激光焊接技术

合集下载

激光焊接技术应用3篇

激光焊接技术应用3篇

激光焊接技术应用第一篇:激光焊接技术的基本原理及应用激光焊接技术是一种高效、高精度的焊接方法,被广泛应用于航空航天、汽车、电子、医疗、机械等行业。

它主要利用激光束的高能量密度和狭窄聚焦的特性,将金属材料熔化并凝固成为一体。

下面将详细介绍激光焊接技术的基本原理及应用。

一、激光焊接技术的基本原理激光焊接技术是通过高能量密度的激光束对金属材料进行加热,使其熔化和凝固,实现金属之间的连接。

在激光焊接过程中,激光束被聚焦到比光束直径更小的区域内,形成数十万至数百万度的高温点。

这样的高温点可以迅速将金属熔化融合,并形成稳定的焊接连接。

激光焊接技术具有以下几个基本特点:1. 较高的功率密度:利用激光束的高能量密度加热金属材料,可以迅速进行熔化和凝固,实现高效、快速的焊接。

2. 狭窄的焊接区域:激光束可被聚焦到小于0.2mm的区域内,能够实现高精度、高质量的焊接。

3. 快速焊接速度:激光焊接可达到每秒10米的快速焊接速度,能够快速完成大批量的生产任务。

二、激光焊接技术的应用激光焊接技术被广泛应用于各种各样的工业领域。

下面是具体的应用举例:1. 航空航天领域:激光焊接技术能够实现高强度、高质量的金属结构焊接,因此在航空航天领域被广泛应用。

它可以用于制造飞机引擎部件、机身连接结构等。

2. 汽车行业:激光焊接技术可以用于汽车制造中的零部件制造和组装。

它可以用于车身、引擎、制动系统等组件的焊接,保证汽车安全性和性能。

3. 电子行业:激光焊接技术可以制造电子产品中的电池、触摸屏、芯片等关键部件。

它可以实现高精度的焊接,提高了产品的质量和可靠性。

4. 医疗行业:激光焊接技术可以用于医用器械的制造中。

例如,可以使用激光焊接技术制造人工关节、牙齿种植体等。

5. 其他行业:激光焊接技术还可以用于钢结构、家用电器、建筑材料等领域。

例如,它可以用于建筑钢结构的连接和家用电器中的焊接。

总之,激光焊接技术的应用领域非常广泛,优势明显,随着技术的不断发展,激光焊接技术将在各行各业的应用中得到更加广泛的推广和使用。

激光焊接解决方案

激光焊接解决方案

激光焊接解决方案激光焊接是一种高精度的焊接技术,通过利用激光束对工件进行加热,使工件表面融化并形成焊缝,从而实现材料的连接。

激光焊接具有焊缝窄、热影响区小、焊接速度快等优点,在工业生产中得到广泛应用。

本文将详细介绍激光焊接解决方案的技术原理、应用领域、设备要求以及优缺点等方面的内容。

一、技术原理激光焊接技术基于激光的热效应,利用聚焦后的激光束对工件进行加热。

激光束在焊接区域产生高能量密度,使工件表面迅速融化,并在激光束住手作用后迅速凝固,形成焊缝。

激光焊接可分为传导性焊接和深熔焊接两种方式。

1. 传导性焊接:激光束能量主要用于加热工件表面,通过传导传递热量,使材料熔化并形成焊缝。

这种焊接方式适合于薄板材料和小型零件的连接。

2. 深熔焊接:激光束能量直接作用于工件,使工件表面迅速融化并形成深度焊缝。

这种焊接方式适合于较厚的材料和大型零件的连接。

二、应用领域激光焊接技术在许多领域有着广泛的应用,包括汽车创造、航空航天、电子设备、医疗器械等。

以下是几个典型的应用案例:1. 汽车创造:激光焊接可用于汽车车身焊接、发动机组件焊接以及零部件的连接。

它能够提供高强度、高质量的焊接,提高汽车的安全性和耐久性。

2. 航空航天:激光焊接在航空航天领域中广泛应用于飞机结构件的连接,如翼尖、舵面和机身焊接。

它能够提供轻量化的连接方式,并且具有高强度和高可靠性。

3. 电子设备:激光焊接可用于电子设备的封装和连接,如电池焊接、电路板焊接和器件封装。

它能够实现弱小焊点的连接,提高电子设备的性能和可靠性。

4. 医疗器械:激光焊接在医疗器械创造中起着重要作用,如激光焊接可用于人工关节的创造、牙科种植体的连接等。

它能够实现精细焊接,减少手术创伤并提高患者的治疗效果。

三、设备要求实施激光焊接解决方案需要一定的设备和技术支持。

以下是一些常见的设备要求:1. 激光焊接机:激光焊接机是实施激光焊接的核心设备,它包括激光源、光束传输系统、焊接头和控制系统等组成部份。

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势激光焊接技术是一种高效、精密的焊接方法,广泛应用于汽车制造、航空航天、电子设备、医疗器械等领域。

本文将从激光焊接技术的基本原理、应用领域以及发展趋势等方面进行探讨。

一、激光焊接技术的基本原理激光焊接技术是利用高能激光束对焊接材料进行加热,使其熔化并在熔融池表面形成一定形状的焊缝。

激光焊接技术主要包括传统激光焊接和激光深熔焊接两种形式。

传统激光焊接是指在激光束作用下,焊接材料表面快速升温至熔化温度并与激光束同步移动,形成一定形状的焊缝。

这种焊接方式适用于薄板材料的焊接,具有高速、高效、高质量的特点。

激光深熔焊接是利用高功率密度的激光束对焊缝进行加热,使焊接材料瞬间融化并形成深熔池,进而实现对厚板材料的焊接。

这种焊接方式具有较高的焊接速度和焊接深度,能够实现对厚板材料的高速、高效焊接。

二、激光焊接技术的应用领域1. 汽车制造激光焊接技术在汽车制造领域得到广泛应用,可以实现对汽车车身和构件的高速、高质量焊接。

汽车车身零部件、底盘、门板等都可以通过激光焊接技术进行焊接,提高了汽车的密封性和结构强度,同时降低了成本和生产周期。

2. 航空航天航空航天领域对材料的要求非常严苛,要求焊接过程对材料的影响尽可能小。

激光焊接技术在航空航天领域得到了广泛应用,可以实现对高强度、高温合金材料的高质量焊接,提高了零部件的耐热性和抗拉强度。

3. 电子设备在电子设备制造领域,激光焊接技术可以实现对微小尺寸的零部件进行精密焊接,如电路板、导线等。

激光焊接技术可实现高速、高精度的焊接,可以提高电子设备的生产效率和产品质量。

4. 医疗器械在医疗器械制造领域,要求对焊接材料的影响尽可能小,激光焊接技术可以实现对医疗器械的精密焊接,提高了产品的密封性和耐腐蚀性,符合医疗器械的卫生标准。

三、激光焊接技术的发展趋势1. 多功能化未来激光焊接技术将朝着多功能化方向发展,即在一台设备中集成多种功能,如成型、切割、打孔等。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种利用激光高能密度、高能量流密度和高聚焦能力进行焊接的先进技术。

相比传统的电弧焊接和气体保护焊接,激光焊接具有更高的焊接速度、更小的热影响区和更高的焊接质量。

其原理是利用激光器将功率较高的激光束聚焦到焊缝上,使焊缝处的材料迅速加热并熔化,然后冷却凝固形成焊接接头。

激光焊接技术包括传统连续激光焊接和脉冲激光焊接两种。

传统连续激光焊接是将连续激光束聚焦到焊缝上,通过连续的加热和冷却过程实现焊接。

脉冲激光焊接则是利用脉冲激光束进行焊接,激光脉冲的能量和时间可以根据焊接工件的要求进行调整。

传统连续激光焊接的工艺参数主要包括焦距、聚焦点直径、激光功率和焊接速度等。

焦距决定了激光束在焊缝处的聚焦程度,聚焦点直径决定了激光束的功率密度,激光功率决定了焊接速度,焊接速度决定了焊接质量。

脉冲激光焊接的工艺参数主要包括脉冲能量、脉冲宽度和脉冲频率等,这些参数可以根据焊接工件的要求进行优化。

激光焊接的工艺分析主要包括焊接过程的数值模拟和实验验证。

通过数值模拟可以预测焊接过程中的温度分布、固相扩散、相变和应力变形等物理过程,通过实验验证可以验证数值模拟结果的准确性。

工艺分析的目的是找出最优的焊接工艺参数,以获得最佳的焊接质量和生产效率。

激光焊接技术在汽车制造、航空航天、电子电器和光电子等领域得到了广泛应用。

激光焊接可以实现对薄板、薄壁件和复杂结构的焊接,焊缝质量好,焊接速度快,适用于大批量生产。

激光焊接还可以实现金属与非金属的焊接,如金属与陶瓷、金属与塑料的焊接,这在传统焊接技术中是难以实现的。

激光焊接技术是一种高效、高质量的焊接技术。

通过优化工艺参数和进行工艺分析,可以进一步提高激光焊接的质量和生产效率,推动激光焊接技术的发展和应用。

激光焊接技术的研究现状及发展趋势探究

激光焊接技术的研究现状及发展趋势探究

激光焊接技术的研究现状及发展趋势探究1. 引言1.1 激光焊接技术的定义激光焊接技术是一种利用激光束将热能集中到焊接点进行熔化并连接材料的先进焊接方法。

通过激光束高能量密度和高束质量,可以实现快速、高效、精确的焊接过程。

激光焊接技术在金属、塑料、陶瓷等材料的连接中广泛应用,具有焊缝小、热影响区少、变形小等优点。

随着激光技术的不断进步和发展,激光焊接技术已成为现代制造业中一种重要的焊接方法,被广泛应用于汽车、航空航天、电子、医疗器械等领域。

激光焊接技术的发展为加工技术的进步和产品质量的提高提供了重要支持,是当前研究和发展的热点之一。

1.2 激光焊接技术的重要性1.提高生产效率:激光焊接技术具有快速焊接速度、操作简便等特点,可以大幅提高生产效率,节约人力、时间和成本。

2.提高焊接质量:激光焊接技术能够实现高精度的焊接,焊缝质量好,可以避免气孔、裂纹等焊接缺陷,确保焊接连接的牢固性和稳定性。

3.拓展适用范围:激光焊接技术可以应用于各种金属材料的焊接,包括高熔点金属和难焊材料,具有很强的适用性和通用性。

4.降低能源消耗:相比传统焊接方法,激光焊接技术采用光能作为热源,能量利用效率高,节能环保,有利于减少对环境的影响。

激光焊接技术在制造业中的重要性不容忽视,其在提高生产效率、提高焊接质量、拓展适用范围和降低能源消耗等方面的优势,使其成为现代工业领域中备受重视的焊接技术之一。

2. 正文2.1 激光焊接技术的研究现状1. 激光焊接技术的发展历程:激光焊接技术自20世纪70年代开始逐渐发展,并在各个领域得到广泛应用。

随着激光技术和光学技术的不断进步,激光焊接技术的研究也得到了快速发展。

2. 激光焊接技术的研究热点:当前的研究主要集中在提高焊接质量和效率、拓展适用范围、降低成本和提高稳定性等方面。

利用不同波长的激光进行焊接,探索新的焊接材料、优化焊接参数等。

3. 激光焊接技术的现有问题:虽然激光焊接技术在许多领域取得了成功,但仍然存在一些问题,如焊接过程中容易产生气孔、热裂纹等缺陷,需要进一步研究和解决。

激光焊接技术的研究现状及发展趋势探究

激光焊接技术的研究现状及发展趋势探究

激光焊接技术的研究现状及发展趋势探究激光焊接技术是一种高精度、高效率的焊接方法,近年来得到了广泛的应用和发展。

本文将探究激光焊接技术的研究现状和发展趋势,分析其在各个领域的应用以及未来的发展方向。

一、激光焊接技术的研究现状1. 激光焊接工艺激光焊接是利用激光束对材料进行加热,从而使材料表面产生熔化,并将熔化池与受热区域形成牢固的结合。

激光焊接工艺主要包括传统激光焊接、深层激光焊接、激光-激光混合焊接、激光-煤炭混合焊接等多种方式,每种方式都有其适用的具体情况。

2. 激光焊接设备激光焊接设备包括激光发生器、激光传输系统和焊接装置等部分。

目前,市场上主要有固体激光器、液体激光器和气体激光器等多种类型的激光器可供选择,其中固体激光器因其高功率、高能量密度和高效率等优势,逐渐成为主流。

3. 激光焊接材料激光焊接可适用于多种材料,包括金属材料、合金材料、塑料材料等。

而随着激光焊接设备和工艺的不断改进,其在特殊材料、复合材料和高温材料等方面的应用也逐渐增多。

4. 激光焊接检测技术激光焊接后的焊缝质量直接影响着工件的使用性能,因此激光焊接检测技术成为焊接过程中不可或缺的一部分。

目前,主要的检测技术包括激光扫描显微镜检测、红外热像仪检测、超声波检测和X射线检测等多种方式。

5. 激光焊接应用领域激光焊接技术已经广泛应用于汽车制造、航空航天、电子设备、医疗器械、管道制造等领域。

在汽车制造中,激光焊接可以实现车身零部件的高效焊接,提高生产效率,减少成本。

6. 激光焊接的优势与传统焊接方法相比,激光焊接具有焊缝小、变形小、热影响区小、焊接速度快、热影响深度浅等特点。

激光焊接在一些对焊接质量要求高、对材料变形敏感的领域有着明显的优势。

1. 激光焊接设备的技术升级随着激光技术的不断发展,激光焊接设备的性能将不断提升。

固体激光器的输出能量和能量密度将不断增加,激光束质量和稳定性将得到进一步提高,激光束调控技术也将更加精密。

2. 激光焊接工艺的创新针对不同的焊接需求,激光焊接技术将不断进行工艺创新。

激光焊接技术

激光焊接技术

激光焊接技术激光焊接技术是一种新型的高精度、高效率的焊接技术,可以在材料表面形成高能量密度焊缝,并将材料熔化焊接在一起。

激光焊接技术的特点是焊接速度快、效率高,焊缝形状优美,自动化程度高,质量可靠,广泛应用于航空、航天、军工、汽车、电子等领域。

一、激光焊接技术原理激光焊接技术是利用激光器将高能量密度的激光束集中在焊缝上,使材料熔化、熔池形成、冷却凝固而实现焊接的一种先进的现代化焊接方法。

激光束是由半导体激光器或固体激光器通过电子控制系统控制光束形状和作用时间发射出来的。

激光焊接的过程主要包括:激光束的聚焦、能量传递、熔化和混合、物质传递、凝固、焊缝形成。

二、激光焊接技术的发展激光焊接技术的发展主要经历了三个阶段:第一阶段:激光器材料的发展阶段,20世纪60年代,激光器材料逐渐成熟,发展起了高质量的氦氖和二氧化碳激光器。

第二阶段:焊接技术发展阶段,20世纪70年代,随着激光器的发展和材料科学的进步,激光焊接技术出现并得到了发展。

激光焊接技术的应用范围不断扩展,新型激光器的发展也为激光焊接技术的发展提供了更加先进的技术支持。

第三阶段:新技术的发展阶段, 20世纪80年代,多光子激光焊接技术、激光力学碎片技术、光纤激光传输技术等激光技术新技术的产生,为激光焊接技术的提升和发展提供了新的方向和思路。

三、激光焊接技术的应用激光焊接技术广泛应用于各种材料的焊接中,如金属材料、塑料材料、陶瓷材料等。

特别是对于高难度、高要求的应用领域,如修复设备、航空、航天、军工、汽车、电子、仪器、5G通信等领域的应用,激光焊接技术具有独特的优势。

四、激光焊接技术的优点1、激光焊接技术的焊缝成型放心,无需表面处理,可以达到密封、抗剪强度高等特点。

2、激光焊接技术的深度可以向内渗透,从而保证长时间有效的连接,无需二次处理。

3、激光焊接技术的低热影响区,焊接过程中的热量非常集中,对焊接件的影响很小,可以减轻变形。

4、激光焊接技术的可靠性高,通过电脑控制,可以达到一定的自动化程度。

激光焊接技术

激光焊接技术

激光焊接技术激光焊接技术是一种新兴的高技术制造方法,它采用高能量密度激光束对接头进行加热,使其局部熔化并迅速冷却,从而将接头快速连接在一起。

激光焊接技术在制造业中广泛应用,如汽车、飞机、船舶、电子、医疗设备等领域都在使用该技术,其具有高效、高精、高质、环保等特点,成为制造业中的瑰宝。

一、激光焊接技术的原理与类型激光焊接技术利用激光束对材料进行加热和熔化,使其在一定条件下完成接头连接的工艺。

激光焊接的过程,由于激光具有高能密度的特点,可以使材料迅速加热到熔点以上,以此实现对接头的定向加热和熔化,然后通过激光束的移动来控制熔池形成和接头连接。

在激光焊接加工的过程中,为了保证焊缝质量,需要对激光束精度、聚焦系统、感应监测系统等进行精细调整。

根据激光模式、工作方式和加工过程等不同,激光焊接技术可分为以下类型。

1.传统激光焊接技术传统激光焊接技术采用CO2激光精细加工和Nd:YAG固体激光器,它们主要是对金属材料进行加工,如钢、铝、铜等。

其特点是高功率密度、高效率、高能量集中度和高精度,但由于光束质量较低,聚焦距离较大,限制了其在微小尺寸加工上的应用。

2.光纤激光焊接技术光纤激光焊接技术是一种新型的激光加工技术,主要用于薄板和材料的激光加工。

与其他激光系统相比,光纤激光器具有低成本、高效率、低能耗、低维护成本等优势,其光束具有较高的光斑质量和聚焦能力,在焊接中具有更好的稳定性。

3.激光多炮焊接技术激光多炮焊接技术是一种利用多个激光源同时对工件进行焊接的技术。

该技术可通过并联或串联不同功率激光源实现工件在短时间内的大面积快速加热,从而实现快速焊接工艺。

激光多炮焊接技术相比传统激光焊接技术更加高效和灵活,可大大提高工作效率。

二、激光焊接技术的应用激光焊接技术在汽车、电子、医疗器械、管道、压力容器、船舶、航空航天、军事等领域都有着广泛的应用。

1.汽车制造激光焊接技术被广泛应用于汽车板材焊接,主要用于车身、车门、引擎等部件的连接和维修。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种高效、精密的焊接方法,广泛应用于汽车制造、航天航空、电子电气、金属加工等领域。

它具有焊缝窄、热影响区小、焊接速度快、焊接变形小等优点,因此备受行业的青睐。

本文将对激光焊接技术的原理及工艺进行深入分析,以便更好地应用于实际生产中。

一、激光焊接技术原理激光焊接技术是利用高能密度激光束对工件进行局部加热,使其熔化并与填充材料熔合,从而实现焊接的一种焊接方法。

激光焊接技术的焊接原理主要包括热传导和熔化两个过程。

1. 热传导过程激光束照射到被焊接工件表面时,会迅速将能量转移到工件内部,并在其表面形成一个“热源区”。

在热源区内,温度迅速升高,使金属材料发生相变,从而产生熔化现象。

热传导过程是激光焊接的关键步骤,决定了焊接质量和效率。

2. 熔化过程一旦工件表面温度达到熔点,金属材料便开始熔化,并与填充材料一起形成一层融合的熔池。

激光束的高能密度可以使金属材料迅速熔化,从而实现高速、高效的焊接过程。

二、激光焊接工艺分析激光焊接工艺主要包括焊接设备、工艺参数、焊接过程控制等方面。

下面将分别对这些方面进行分析。

1. 焊接设备激光焊接的设备主要由激光器、光纤传输系统、焊接头及其控制系统等组成。

激光器是激光焊接的核心部件,它产生高能密度的激光束,然后通过光纤传输系统输送到焊接头。

焊接头通过镜片对激光束进行聚焦和调节,然后照射到工件表面进行焊接。

2. 工艺参数激光焊接的工艺参数包括激光功率、焦距、焊接速度、频率等多个方面。

这些参数的选择直接影响到焊接效果和质量。

一般来说,激光功率越大,焊接速度越快,焊接效果越好。

而焦距、频率等参数则需要根据具体的焊接材料和厚度进行调节。

3. 焊接过程控制激光焊接的过程控制是确保焊接质量的关键。

焊接过程需要对激光功率、焊接速度、焦距等参数进行精确控制,同时还需要考虑到工件的热变形、填充材料的均匀性等因素。

现代化的焊接设备通常配备了先进的焊接控制系统,能够通过实时监控和反馈机制来实现焊接过程的精确控制。

激光焊接技术的工艺与方法

激光焊接技术的工艺与方法

激光焊接技术的工艺与方法激光焊接技术是一种非常重要且广泛应用于工业生产领域的焊接方法。

它利用高能量密度的激光束来加热工件表面,使其达到熔化点,然后通过材料的自身熔化来进行焊接。

激光焊接技术具有高精度、高效率和不受材料性质限制等优点,因此在汽车制造、电子设备、航空航天等领域得到广泛应用。

本文将重点探讨激光焊接技术的一些常见工艺与方法,以及其在实际应用中的一些注意事项。

一、工艺常见方法1.传统激光焊接传统激光焊接是指使用高功率连续波激光进行焊接的方法。

其工作原理是将激光束聚焦到非常小的焦点上,通过光能的聚焦来使工件表面局部熔化,形成焊缝。

该方法适用于焊接厚度较大的工件,具有焊缝宽度窄、焊缝深度大的优点。

然而,由于激光能量密度较高,容易引起工件变形和热裂纹等问题,需要进行严格的控制和预热处理。

2.脉冲激光焊接脉冲激光焊接是指使用高能量脉冲激光进行焊接的方法。

相比传统激光焊接,脉冲激光焊接的能量密度更高,激光束作用时间更短,因此在焊接过程中对工件的热影响较小。

这种方法适用于对焊接过程热输入要求较低的材料,如薄板、精密仪器等。

脉冲激光焊接还可以实现连续拼接焊接和高速激光焊接等特殊要求。

3.深熔激光焊接深熔激光焊接是一种通过在焊接过程中使工件局部熔化并加热至汽化温度,利用金属蒸汽对激光束进行抑制,从而实现深熔焊接的方法。

该方法适用于要求焊缝深度较大的工件,如不锈钢、铝合金等。

在深熔激光焊接过程中,需要控制好激光束的功率和速度,以确保焊缝的质量和形状。

二、实际应用注意事项1.材料选择在激光焊接过程中,不同材料对激光的吸收率和热传导率不同,因此在选择焊接材料时需要考虑其适应激光焊接的特性。

同时还需要考虑材料的熔点、热膨胀系数等参数,以确保焊接质量。

2.焊接参数控制激光焊接的参数包括激光功率、激光束直径、焦距、焊接速度等多个方面。

这些参数的选择和控制直接影响焊缝的质量和性能。

因此,在实际应用中需要通过试验和实践确定最佳的焊接参数。

什么叫做激光焊

什么叫做激光焊

什么叫做激光焊激光焊是一种利用激光束作为热源进行焊接的高科技焊接技术。

通过控制激光束的能量密度和焦点位置,将焊接接头处加热至熔化状态,从而实现材料的熔接。

激光焊具有焊接速度快、热影响区小、焊缝质量高等优点,因此在诸多工业领域应用广泛。

激光焊原理1.激光束产生:激光束是由激光器产生的一束聚焦光束,其具有高能量密度和方向性。

2.激光能量吸收:激光束照射到工件表面时,能量将被吸收并转化为热能。

3.材料熔化:高能激光束照射到焊接接头处,使其升至熔化温度。

4.熔池形成:材料熔化后形成熔池,在激光束作用下熔池深度逐渐增加。

5.焊缝形成:当激光束移动时,熔池逐渐凝固形成焊缝。

激光焊优点•高能量密度:可在短时间内提供高能量,加快焊接速度。

•小热影响区:激光焊热输入小,降低工件变形风险。

•高精度:激光焊焊缝质量高,具有较高的焊接质量。

•无接触焊接:激光焊是一种非接触焊接方法,适用于高精度焊接。

激光焊应用领域激光焊技术在多个领域得到了广泛应用,主要包括但不限于以下几个方面:1.汽车制造:激光焊用于汽车车身焊接,提高了焊接质量和生产效率。

2.航空航天:激光焊广泛应用于航空航天领域的零部件加工和修复。

3.电子制造:激光焊在电子零部件的微细焊接中发挥着重要作用。

4.医疗器械:激光焊被用于医疗器械的制造和装配,保证产品的质量和卫生标准。

结语总的来说,激光焊作为一种高效、高精度的焊接技术,在工业生产中具有重要意义。

随着技术的不断进步和应用范围的扩大,激光焊将继续发挥着重要作用,为各行各业的生产与制造提供更加高效、高质量的解决方案。

激光焊接技术现状及展望研究

激光焊接技术现状及展望研究

激光焊接技术现状及展望研究激光焊接技术是一种高效、精密的焊接方法,已经广泛应用于汽车制造、航空航天、电子、医疗器械、生物科技等领域。

随着制造业的发展和需求的不断提高,激光焊接技术正日益成为焊接领域的热点。

本文将首先对激光焊接技术的现状进行介绍,然后对其未来的发展进行展望。

一、激光焊接技术现状1. 激光焊接技术的原理和特点激光焊接是利用高能激光束对工件进行局部加热,使其熔化并形成接头的焊接方法。

激光束的能量密度高,能够集中在较小的区域内进行加热,因此激光焊接具有热影响区小、焊缝窄、热变形小、焊接速度快、接头质量高等优点。

这使得激光焊接技术在高精度焊接领域的应用更为突出。

2. 激光焊接技术在不同领域的应用(1)汽车制造激光焊接技术在汽车制造中得到了广泛应用,可以用于焊接汽车车身、发动机、底盘等部件,大大提高了汽车的质量和性能。

(2)航空航天在航空航天领域,激光焊接可以实现对航空发动机、航空器结构零部件等精密件的高效焊接,提高了零部件的精度和稳定性。

(3)电子(4)医疗器械在医疗器械领域,激光焊接可以实现对高精度、高要求的医疗器械的焊接,提高了医疗器械的质量和性能。

随着激光技术的不断发展,激光焊接技术也在不断完善和提高。

目前,研究人员正在致力于提高激光焊接技术的功率密度、工艺稳定性、焊接速度、焊缝质量等方面。

也在探索激光焊接技术在新材料、微焊接、大型工件焊接等方面的应用。

1. 提高焊接效率和质量未来,激光焊接技术将进一步提高焊接效率和焊缝质量。

随着激光技术的不断发展,激光焊接系统将会实现更高的功率密度,提高焊接速度和加工效率。

现代智能化技术的应用将使激光焊接系统更加稳定和可靠,提高焊接质量和一致性。

2. 拓展应用领域未来,激光焊接技术将拓展应用领域,特别是在新材料、微焊接、大型工件焊接等方面。

随着新材料的不断涌现,激光焊接技术将会在高温合金、复合材料、高强度钢等新材料的焊接中发挥更大的作用。

微焊接和大型工件焊接也将成为激光焊接技术的重要应用领域。

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势激光焊接技术是一种高效、精密的焊接方法,随着科学技术的不断发展,激光焊接技术在各个行业中得到了广泛的应用,并且在未来的发展中有着巨大的潜力。

本文将从激光焊接技术的原理和特点、应用领域以及发展趋势等方面进行详细的介绍和分析。

一、激光焊接技术的原理和特点激光焊接是利用激光束对焊接材料进行加热、熔化和冷却,从而实现焊接的一种高技术焊接方法。

激光焊接技术有非常突出的优势,首先是在焊接过程中激光束经聚焦后能够提供高能量密度的热源,因此可以实现高速、高温的熔化焊接。

激光焊接不需要接触,可以实现对材料的非接触式加工,避免了传统焊接中容易产生的氧化、变形等问题。

激光焊接还具有热影响区小、焊接变形小、焊缝质量高等优点。

激光焊接技术得到了越来越广泛的应用,并在许多行业中取代传统的焊接方法。

二、激光焊接技术的应用领域1. 汽车制造业在汽车制造业中,激光焊接技术被广泛应用于汽车车身的生产中。

激光焊接可精确控制焊接的温度和深度,可以实现对汽车车身的高精度焊接,使得焊接接缝更加紧密,提高了车身的强度和密封性,同时还能够减轻车身重量,提高汽车的燃油经济性。

2. 航空航天制造业在航空航天领域,由于激光焊接技术的高精度和高质量优势,被广泛用于制造航天器结构、航空发动机、导弹、卫星等领域。

激光焊接技术可以提高航空器和航天器的耐热性能、降低结构重量、提高使用寿命,同时还能够提高制造效率和降低生产成本。

3. 电子电气制造业在电子电气制造业中,激光焊接技术被广泛应用于生产半导体器件、电子元器件、电机线圈等领域。

激光焊接技术可以实现对薄膜、微小零件的高精度焊接,同时还能够避免污染和热影响,提高器件的性能和质量。

1. 多波长激光焊接技术传统激光焊接技术只能使用单一波长的激光进行焊接,而多波长激光焊接技术可以利用多种波长的激光,通过组合和调控不同波长的激光来实现对不同材料的高效焊接。

多波长激光焊接技术可以提高焊接质量和效率,拓宽了激光焊接技术的应用范围。

激光焊接技术

激光焊接技术

激光焊接技术激光焊接技术是一种高效、精确、高质量的焊接方法,采用激光束作为能源源,通过局部加热材料来实现焊接过程。

激光焊接技术具有许多优点,如焊接速度快、热影响区小、焊缝质量高等。

随着科技的不断发展,激光焊接技术在许多领域得到广泛应用,如汽车制造、航空航天、电子设备等。

激光焊接技术的基本原理是利用激光器产生的激光束照射到焊接材料上,通过光能的吸收转化为热能,使焊接材料局部加热到熔点甚至超过熔点,形成焊接池,然后利用焊接池的表面张力和粘度使其与相邻材料融合在一起。

由于激光束高度集中的特点,激光焊接可在短时间内完成焊接,并且焊缝质量高,热影响区小,不易产生变形和氧化。

激光焊接技术主要包括传统激光焊接和激光深熔焊接两种。

传统激光焊接是激光束照射到焊接材料上,通过高温熔融材料实现焊接,适用于焊接薄板材料和各种金属材料。

激光深熔焊接是利用激光束高能量密度瞬间加热焊接材料,使其迅速熔化并形成深焊缝,适用于焊接厚板材料和高硬度材料。

激光焊接技术具有许多优点。

首先,焊接速度快。

激光焊接的焊接速度可达每秒几米至十几米,远远高于传统焊接方法。

其次,焊接热影响区小。

激光焊接的热影响区仅为毫米级别,减少了材料的变形和氧化。

再次,焊缝质量高。

激光焊接的焊缝质量好,焊缝强度高,焊缝形态美观,不易产生缺陷。

此外,激光焊接还可以实现自动化控制,提高生产效率。

激光焊接技术在许多领域得到广泛应用。

在汽车制造领域,激光焊接可用于车身焊接、零部件连接等工艺,提高汽车的结构强度和安全性。

在航空航天领域,激光焊接可用于飞机结构件的连接和修复,提高飞机的可靠性和性能。

在电子设备制造领域,激光焊接可用于微电子器件的封装和连接,提高产品的可靠性和稳定性。

然而,激光焊接技术也存在一些局限性。

首先,设备成本高。

激光器等设备的价格较高,增加了生产成本。

其次,对焊接材料要求高。

激光焊接对焊接材料的光学、热学性能有一定要求,不适合焊接一些特殊材料。

再次,操作技术要求高。

激光焊接解决方案

激光焊接解决方案

激光焊接解决方案激光焊接是一种高精度、高效率的焊接技术,广泛应用于汽车制造、航空航天、电子设备等领域。

本文将详细介绍激光焊接解决方案的工作原理、优势和应用案例。

一、工作原理激光焊接通过将高能量密度的激光束聚焦到焊接接头上,使接头处的材料迅速加热并熔化,形成焊缝。

激光焊接可以分为传导传热焊接和深熔焊接两种方式。

1. 传导传热焊接:激光束在接头表面产生热量,通过热传导使接头内部材料熔化并形成焊缝。

这种焊接方式适用于材料厚度较薄的情况,焊接速度快,适用于金属材料的连接。

2. 深熔焊接:激光束在接头表面产生高能量密度,使接头表面和内部材料瞬间熔化,形成深度焊缝。

这种焊接方式适用于材料厚度较大的情况,焊接质量高,适用于不锈钢、铝合金等材料的连接。

二、优势激光焊接具有以下几个优势:1. 高精度:激光束聚焦后的直径非常小,可以实现高精度的焊接,适用于微小零件的连接。

2. 高效率:激光焊接速度快,焊接时间短,可以提高生产效率。

3. 无接触:激光焊接是一种非接触式的焊接技术,可以避免材料表面的损伤和变形。

4. 无污染:激光焊接无需使用焊接剂和助焊剂,不会产生有害气体和废料,符合环保要求。

5. 可自动化:激光焊接可以与机器人等自动化设备配合使用,实现自动化生产线的建设。

三、应用案例激光焊接解决方案已广泛应用于各个领域,以下是几个典型的应用案例:1. 汽车制造:激光焊接可用于汽车车身的焊接,提高焊接质量和生产效率。

例如,激光焊接可以用于汽车车门的焊接,确保焊缝的密封性和强度。

2. 航空航天:激光焊接可用于航空航天领域的零部件制造,例如航空发动机的焊接。

激光焊接可以实现高精度的焊接,确保零部件的质量和可靠性。

3. 电子设备:激光焊接可用于电子设备的组装和连接,例如手机、平板电脑等电子产品的焊接。

激光焊接可以实现微小零件的高精度连接,提高产品的性能和可靠性。

总结:激光焊接解决方案是一种高精度、高效率的焊接技术,具有高精度、高效率、无接触、无污染和可自动化等优势。

激光焊接技术

激光焊接技术
锂离子电池;有几道程序如极耳焊接 安全阀焊接 负极焊接 外壳密封焊接等;均以激光焊接为最佳 技术
表3 1 各种蓄电池主要性能对比
一 极耳安全阀的自动焊接
新型电池内部装有防爆装置;称为安全阀;锂离子电 池有内部膨胀爆炸危险;因而电池必须装有安全阀; 作为安全保障 安全阀结构巧妙;为用激光焊接牢固 的 一定形状的两个铝质金属片;由激光熔斑形成的 抗拉强度;需在设计值范围之内;即通过激光熔斑使 电池内部形成通路;但当内部压力升高到一定值时; 激光熔斑被撕开;起到保护作用
图3 3 激光深熔焊接小孔效应示意
激光深熔焊接依靠小孔效应;使激光光束的光能传 向材料深部;激光功率足够大时;小孔深度加大;随 着激光光束相对于焊件的移动;金属液体凝固形成 焊缝;焊缝窄而深;其深宽比可达到12:1 激光深 熔焊接需要足够高的激光功率;但几百瓦的CO2激 光器;当激光模式好时;也能产生小孔效应;这是因 为基模光束聚焦后能够获得高功率密度
第3 章 激光焊接技术
31 概 述 3 2 激光焊接原理 3 3 激光焊接技术参数的作用与实验选择 3 4 激光焊接实用举例 3 5 激光焊接技术的发展前景
31 概 述
激光焊接是一种无接触加工方式;对焊接零件没有 外力作用 激光能量高度集中;对金属快速加热后快 速冷却;对许多零件来讲;热影响可以忽略不计;可 认为不产生热变形或者说热变形极小 能够焊接高 熔点 难熔 难焊的金属;如钛合金 铝合金等 激光焊 接过程对环境没有污染;在空气中可以直接焊接;与 需在真空室中焊接的电子束焊接方法比较;激光焊 接技术简便
激光焊接在电子工业 国防工业 仪表工业 电池工 业 医疗仪器以及许多行业中均得到了广泛的应用
图3 1 激光焊接的零件
3 2 激光焊接原理

激光焊接技术现状及展望研究

激光焊接技术现状及展望研究

激光焊接技术现状及展望研究激光焊接技术是一种高新技术,具有高效、高精度、高质量的特点,已经在多个行业得到广泛应用。

随着科学技术的不断进步和发展,激光焊接技术也在不断提升和完善。

本文将从激光焊接技术的现状及发展状况、存在的问题以及未来的发展展望等方面进行详细探讨和分析。

一、激光焊接技术的现状激光焊接技术是指在焊接过程中使用激光作为热源,通过光束的高能量密度和聚焦性,使工件表面瞬间受热熔化,实现焊接的技术。

激光焊接技术在金属材料、塑料、玻璃等材料的焊接中具有独特优势,其焊接速度快、热影响区小、变形小、焊缝质量高、可焊接性广泛等特点,被广泛应用于汽车制造、航空航天、电子电器、光电子等行业。

目前,激光焊接技术已经取得了许多突破性进展。

一是激光设备技术得到了快速发展,激光功率不断提高,激光光束质量不断改善,激光系统性能更加稳定可靠。

二是激光光源技术不断进步,出现了多波长激光器、高功率连续激光器、超快激光器等新型激光器。

三是焊接控制技术不断完善,焊接质量监测与控制系统、自适应控制系统等先进技术的应用不断提高了激光焊接的自动化程度和焊接质量。

尽管激光焊接技术已经取得了很多进展,但仍然存在一些问题亟待解决。

一是焊接效率和成本问题。

虽然激光焊接速度较快,但设备成本较高,焊接效率不足以满足大批量生产的需求。

二是焊接适应性问题。

激光焊接技术对工件材料和形状有一定要求,对于特殊材料和复杂形状的工件,其焊接适应性有限。

三是焊接质量问题。

激光焊接易受热影响、气孔、裂纹等质量缺陷的影响,需要进一步提高焊接质量。

激光焊接技术是一种高效、高精度、高质量的焊接技术,具有广泛的应用前景。

尽管目前仍然存在一些问题,但随着科学技术的不断发展,相信这些问题将得到有效解决,激光焊接技术将在未来得到更加广泛的应用。

希望相关领域的研究人员共同努力,加快激光焊接技术的研究与应用,为我国制造业的发展做出更大的贡献。

激光焊接技术的研究现状及发展趋势探究

激光焊接技术的研究现状及发展趋势探究

激光焊接技术的研究现状及发展趋势探究1. 引言1.1 激光焊接技术的重要性激光焊接技术是一种高效、精密的焊接方法,其在制造业中具有重要的地位和作用。

激光焊接技术可以实现高速、高质量的焊接,广泛应用于汽车制造、航空航天、光电子、电子通讯等行业。

激光焊接技术能够实现对焊接过程的精确控制,可有效降低材料损伤和变形,提高焊接质量和效率。

激光焊接技术还可以实现对不同材料的焊接,如金属、塑料、玻璃等,具有广泛的适用性。

激光焊接技术的发展对于提高制造业的产品质量、降低成本、提高效率具有重要意义。

随着制造业的不断发展和自动化程度的提高,对于激光焊接技术的需求也在不断增加。

深入研究激光焊接技术的原理和应用,探索其在不同领域的发展潜力,对于推动制造业的转型升级和提高国家竞争力具有积极的促进作用。

1.2 研究现状概述激光焊接技术是一种高效、精密且环保的焊接方法,近年来受到广泛关注和研究。

目前,国内外许多研究机构和企业纷纷投入到激光焊接技术的研究与应用中,取得了一系列重要成果。

在研究现状方面,国内外学者在激光焊接技术的基础原理、优化方法、参数控制等方面进行了深入研究,取得了许多创新性成果。

激光焊接技术在航空航天、汽车制造、电子设备等领域得到了广泛应用,为实现产品制造的高质量、高效率提供了重要支持。

激光焊接技术仍然存在一些问题和挑战,比如焊接速度、焊缝质量、材料适应性等方面仍有待提高。

研究人员需要不断探索新的技术手段和方法,以解决这些问题,并推动激光焊接技术的持续发展。

未来,随着科技的不断进步和产业的不断发展,激光焊接技术将会不断创新和完善,为各个行业带来更多的可能性和机遇。

1.3 研究目的和意义激光焊接技术的研究目的和意义在于探究其在工业领域中的应用潜力和优势,为提高产品质量、生产效率和节约资源做出贡献。

通过深入研究激光焊接技术,可以更好地了解其原理和特点,推动其在不同领域的应用和发展。

研究激光焊接技术还可以帮助提高传统焊接工艺的效率和精度,减少环境污染和能源消耗,实现可持续发展和资源利用的最大化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光焊接技术激光焊接技术属于熔融焊接,以激光束为能源,冲击在焊件接头上。

目录1基本信息2激光焊接的优势3工艺参数▪激光功率▪光束焦斑▪功率控制4优缺点5应用6混合焊接优势1基本信息激发电子或分子使其在转换成能量的过程中产生集中且相位相同的光束,Laser来自Light Amplification by Stimulated Emission Radiation的第一个字母所组成。

由光学震荡器及放在震荡器空穴两端镜间的介质所组成。

介质受到激发至高能量状态时,开始产生同相位光波且在两端镜间来回反射,形成光电的串结效应,将光波放大,并获得足够能量而开始发射出激光。

激光亦可解释成将电能、化学能、热能、光能或核能等原始能源转换成某些特定光频(紫外光、可见光或红外光的电磁辐射束的一种设备。

转换形态在某些固态、液态或气态介质中很容易进行。

当这些介质以原子或分子形态被激发,便产生相位几乎相同且近乎单一波长的光束-----激光。

由于具同相位及单一波长,差异角均非常小,在被高度集中以提供焊接、切割及热处理等功能前可传送的距离相当长。

世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。

虽然瞬间脉冲峰值能量可高达10^6瓦,但仍属于低能量输出。

使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连续单一波长光束。

YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5-6mm。

使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。

早期的激光焊接研究实验大多数是利用红宝石脉冲激光器,当时虽然能够获得较高的脉冲能量,但是这些激光器的平均输出功率相当低,这主要是由激光器很低的工作效率和发光物质的受激性所决定的。

激光焊接主要使用CO2激光器和YAG激光器,YAG激光器由于具有较高的平均功率,在它出现之后就成为激光点焊和激光缝焊的优选设备。

激光焊接与电子束焊接的显著区别在于激光辐射不能产生穿孔焊接方式。

而实际上,当激光脉冲能量密度达到10的6次方W/CM2时,就会在呗焊接金属材料焊接界面上形成焊孔,小孔的形成条件得到满足,从而就可以利用激光束进行深熔焊接。

在20世纪70年代以前,由于高功率连续波形激光器尚未开发出来,所以研究重点集中在脉冲激光焊接上。

早期的激光焊接研究实验大多数是利用红宝石脉冲激光器。

YAG激光器的焊接过程是通过焊点搭接而进行的,知道1KW以上的连续功率波形激光器诞生以后,具有真正意义的激光缝焊才得以实现。

随着千瓦级连续CO2激光器焊接试验的成功,激光焊接技术在20世纪70年代初取得突破性进展。

在大厚度不锈钢试件上进行CO2激光焊接,形成了穿透熔深的焊缝,从而清楚的标明了小孔的形成,而且激光焊接产生的深熔焊缝与电子束焊接相似。

这些利用CO2激光器进行金属焊接的早期工作证明了高功率连续激光焊接的巨大潜能。

在航空工业以及其他许多应用中,激光焊接能够实现很多类型材料的连接,而且激光焊接通常具有许多其他熔焊工艺无法比拟的优越性,尤其是激光焊接能够连接航空与汽车工业中比较难焊的薄板合金材料,如铝合金等,并且构件的变形小,接头质量高。

激光加工另一项具有吸引力的应用方面是利用了激光能够实现局部小范围加热特性,激光所具有的这种热点使其非常适合于印刷电路板一类的电子器件的焊接,激光能在电子器件上非常小的区域内产生很高的平均温度,而接头以外的区域则基本不受影响。

属于熔融焊接,以激光束为能源,冲击在焊件接头上。

激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。

激光焊接属非接触式焊接,作业过程不需加压,但需使用惰性气体以防熔池氧化,填料金属偶有使用。

激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。

2激光焊接的优势(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。

(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。

(3)不需使用电极,没有电极污染或受损的顾虑。

且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。

(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。

(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。

(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件,(7)可焊材质种类范围大,亦可相互接合各种异质材料。

(8)易于以自动化进行高速焊接,亦可以数位或电脑控制。

(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。

(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件。

(11)可焊接不同物性(如不同电阻)的两种金属(12)不需真空,亦不需做X射线防护。

(13)若以穿孔式焊接,焊道深一宽比可达10:1(14)可以切换装置将激光束传送至多个工作站。

3工艺参数连续CO2激光焊的工艺参数激光深熔焊接的主要工艺参数激光功率激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。

如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。

而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深波动很大。

激光深熔焊时,激光功率同时控制熔透深度和焊接速度。

焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。

一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。

光束焦斑光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。

但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。

光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。

最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。

这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。

材料吸收值材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。

影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光表面的吸收率测量发现,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的表面状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。

CO2激光器的输出波长通常为10.6μm,陶瓷、玻璃、橡胶、塑料等非金属对它的吸收率在室温就很高,而金属材料在室温时对它的吸收很差,直到材料一旦熔化乃至气化,它的吸收才急剧增加。

采用表面涂层或表面生成氧化膜的方法,提高材料对光束的吸收很有效。

焊接速度焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。

所以,对一定激光功率和一定厚度的某特定材料有一个合适的焊接速度范围,并在其中相应速度值时可获得最大熔深。

保护气体激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。

氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。

这是激光焊接时使用最有效的保护气体,但价格比较贵。

氩气比较便宜,密度较大,所以保护效果较好。

但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。

使用氩气保护的焊件表面要比使用氦气保护时来得光滑。

氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。

使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。

特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。

保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。

金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。

如果等离子体存在过多,激光束在某种程度上被等离子体消耗。

等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。

通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。

中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。

表常用气体和金属的原子(分子)量和电离能材料氦氩氮铝镁铁原子(分子)量 4 40 28 27 24 56电离能(eV) 24.46 15.68 14.5 5.96 7.61 7.83从表可知,等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。

等离子体尺寸越大,熔深则越浅。

造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。

氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。

所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。

当然,从我们实际焊接的效果看,用氩气保护的效果还不错。

等离子云对熔深的影响在低焊接速度区最为明显。

当焊接速度提高时,它的影响就会减弱。

保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。

它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。

流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。

为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。

保护气体不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。

但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。

透镜焦距焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。

聚焦光斑大小与焦距成正比,焦距越短,光斑越小。

相关文档
最新文档