变株。
10.营养缺陷型是一类代谢障碍突变株,会使发生障碍的前一步中间产物积累。
在分支代谢途径中具有切除不需要的分支而使代谢流集中流向目的产物的特点。
11.渗漏缺陷型是一种特殊的营养缺陷型,是遗传障碍不完全的突变株。
其特点是酶活力下降而不完全消失。
在分支代谢途径中强调优先合成的转换。
12.抗反馈调节突变株是一种解除合成代谢反馈克制的突变株,其特点是目的产物不断积累,不会因其浓度超量而终止生产。
13.细胞膜透性突变株是指通过控制磷脂的生物合成直接改变细胞膜结构,或控制细胞壁的生物合成间接影响细胞膜的结构而达成增长细胞膜通透性,促使细胞内代谢物质往外分泌的突变型。
发酵工程复习资料
发酵⼯程复习资料1、传统发酵⼯程与现代发酵⼯程的区别?为什么说发酵⼯程处于⽣物技术的核⼼地位?传统发酵⼯程:利⽤微⽣物的⽣长和代谢活动来⼤量⽣产⼈们所需产品的过程理论与⼯程技术体系。
该技术体系主要包括菌种选育与保藏、菌种扩⼤⽣产、代谢产物的⽣物合成与分离纯化制备等技术集成。
现代发酵⼯程:是将DNA重组及细胞融合技术、酶⼯程技术、组学及代谢⽹络调控技术、过程⼯程优化与放⼤技术等新技术与传统发酵⼯程融合,⼤⼤提⾼传统发酵技术⽔平,拓展传统发酵应⽤领域和产品范围的⼀种现代⼯业⽣物技术体系(新⼀代⼯业⽣物技术)。
⽣物技术:应⽤⾃然科学和⼯程学的原理,依靠⽣物及其细胞的催化作⽤,将物料进⾏加⼯以提供产品或为社会服务的技术。
发酵⼯程是酶⼯程和基因⼯程的表达,⼤部分⽣物技术的产品均要通过发酵⼯程来完成,所以说发酵⼯程处于⽣物技术的核⼼地位。
2、发酵⼯程上、中、下游技术分别主要包括哪些内容?上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等)中游技术:发酵过程控制,主要包括发酵条件的调控,⽆菌环境的控制,过程分析和控制等下游技术:分离和纯化产品。
包括固液分离技术、细胞破壁技术、产物纯化技术,以及产品检验和包装技术等3、微⽣物发酵过程优化技术五⼤⽬标是什么?可以在哪些⽔平实现过程优化的⽬的?⾼产量:微⽣物⽣理、遗传、营养及环境因素⾼转化率:微⽣物代谢途径和过程条件⾼效率:微⽣物反应动⼒学和系统优化低成本:技术综合及产业化技术集成环境友好:开发清洁⽣产技术4、发酵⼯业的特点及应⽤范围?1、发酵过程⼀般是在常温常压下进⾏的⽣化反应,反应安全,要求条件较简单。
2、可⽤较廉价原料⽣产较⾼价值产品。
3、反应专⼀性强。
4、能够专⼀性地和⾼度选择性地对某些较为复杂的化合物进⾏特定部位的⽣物转化修饰。
5、发酵过程中对杂菌污染的防治⾄关重要。
6、菌种是关键。
7、发酵⽣产不受地理、⽓候、季节等⾃然条件限制。
5、发酵⼯业的基本⽣产过程?1.⽤作种⼦扩⼤培养及发酵⽣产的各种培养基的配制2.培养基、发酵罐及其附属设备的消毒灭菌3.扩⼤培养出有活性的适量纯种,以⼀定⽐例接种⼊发酵罐中4. 控制最适发酵条件使微⽣物⽣长并形成⼤量的代谢产物5. 将产物提取并精制,以得到合格的产品6. 回收或处理发酵过程中所产⽣的三废物质1、常⽤的⼯业微⽣物种类?细菌:醋杆菌属的醋化醋杆菌、弱氧化醋杆菌、乳酸杆菌、乳链球菌、枯草芽孢杆菌、丙酮丁醇梭菌、⼤肠杆菌、⾕氨酸棒状杆菌酵母菌:酿酒酵母、假丝酵母属(产朊假丝酵母、解脂假丝酵母、热带假丝酵母)、毕⾚酵母属、汉逊酵母属霉菌:曲霉属(⽶曲霉、⿊曲霉)、青霉属(青霉菌、桔青霉)、根霉属(德⽒根霉、⽶根霉、⼩麦曲根霉)、红曲霉属(紫红曲霉)放线菌:链霉菌属、⼩单孢菌属、地中海诺卡⽒菌2、发酵⼯业菌种选择的总趋势?野⽣菌→变异菌⾃然选育→代谢控制育种诱发基因突变→基因重组的定向育种3、菌种选择的要求?A、能在廉价原料制成的培养基上迅速⽣长,且⽣成的⽬的产物产量⾼、易于回收;B、⽣长速度和反应速度较快,发酵周期较短;C、培养条件易于控制;D、抗噬菌体及杂菌污染的能⼒强;E、菌种不易变异退化;F、对放⼤设备的适应性强;G、菌种不是病原菌,不产⽣任何有害的⽣物活性物质和毒素。
发酵工程复习题
第一章发酵工程概述1.发酵的传统概念和现代概念传统概念:微生物在无氧条件下分解代谢有机物质释放能量的过程。
现代概念:利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程统称为发酵。
2.发酵工程:发酵工程是利用微生物或其他生物细胞,在特定的生物反应器内生产某种特定的产品的工业化生产过程和技术体系。
图1-1 微生物工业发酵的基本过程3.4.发酵工程与传统酿造和化学工程相比的特点。
一.与传统酿造相比:1.发酵过程以生命体自动调节方式进行2.条件温和,耗能少,设备简单3.原料以碳水化合物为主4.容易生产复杂的高分子化合物5.发酵过程中需要防止杂菌污染,要严格灭菌二.与化学工程相比:1.常温常压反应2.原料无毒,很多发酵行业生产比较粗放3.遵循生物代谢规律4.较易生产复杂的高分子化合物5.发酵液下游提取常需预处理6.注重发酵过程染菌的防止7.育种是提高产量的重要途径5.发酵工程存在的问题(1)转化率低、副产物多和下游提取困难(2)中游监控难,菌种易变异(3)原料质量波动大(4)规模放大困难;发酵废液处理困难6. 发酵罐的分类按微生物生长代谢需要分类:分为好氧和厌氧二类按照发酵罐设备特点分类:分为机械搅拌通风发酵罐和非机械搅拌通风发酵罐按容积分类:实验室用(1~50L)中试用(50~5000L)生产用(5000L 以上)按微生物生长环境分类:悬浮生长发酵罐和支持生长发酵罐发酵罐的特征径高比适当;耐压性能合格;搅拌系统和通风系统合格尽量减少死角;有足够的冷却面积;轴封无渗漏7.通用型机械搅拌通气发酵罐为发酵工厂最常用的发酵罐,特点是由压空系统负责通气,机械搅拌系统机械搅拌。
缺点是能耗较大,机械剪切力较大,容易产生死角。
8.发酵优化的定义,目的,内容发酵过程优化定义发酵过程的优化是指最佳控制发酵过程(指其某一项或几项主要参数)的方案和方法。
发酵过程优化目的协调细胞到反应器各尺度的相互关系,从而使发酵过程更有效的进行。
发酵工程复习资料
发酵⼯程复习资料⼀、名词解释1.巴斯德效应:在有氧条件下,糖代谢进⼊TCA循环,产⽣柠檬酸等,并⽣成⼤量ATP,反馈阻遏PEK的合成。
从⽽降低了葡萄糖的利⽤率,发酵作⽤受抑制的现象。
(或氧对发酵的抑制现象)。
2.酵母Ⅰ型发酵:酵母菌将葡萄糖经EMP途径降解⽣成2分⼦终端产物丙酮酸,后丙酮酸脱羧⽣成⼄醛,⼄醛作为氢受体使NADH氧化⽣成NAD+,同时⼄醛被还原⽣成⼄醇(⼄醇脱氢酶活性强,⼄醛为氢受体,⽣成⼄醇)。
3酵母Ⅱ型发酵:当环境中存在亚硫酸氢钠时,亚硫酸氢钠可与⼄醛反应,⽣成难溶的磺化羟基⼄醛,该化合物失去了作为受氢体使NADH脱氢氧化的性能,⽽不能形成⼄醇,转⽽使磷酸⼆羟丙酮替代⼄醛作为受氢体,⽣成a -磷酸⽢油,a -磷酸⽢油进⼀步⽔解脱磷酸⽣成⽢油。
(磷酸⼆羟丙酮为氢受体,⽣成⽢油)。
4酵母Ⅲ型发酵:葡萄糖经EMP途径⽣成丙酮酸,后脱羧⽣成⼄醛,如处于弱碱性环境条件下(pH 7.6),⼄醛因得不到⾜够的氢⽽积累,2个⼄醛分⼦间发⽣歧化反应,1分⼦⼄醛作为氧化剂被还原成⼄醇,另1个则作为还原剂被氧化为⼄酸。
⽽磷酸⼆羟丙酮作为NADH的氢受体,使NAD+再⽣,产物为⼄醇、⼄酸和⽢油(碱性条件,歧化反应,⽣成⽢油、⼄醇、⼄酸和CO2)。
5同型乳酸发酵:乳酸菌利⽤葡萄糖经酵解途径(EMP途径)⽣成丙酮酸。
6异型乳酸发酵:葡萄糖经HMP途径发酵后除主要产⽣乳酸外还产⽣⼄醇、⼄酸、⼆氧化碳等多种产物的发酵。
7标准呼吸链:对SHAM不敏感,⼀种氧化时能产⽣ATP积累,会抑制PFK的呼⽓链。
8侧呼吸链:对⽔杨酰异羟肟酸(SHAM)敏感,能完成电⼦传递,不产⽣ATP,从⽽不抑制PFK;缺氧导致侧呼吸链不可逆失活,柠檬酸产率急剧下降,但不影响菌体⽣长的⼀条呼吸链。
9协同反馈抑制:在分⽀代谢途径中,⼏种末端产物同时都过量,才对途径中的第⼀个酶具有抑制作⽤。
若某⼀末端产物单独过量则对途径中的第⼀个酶⽆抑制作⽤。
发酵工程复习
发酵工程复习第一章:绪论1.生物技术:应用自然科学及工程学原理依靠生物催化剂的作用将物料进行加工以提供产品或社会服务的技术。
2.发酵工程:生物技术的重要组成部分是生物技术产业化的重要环节,它将微生物学,生物化学和化学工程的基本原理有机地结合起来,是一门利用微生物的生长和代谢活动来生产各种有用物质的工程技术,属于生物技术的范畴。
由于它以培养微生物为主,所以又称微生物工程。
3.工业上的发酵(Industrial scale):在微生物工业中,把所有通过微生物或其他生物细胞(动、植物细胞)的培养,统称为发酵。
生化和生理学意义的发酵:指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。
4.现代发酵工程技术的形成:发酵现象→酿造食品工业→非食品工业1→青霉素→抗菌素发酵工业2→氨基酸,核酸发酵(代谢控制发酵)3→基因工程菌→动物细胞大规模培养→植物细胞大规模培养→藻类细胞大规模培养5.发酵工程的意义:(1)推动了抗生素工业的发展(2)建立了一套完整的好氧发酵技术,大型搅拌发酵罐培养方法(3)推动了整个发酵工业的深入发展(4)奠定了现代发酵工程基础6.细胞融合技术、基因操作技术等:(1)增加微生物体内控制代谢产物产量的基因拷贝数,可以大幅度地提高目标产物的产量;(2)将动、植物或某些微生物特有产物的控制基因植入细胞中,快速经济地大量生产这些产物;(3)将具有不同性能的多种质粒植入,使新菌株在清除污染或以非粮食物质为原料进行发酵生产或环境保护。
7.分类:(1)根据对氧的需要区分:厌氧和好氧发酵(2)根据培养基物理性状区分:液体和固体发酵(3)根据从微生物生长特性区分:分批发酵和连续发酵(4)按发酵原料来区分:糖类物质发酵、石油发酵、废水发酵(5)按发酵产物区分:①氨基酸发酵②有机酸发酵③抗生素发酵④酒精发酵⑤维生素发酵⑥酶制剂发酵8.发酵工程的特点:(1)原料简单、来源广泛、可再生;(2)多个反应过程可在发酵过程中一次完成;(3)反应通产在常温常压下进行,条件温和,能耗少,设备很简单;(4)可特异性地进行复杂的化学反应;(5)要求无菌操作。
发酵工程复习资料
发酵工程复习资料第一章绪论1、发酵及发酵产品各包括哪些类型答案要点:一)发酵的类型:按发酵原料分类:糖类物质发酵、石油发酵、废水发酵;按发酵形式分类:固体发酵、液体发酵;按发酵工艺流程分类:分批发酵、连续发酵、流加发酵;按发酵过程对氧的需求分类:厌氧发酵、通风发酵;按发酵产物分类:氨基酸发酵、有机酸发酵、抗生素发酵、酒精发酵、维生素发酵、酶制剂发酵二)发酵产品的类型:以菌体为产品、以微生物的酶为产品、以微生物的代谢产物为产品、生物转化过程2、了解发酵工程的组成、基本要求及主要特点。
答案要点:一)组成:上游工程:菌种选育、种子培养、培养基设计与制作、接种等。
发酵工程:发酵培养。
下游工程:产物的提取纯化、副产品的回收、废物处理等。
二)基本要求:发酵设备、合适的菌种、合适的培养基、有严格的无菌生长环境三)主要特点:1)发酵过程一般来说都是在常温常压下进行的生物化学反应,反应安全,要求条件简单;2)发酵所用的原料主要以再生资源为主;3)发酵过程通过生物体的自动调节方式来完成的,反应的专一性强,因而可以得到较为单一的代谢产物;4)获得按常规方法难以生产的产品;5)投资少,见效快,经济效率高;6)维持无菌条件是发酵成败的关键;7)环境污染小。
3、为什么说发酵工程在国民经济中有着重要的地位答案要点:因为发酵工程在医药、食品、能源、化工、冶金、农业、环境保护等方面均有着十分重要的作用,例如:抗生素的生产;饮料食品等的制造;沼气、微生物采油、生物肥料、生物农药以及三废处理等方面都有很重要的应用。
所以说发酵工程在国民经济中有着重要的地位。
4、了解发酵工业的类型及必备条件。
答案要点:一)发酵工业类型:食品发酵工业:食品、酒类1)传统分类非食品发酵工业:抗生素、有机酸、氨基酸、酶制剂、核苷酸、单细胞蛋白酿造业:利用微生物生产具有较高风味要求的发酵食品。
2)现代分类发酵工业:经过微生物纯种培养后,提炼、精制而获得成分单纯、无风味要求的产品。
发酵工程复习资料讲解
发酵工程复习题(仅供参考)第1章绪论1.发酵:通过微生物的生长和繁殖代谢活动,产生和积累人们所需产品的生物反应过程。
2.发酵工程:主要包括菌种选育和保藏、菌种的扩大生产、微生物代谢产物的发酵生产和分离纯化制备,同时也包括微生物生理功能的工业化利用等。
3.现代生物技术划分为:基因工程、细胞工程、发酵工程、酶工程、生化工程等5个方面。
4.发酵的本质:①1680年,荷兰人列文虎克制成了显微镜;②1897年德国人毕希纳提出酶的催化理论后,对发酵的本质才最终有了真正的认识。
5.发酵工程技术的发展史(6个阶段):①1900年以前,自然发酵阶段;②1900-1940年,德国人科赫在1905年因肺结核菌研究获诺贝尔奖,科赫发明了固体培养基,应用固体培养基分离培养细菌,得到了细菌的纯培养,同时改进了细菌的染色法,纯培养技术的建立是发酵技术发展的第一个转折时期;③1929年弗莱明发现青霉素,它的问世使千万生命免除了死亡的威胁,同时在发酵工业的发展史上开创了崭新的一页;④代谢控制发酵工程技术的建立,是发酵技术发展的第三个转折时期;⑤20世纪60年代,许多跨国公司决定研究生产微生物细胞作为饲料蛋白质的来源,甚至研究采用石油产品作为发酵原料,这一时期可视为发酵工业发展的第五阶段。
⑥这一时期可以采用分子生物学为核心的现代生物技术手段,构建基因工程菌。
6.发酵工业的特点:①发酵过程一般都是在常温下进行的生物化学反应,反应条件比较温和;②可采用较廉价的原料生产较高价值的产品;③发酵过程是通过生物体的自适应调节来完成的,反应的专一性强,因而可以得到较为单一的代谢产物;④由于生物体本身所具有的反应机制,能专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰,也可以比较复杂的高分子化合物;⑤发酵生产不受地理、气候、季节等自然条件的限制,可以根据订单安排通用发酵设备来生产多种多样的发酵产品。
7.(P6)8.工业发酵的类型:①根据对氧的需求分为:需氧发酵、兼性厌氧发酵和厌氧发酵;②根据培养基物理状态分为:液体发酵和固体发酵;9.近年的一些新发展的微生物培养方法(两步法液体深层培养):此法在酶制剂生产和氨基酸生产方面应用较多。
发酵工程复习
连续发酵:指以一定的速度向发酵罐内添加新鲜培养基,同时以相同速度流出培养液,从而使发 酵罐内的液量维持恒定的发酵过程。
巴斯德效应:在厌氧条件下,向高速发酵的培养基中通入氧气,葡萄糖消耗减少,抑制发酵产物 积累的现象称为巴斯德效应,即呼吸抑制发酵的作用。
比生长速率:每小时单位质量的菌体所增加的菌体量称为菌体比生长速率。
它是表征微生物生长 速率的一个参数,也是发酵动力学中的一个重要参数。
产物促进剂:是指那些非细胞生长所必须的营养物质, 又非前体,但加入却能提高产量的添加剂。
产物得率系数:可用于对细胞反应过程中碳源等物质生成细胞或其它产物的潜力进行定量评价, 最常用的得率系数有对底物的细胞得率 Yx/s ,对碳的细胞得率Yc 等。
反馈抑制:是指最终产物抑制作用,即在合成过程中有生物合成途径的终点产物对该途径的酶的 活性调节,所引起的抑制作用。
(反馈抑制与反馈阻遏的区别在于:反馈阻遏是转录水平的调节,产生效应慢,反馈抑制是酶活 性水平调节,产生效应快。
此外,前者的作用往往会影响催化一系反应的多个酶,而后者往往只 对是一系列反应中的第一个酶起作用。
)分解代谢物阻碍:分解代谢物抑制作用(catabolite rep ressi on )又称代谢物阻遏作用,是葡萄糖或代谢物或葡萄糖的降解产物对一个基因或操纵子的阻遏作用。
分批培养:分批培养是指在一个密闭系统内投入有限数量的营养物质后,接入少量微生物菌种进 行培养,接种量是指移入的种子悬浮液体积和接种后培养液体的体积的比例。
种子罐中培养的菌体从开始接种至移入下一级种子罐或发酵罐时的培养时间。
空消:发酵罐未装入培养基的情况下进行的灭菌,也即是对发酵罐进行的灭菌。
细胞得率系数:菌体生长量相对于基质的消耗量的收得率,称为生长得率,其定义为:以消耗基 质为基准的细胞得率系数。
两步法发酵:第一步、属有机酸发酵或氨基酸发酵。
第二步、是在微生物产生的某种酶作用下,把第一步的产物转化为所需的氨基酸, 这种生产方法又称为酶转化法。
发酵工程复习资料全
第一章,绪论一、填空:微生物工程可分为发酵和提纯两部分,其中以发酵为主。
化学工程与发酵工程的本质区别在于化学工程利用非生物催化剂,发酵工程利用生物催化剂---酶。
二、判断:发酵产品是经微生物厌氧生物氧化过程获得的。
错三、课后思考题:1、发酵的定义:利用微生物的新陈代谢作用,把底物(有机物)转化成中间产物,从而获得某种工业产品。
(工业上定义、广义、有氧无氧均可)2、发酵流程:3、比拟放大的基本过程:斜面菌种-摇瓶试验(培养基、温度、起始pH值、需氧量、发酵时间)-小型发酵罐-中试-大规模工业生产4、发酵工程的发展经历了哪几个阶段?1.)自然发酵时期2)纯培养技术建立(第一个转折期)3)通气搅拌的好气性发酵工程技术建立(第二个转折期)4)人工诱变育种与代谢控制发酵工程技术建立(第三个转折期)5)发酵动力学、连续化、自动化工程技术的建立(第四个转折期)6)生物合成和化学合成相结合工程技术建立(第五个转折期)5、微生物工业发展趋势1)、几个转变分解代谢→合成代谢自然发酵→人工控制的突变型发酵→代谢控制发酵→通过遗传因子的人工支配建立的发酵(如工程菌)2)、化学合成与生物合成相结合3)、大型、连续化、自动化发酵发酵罐的容量可达500t,常用的也达20-30t。
4)、人工诱变育种和代谢控制发酵微生物潜力进一步挖掘,新菌株、新产品层出不穷。
5)、原料范围不断扩大石油、植物淀粉、天然气、空气、纤维素、木质素等6、举例说明微生物工业的范围酿酒工业(啤酒、葡萄酒、白酒)食品工业(酱、酱油、食醋、腐乳、面包、酸乳)有机溶剂发酵工业(酒精、丙酮、丁醇)抗生素发酵工业(青霉素、链霉素、土霉素等)有机酸发酵工业(柠檬酸、葡萄糖酸等)酶制剂发酵工业(淀粉酶、蛋白酶等)氨基酸发酵工业(谷氨酸、赖氨酸等)核苷酸类物质发酵工业(肌苷酸、肌苷等)维生素发酵工业(维生素B12、维生素B2等)生理活性物质发酵工业(激素、赤霉素等)名贵医药产品发酵工业(干扰素、白介素等)微生物菌体蛋白发酵工业(酵母、单细胞蛋白)微生物环境净化工业(利用微生物处理废水等)生物能工业(沼气、纤维素等天然原料发酵生产酒精、乙烯等能源物质)微生物治金工业(微生物探矿、治金、石油脱硫等)第二章发酵基础知识1、写出生产以下产品的主要菌种:啤酒(啤酒酵母)、黄酒(霉菌(根霉、曲霉)、酵母菌、细菌)、味精(谷氨酸棒杆菌、黄色短杆菌)、柠檬酸(黑曲霉)、食醋(霉菌、酵母菌、醋酸菌)、酸奶(乳酸菌(保加利亚乳杆菌、嗜热链球菌、乳酸链球菌))2、发酵工艺控制中,主要应监控温度、pH值、溶解氧、泡沫、氧化还原电位等。
发酵工程复习题
发酵工程复习题第一章绪论发酵工程:利用微生物特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系,是将传统发酵于现代的DNA重组、细胞融合、分子修饰和改造等新技术集合并发展起来的发酵技术。
二简答题1. 简述发酵工业的特点2。
简述发酵的一般工艺流程(菌种制备、培养基的制备、灭菌、接种、控制发酵条件、产物的提取与精制、回收处理三废物质)。
3.上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等).基因工程和细胞工程(上游生物技术)中游技术:发酵过程控制,主要包括发酵条件的调控,无菌环境的控制,过程分析和控制等下游技术:分离和纯化产品。
包括固液分离技术、细胞破壁技术、产物纯化技术,以及产品检验和包装技术等4.发酵工程的发展1) 1900年前,自然发酵阶段。
2)1900-1940年,纯培养技术的建立—第一转折点3) 1940年后,深层液体通气搅拌纯种培养—第二转折点4)代谢控制发酵工程技术的建立—第三转折点5)开拓发酵原料,发展发酵放大技术6) 采用基因工程菌生产新产物5.发酵工业的研究范畴:发酵食品,微生物菌体,酶制剂,微生物特殊机能利用,代谢产物,生物转化.6.工业发酵的类型对氧的需求:需氧发酵,厌氧发酵,兼性厌氧发酵培养基物理性状:液体发酵,固体发酵(浅盘固体发酵和深层固体发酵)发酵的工艺流程:分批发酵,连续发酵,补料分批连续发酵第二章发酵工业菌种要求一名词解释菌落,芽孢,荚膜,鞭毛,富集培养,比生长速率,连续培养,诱变育种,菌种退化,菌种的复壮.二简答题1。
简述酵母菌的形态结构及繁殖方式;2。
菌种分离筛选步骤。
一名词解释菌落芽孢荚膜鞭毛富集培养比生长速率:单位菌体在单位时间内生长所增加的菌体量。
连续培养诱变育种菌种退化菌种的复壮:在菌种的生产性能未衰退前,有意识的进行纯种的分离和性能的测定,以期菌种的性能逐步提高;方法:1、纯种分离;2、在宿主体内生长进行复壮;3、淘汰衰退的个体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续发酵:指以一定的速度向发酵罐内添加新鲜培养基,同时以相同速度流出培养液,从而使发酵罐内的液量维持恒定的发酵过程。
巴斯德效应:在厌氧条件下,向高速发酵的培养基中通入氧气,葡萄糖消耗减少,抑制发酵产物积累的现象称为巴斯德效应,即呼吸抑制发酵的作用。
比生长速率:每小时单位质量的菌体所增加的菌体量称为菌体比生长速率。
它是表征微生物生长速率的一个参数,也是发酵动力学中的一个重要参数。
产物促进剂:是指那些非细胞生长所必须的营养物质,又非前体,但加入却能提高产量的添加剂。
产物得率系数:可用于对细胞反应过程中碳源等物质生成细胞或其它产物的潜力进行定量评价,最常用的得率系数有对底物的细胞得率Yx/s,对碳的细胞得率Yc等。
反馈抑制:是指最终产物抑制作用,即在合成过程中有生物合成途径的终点产物对该途径的酶的活性调节,所引起的抑制作用。
(反馈抑制与反馈阻遏的区别在于:反馈阻遏是转录水平的调节,产生效应慢,反馈抑制是酶活性水平调节,产生效应快。
此外,前者的作用往往会影响催化一系反应的多个酶,而后者往往只对是一系列反应中的第一个酶起作用。
) 分解代谢物阻碍:分解代谢物抑制作用(catabolite repression )又称代谢物阻遏作用,是葡萄糖或代谢物或葡萄糖的降解产物对一个基因或操纵子的阻遏作用。
分批培养:分批培养是指在一个密闭系统内投入有限数量的营养物质后,接入少量微生物菌种进行培养,使微生物生长繁殖,在特定条件下完成一个生长周期的微生物培养方法。
接种量:接种量是指移入的种子悬浮液体积和接种后培养液体的体积的比例。
接种龄:种子罐中培养的菌体从开始接种至移入下一级种子罐或发酵罐时的培养时间。
空消:发酵罐未装入培养基的情况下进行的灭菌,也即是对发酵罐进行的灭菌。
细胞得率系数:菌体生长量相对于基质的消耗量的收得率,称为生长得率,其定义为:以消耗基质为基准的细胞得率系数。
两步法发酵:第一步、属有机酸发酵或氨基酸发酵。
第二步、是在微生物产生的某种酶作用下,把第一步的产物转化为所需的氨基酸,这种生产方法又称为酶转化法。
临界稀释速率:代表恒化器所能运行的最大稀释速率。
虽然也有例外,但Dc通常相当于分批培养中细胞的最高生长速率。
临界氧浓度:指不影响菌的呼吸所允许的最低溶氧浓度。
前体物质:是指某些化合物加入到发酵培养基中,能直接被微生物在生物合成过程中合成到产物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
实消::将输料管路内的污水放掉、冲洗干净,然后将配的培养基用泵打入发酵罐内,开启搅拌器、再通入蒸汽进行灭菌。
液体深层通气发酵:用液体深层发酵罐从罐底部通气,送入的空气由搅拌桨叶分散成微小气泡以促进氧的溶解。
这种由罐底部通气搅拌的培养方法,相对于由气液界面靠自然扩散使氧溶解的表面培养法来讲,称为液体深层发酵诱变剂:凡是能引起生物体遗传物质发生突然或根本的改变,使其基因突变或染色体畸变达到自然水平以上的物质,统称为诱变剂1. 连续培养中若稀释速率大于临界稀释速率,反应器内的细胞最终会全部被洗尽。
2. 发酵培养基的作用是菌体生长繁殖和产物合成。
3. 生物热的走向包括合成高能化合物、合成代谢产物、以热的形式散发。
4. 微生物分批培养中,比生长速率最大的时期是对数生长期。
5. 生产上发酵培养基的灭菌程度一般要求灭菌1000次,只残留_J ________ 个杂菌。
6. 微生物菌种的沙土管干燥保藏法在原核微生物中可用于细菌与放线菌的长期保藏,但绝不能用于营养细胞的保藏。
7. I型发酵是指微生物的生长与目的产物的产生正相关,III型发酵是微生物生长到菌_体的浓度接近或达到最高后才开始产生的目的产物。
8. 常用于抗生素产生菌及蛋白酶产生菌的分离筛选方法分别是抑菌圈法与透明圈法。
9. 细菌和酵母菌发酵液的固液分离多采用高速离心,而霉菌和放线菌发酵液的固液分离多采用过滤法。
10. 絮凝剂在添加时,浓度从零开始加大,悬浮粒子被絮凝的量逐渐增加,但超过一定浓度后,已絮凝的粒子又发生分散11. 发酵液预处理时加入草酸,使其与发酵液中的两性离子结合生成不溶性沉淀,并可改变发酵液的粘度,从而除去部分蛋白与胶体物质。
12. 培养基超高温短时、连续灭菌与常规的121C、30分钟灭菌分批相比较,其最大的优势是降—低培养基营养成分的破坏13. 诱变育种是提高微生物目的产物生产能力的重要途径,微生物诱变育种的主要方法有物理诱变和化学诱变。
14. 发酵过程微生物的呼吸随发酵液中溶解氧浓度的升高而增强,但当发酵注溶解氧浓度超过丄临界溶氧度后,微生物的呼吸作用就不再增强。
15. 培养基超高温连续灭菌的最大优点是降低培养基营养成分的破坏。
16. 压缩空气通过过滤器前需经冷却,其目的是防止过滤介质的炭化或燃烧,确保过滤效果17. 发酵过程中发酵罐要维持一定的罐压,维护罐压的作用是防止罐外杂菌进入罐体造成污染。
18. 淀粉水解方法有酸法、酸酶法和酶法,如果要求水解糖纯度较高,应选法酶法。
19. 分离筛选产淀粉酶的微生物菌株,简捷的方法是采用透明圈法;筛选产抗生素的拮抗菌株的简捷方法是采用抑菌圈法。
20. 发酵液利用酸碱性调液pH值,可使蛋白质等两性物质达到等电点得以除去。
而且过滤中,发酵液中的大分子物质易与膜发生吸附,通过调整pH值改变易吸附分子的电荷性质,即可减少堵塞和污染。
从自然界分离得到野生型菌株的产生某种目的产物生产能力都很低,不能直接用于工业生产。
(V )经诱变处理后的菌悬液,在筛选前一般应先经过后培养,以促使变异细胞发生分离,然后再进行筛选。
(V)当气流速度小于临界速度后,过滤器就不再具有除去空气中微生物的作用。
(X )温度对微生物产物的形成有重要的影响,如果温度控制不当,将可能影响产物的合成方向。
(V )通气发酵中搅拌具打破气泡与延长气体在发酵液中的滞留时间,从而提高溶解氧浓度的作用,因而增大搅拌速度就一定能提高发酵液内的溶氧浓度。
(X )泡敌是目前消泡效果非常理想的一种消泡剂,所以发酵工业上不论是种子罐或是生产罐的发酵中均添加泡敌消泡。
(X )经诱变处理后的菌悬液,在筛选前一般应先经过后培养,以促使突变细胞发生分离,然后再进行筛选。
(V )发酵料液滤饼是可压缩的,当增加压力时,过滤速率也增加,因而发酵料液过滤速率与压力成正比。
(V )为了操作简便,在制作培养基时就应加入足量前体物,在发酵的过程中就不必再添加前体物质。
(X )抗生素、色素、毒素等是与初级代谢产物(如氨基酸、核酸)相对产生的次级代谢产物,一般是在菌体细胞停止增殖后才开始大量生产。
(V )泡敌是目前消泡效果非常理想的一种消泡剂,所以发酵工业上不论是种子罐或是生产罐的发酵均可以泡敌消泡。
(X )发酵工业生产所用空气的无菌程度直接决定于空气通过过滤器速度,空气的流速越大、从过滤器流出空气的无菌程度越高。
(X )发酵料液的滤饼是可压缩的,当增加压力时,过滤速率也增加,因而发酵料液过滤速率与压力成正比。
(v )比生长速率是反映细胞生长特性的重要参数与菌种和培养条件都有关。
(v )菌种的斜面转接低温保藏法是一种常用的菌种保藏方法,在发酵工业上也是常用此法保藏菌种。
(X )从自然界分离得到野生型菌株的产生某种目的产物生产能力都很低,不能直接用于工业生产。
(v )抗生素、色素、毒素等是与初级代谢产物(如氨基酸、核酸)相对产生的次级代谢产物,一般是在菌体细胞停止生长后才开始大量生产。
(v )当气流速度小于临界速度后,过滤器就不再有除去空气中微生物的作用。
(X )深层液体厌氧发酵的反应器一般没有搅拌装置,因而反应器内不同层面发酵液菌体数量与营养物质浓度的差异很大。
()从发酵液中分离、精制有关产品的过程称为发酵生产的下游加工过程。
(v )四、单选题1. 糖蜜中含有的(A )对细胞膜的透性有较大影响,必须注意调控浓度。
A生物素 B 蔗糖C 胶体 D 钙2. 在培养基中添加具有提高细胞膜透性的物质,目的是( D )A控制细胞生长B利于营养物质的利用C防止染菌D降低反馈抑制或阻遏。
3. 以曲霉发酵生产淀粉酶时,培养基中必需有(A )A葡萄糖 B 蔗糖C 淀粉D 麦芽糖4. 在好氧发酵过程中发酵的生长期pH经常会出现降低,下面那种说法不正确(D )。
A由于葡萄糖利用加速,代谢物造成 B 由于生长过快溶解氧不能满足C 由于一些生理酸性盐的利用D 由于少数菌体发生自溶(菌体自溶pH上升)5. 当发酵液的pH低于发酵适宜的pH且发酵液中氮源不足的情况下,最好向发酵液内添加(C )。
A氢氧化钾B 氢氧化钠 C 铵水D 碳酸铵6. 深层通气发酵过程中,正常情况下发酵液溶氧最低的时期是微生物生长的(B )。
A延迟期 B 对数期C 减速期D 静止期、对数期微生物代谢旺盛此时单位时间耗氧速度快耗氧量大溶氧浓度低7. 种子罐的种子移植到发酵罐中主要采用(A )法。
A差压法B 火焰接种法 C 微孔接入法D 紫外无菌接种8. 在单级连续培养过程中,稀释率控制在临界稀释率以下,随着比生长速率提高下列说法正确的是(A )。
A 细胞产率越高B 限制性基质浓度越高C 细胞浓度越低D 细胞浓度越高9. 在分批培养过程中减速期的长短取决于(C )。
A 菌体的浓度B 限制性基质的浓度C 菌体对限制性基质的亲和力D 比生长速率10. 有研究表明生产某些微生物产物时,发酵过程中添加少量的乙醇可以提高目的产物的产量,其原因是(C )。
A 乙醇防止杂菌污染B 乙醇促进发酵微生物生长C 乙醇增大细胞膜的透性D 乙醇提高产物合成酶的活性11. 从酸性环境采样分离获得的微生物菌株,其产生的淀粉酶可能在(A )条件下的活性最强A 酸性B 弱酸C 中性D 碱性12. 在分批培养过程中静止期菌体的浓度变化为零因此(A )。
A 比生长速率为零B 比死亡速率为零C 产物浓度变化为零D 比死亡速率等于比生长速率13. 大型空气过滤器中填充的过滤介质以(C )的过滤除菌效果最佳。
A活性碳B玻璃纤维C非脱脂棉D前三者无差别14. 发酵液预处理时,在发酵液中加入草酸可以使发酵液中的(B )沉淀。
A铝离子B 钙离子C 铁离子D 镁离子15. 对于底物抑制的酶反应,随着底物浓度增加反应速度(B )。
A 增加B 增加到一定程度不在增加C 一直减小D 增加到最大值然后减小16. 以下空气过滤器常用的过滤介质中除菌效果最好的是(A )。
A 棉花B 玻璃纤维C 活性碳D 三者无差别17. 发酵过程中当微生物生长处于对数期时的发酵热的主要决定因素是(A )。
A生物热B 搅拌热C 蒸发热D辐射热18. 欲分离筛选获得产碱性蛋白酶高活性的微生物菌种,从(A)采样最容易分离获得目的菌株。
A 碱性环境B 酸性环境C 中性环境D 弱酸性环境简答题1. 糖蜜的成分,为什么要进行处理后才能用于发酵1)糖蜜主要成分:蔗糖(总糖可达50-75%);胶体物质(5-10%,来自于原料);灰分(10-12%);生物素(1-10mg/Kg(甘蔗),mg/Kg(甜菜));pH 值((甘蔗),(甜菜))发酵工业可以利用的主要成分是:糖和生物素(VH)。