中考二次函数压轴题专题分类训练
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。
2024年中考数学高频压轴题训练——二次函数压轴题(特殊四边形)及参考答案
2024年中考数学高频压轴题训练——二次函数压轴题(特殊四边形)()1求该抛物线的表达式;()2点P在该抛物线上,点Q在y轴上,要使以点形,求所有满足条件的点P的坐标.2.如图,已知抛物线223=--+y x x的左侧),与y轴交于点C.点E为抛物线对称轴上的一个动点:(1)当点E 在x 轴上方且CE BD ∥时,求sin DEC ∠(2)若点P 在抛物线上,是否存在以点B ,E ,C ,P 求出点P 的坐标;(3)若抛物线对称轴上有点E ,使得55AE DE +取得最小值,连接限抛物线为点M ,从请直接写出AM 的长度.3.如图,抛物线23y ax bx =+-与x 轴交于(1,0A -(1)求抛物线的解析式;(2)若点D 是抛物线上的一点,当ABD △的面积为(3)点P 是抛物线对称轴上的一点,在抛物线上是否存在一点为顶点的四边形是平行四边形?若存在,求出点Q(1)求出抛物线与直线的解析式;(2)已知点K为线段AD上一动点,过点K作AH,求AHD的最大面积;(3)若点M是x轴上的一动点,点N是抛物线上一动点,当以点顶点的四边形是平行四边形时,请你直接写出符合条件的点(1)求抛物线的解析式;(2)若点P 是抛物线第四象限上的一个动点,过点P 作PQ AC ∥交BC 于点Q .①如图1,记APQ △面积为1,S BPQ 面积为2S ,求12S S +的面积最大值及此时点P 的坐标.②如图2,若将QP 沿直线BC 翻折得到QE ,且点E 落在线段AC 上,求此时点P 的坐标.6.如图,抛物线y =﹣54x 2+bx +c 与直线y =12x +c 相交于A (0,1),B (3,52)两点,过点B 作BC ⊥x 轴,垂足为点C ,在线段AB 上方的抛物线上取一点D ,过D 作DF 轴,垂足为点F ,交AB 于点E .(1)求该抛物线的表达式;(2)求△ABD面积的最大值;(3)连接BD、CE,四边形BDEC能否成为平行四边形?若能,求出点D的坐标;若不能,请说明理由.7.在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(2,'''.1).将此矩形绕点O逆时针旋转90°,得到矩形OA B C(1)求过点A、A'、C'的抛物线的解析式;(2)将矩形OABC沿x轴正方向平移,使点C落在抛物线上,求平移的距离.12.如图,在平面直角坐标系中,点()3,4A -、()5,10B -在抛物线2y x bx c =++上,点P 为该抛物线上一点,其横坐标为m .(1)求该抛物线的解析式;(2)当点P 与点A 关于该抛物线的对称轴对称时,求PAB 的面积;(3)当该抛物线在点B 与点P 之间部分(含点B 和点P )的最高点与最低点的纵坐标之差为3时,求m 的值;(4)点Q 为该抛物线的对称轴上任意一点,当以点A 、B 、P 、Q 为顶点的四边形是平行四边形时,直接写出点P 的坐标.13.如图,抛物线2y x bx c =-++交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()3,0,点C 的坐标为()0,3,点C 与点D 关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P 为抛物线对称轴上一点,连接BD ,以PD PB 、为边作平行四边形PDNB ,是否存在这样的点P ,使得PDNB 是矩形?若存在,请求出tan BDN ∠的值;若不存在,请说明理由;(3)点Q 在y 轴右侧抛物线上运动,当ACQ 的面积与ABQ 的面积相等时,请直接写出点Q 的坐标.14.如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点()1,0A -,与y 轴交于点()0,3B .P 是该抛物线上一点,其横坐标为m ,作点P 关于原点O 的对称点Q .当线段PQ 不与坐标轴垂直时,以PQ 为对角线构造矩形PMQN ,该矩形的边均与某条坐标轴垂直.(1)求该抛物线对应的函数解析式;(2)当点P 是该抛物线的顶点时,求点Q 的坐标;(3)当点B 在矩形PMQN 的边上时,求m 的值;(4)当0m >,且矩形PMQN 与该抛物线有三个交点时,直接写出m 的取值范围.(1)试求抛物线的解析式;(2)直线()10y kx k =+>与y 轴交于点D ,与抛物线在第一象限交于点于点M ,记CPM CDMS m S =△△,试求m 的最大值及此时点P 的坐标;(3)在(2)的条件下,m 取最大值时,点Q 是x 轴上的一个动点,点参考答案:t。
中考数学压轴题之二次函数(中考题型整理,突破提升)附详细答案
一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N (4e+3,3e+3), 解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P ,M ,N 为顶点的三角形为等腰直角三角形,t 的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(3)32. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG∵∠MAG =60°,∠AGM =90°,∴AM =2AG =4233k +-=2323k k --,∴11AM AN +=323231k k k k -+-- =33232k k --=3(31)2(31)k k -- =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能. 【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t 2+5t+,当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5), ∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.4.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t 的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92,∴C(2,92),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,92﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,92﹣t),把P(2+t,92﹣t)代入y=﹣12x2+2x+52得﹣12(2+t)2+2(2+t)+52=92﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,92),D点坐标为(2,52),∵抛物线平移,使其顶点C(2,92)移到原点O的位置,∴抛物线向左平移2个单位,向下平移92个单位,而P点(4,92)向左平移2个单位,向下平移92个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,12•(m+52+2)•2=8,解得m=72,此时M点坐标为(0,72);当m<0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M点坐标为(0,﹣72);综上所述,M点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.6.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.7.如图,已知抛物线2y ax bx c=++的顶点为()4,3A,与y轴相交于点()0,5B-,对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【答案】(1)21452=-+-y x x;(2)()2,1-M,25y x=-;(3)点P、Q的坐标分别为()6,1或()2,1、()4,3-或()4,1.【解析】【分析】(1)函数表达式为:()243y a x ==+,将点B 坐标代入上式,即可求解; (2)()4,3A 、()0,5B -,则点()2,1-M ,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)函数表达式为:()243y a x ==+, 将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1-M , 设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =, 故直线AB 的表达式为:25y x =-; (3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到M ,同样点21,452P m m m ⎛⎫-+-⎪⎝⎭向左平移2个单位、向下平移4个单位得到()4,Q s , 即:24m -=,214542m m s -+--=, 解得:6m =,3s =-,故点P 、Q 的坐标分别为()6,1、()4,3-; ②当AM 是平行四边形的对角线时, 由中点定理得:424m +=+,2131452m m s -=-+-+, 解得:2m =,1s =,故点P 、Q 的坐标分别为()2,1、()4,1;故点P 、Q 的坐标分别为()6,1,()4,3-或()2,1、()4,3-,()2,1或()4,1. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.8.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.9.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【答案】(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m22,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==,这个二次函数的表达式是y=x 2-4x+3; (2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得30k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3, 过点P 作PE ∥y 轴,交直线BC 于点E (t ,-t+3), PE=-t+3-(t 2-4t+3)=-t 2+3t , ∴S △BCP =S △BPE +S CPE =12(-t 2+3t )×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S △BCP 最大=278. (3)M (m ,-m+3),N (m ,m 2-4m+3) MN=m 2-3m ,2|m-3|,当MN=BM 时,①m 22(m-3),解得2, ②m 22m-3),解得2 当BN=MN 时,∠NBM=∠BMN=45°, m 2-4m+3=0,解得m=1或m=3(舍) 当BM=BN 时,∠BMN=∠BNM=45°,-(m 2-4m+3)=-m+3,解得m=2或m=3(舍), 当△BMN 是等腰三角形时,m 的值为2,-2,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m 的方程,要分类讨论,以防遗漏.10.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.(1)证明四边形ABCD 是菱形,并求点D 的坐标; (2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由. 【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析 【解析】 【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标: 设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭,当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8), ∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形. ∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8).(2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10ax 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩.∴直线BC 的解析式为y=﹣2x+8.∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2. ∴M (5,,-2).又∵抛物线y=ax 2﹣10ax+c 经过点C 和M ,∴25a 50a c 2c 8-+=-⎧⎨=⎩,解得2a 5c 8⎧=⎪⎨⎪=⎩.∴抛物线的函数表达式为22y x 4x 85=-+. (3)存在.点P 的坐标为P 1(529,48),P 2(﹣5,38)。
中考数学二次函数综合压轴题型归类
中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。
解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个x解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。
2023年数学《二次函数》在中考高频压轴题中的分类特训
二次函数在中考高频压轴题中的分类训练基础知识:如图,已知抛物线y=- 14x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)证明:△ABC为直角三角形(5)在BC上求一个点D,使得OD将△ABC的面积平分(一)最值问题:(6) 在抛物线的对称轴上求一点P,使PA+PC的值最小值?若P1是∠ABC角平分线上的一点,P2是射线BC上的一点,求CP1+P1P2最小值(7)M为BC上方抛物线上的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(8)M为BC上方抛物线上的一点,求△BCM面积的最大值;变式练习:1若点E 是抛物线顶点,点D (4,m )在抛物线上,在X 轴和Y 轴上找两个点M,N 使四边形DEMN 的周长最小,求M 和N 点的坐标2.若点Q 是线段AB 上的动点,过点Q 作QE\\BC,交AC 于点E ,连接CQ ,当△CQE 面积最大时,求点Q 坐标3.若点Q 是抛物线上的动点,过点Q 作QE\\X 轴,交线段AC 于点E ,交线段BC 于点F,分别过E,F 两点向X 轴作垂线,垂足分别为M,N ,当矩形EMNF 面积最大时,求点Q 坐标4.若M 为BC 上方抛物线上的一点,N 为线段BC 上的一点,且MN 垂直于BC,垂足为N ,求MN 的最大值;5.若M 为BC 上方抛物线上的一点,连接OM 交BC 于点N ,求ONMN的最大值;6.若M为BC上方抛物线上的一点,N为线段BC上的一点,且MN平行于AC,交点为N,求MN的最大值;(二)面积问题:(9)在抛物线上找一个点P,使△ABC与△PBC的面积相等变式练习:1若点F是抛物线上的一个动点,是否存在点F使△BCF的面积为8,若存在,求出点F的坐标;若不存在,请说明理由(三)等腰三角形问题:(10)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.变式练习:1.若点N在X轴上运动,当△BCN是等腰三角形时,求N点的坐标。
二次函数多结论压轴小题精选30道(必考点分类集训)(原卷版)—2024-2025学年九年级数学上册
二次函数多结论压轴小题精选30道1.(2024春•岳麓区校级期末)已知抛物线y =ax 2+bx +c 的图象如图所示,则下列结论中,正确的有( )①abc >0;②b 2>4ac ;③a ﹣b +c <0;④2a ﹣b >0;⑤a +c <1.A .1个B .2个C .3个D .4个2.(2024•宝安区校级模拟)已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A .①②B .①②③C .①②④D .①②③④3.(2024•凤凰县模拟)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,在下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m (am +b )(m ≠1的实数).其中正确结论个数有( )A .4个B .3个C .2个D .1个4.(2024•汝阳县一模)图形结合法既可以由数解决形的问题,也可以由形解决数的问题.如图所示,已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①ab>0;②4a﹣2b+c<0;③2a﹣b<0;④|a+c|<|b|.其中正确的个数有( )A.1B.2C.3D.45.(2024•斗门区校级模拟)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的为( )A.①④B.②③④C.①②④D.①②③④6.(2024•岚山区二模)已知二次函数y=ax2+bx+c(a≠0)与x轴的一个交点为(4,0),其对称轴为直线x=1,其部分图象如图所示,有下列5个结论:①abc<0;②b2﹣4ac<0;③8a+c=0;④若关于x 的方程ax2+bx+c=﹣1有两个实数根x1x2,且满足x1<x2,则x1<﹣2,x2>4;⑤直线y=kx﹣4k(k≠0)经过点(0,c),则关于x的不等式ax2+(b﹣k)x+c+4k>0的解集是0<x<4.其中正确结论的个数为( )A.5B.4C.3D.27.(2024•旺苍县三模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.其中正确的结论有( )A.2个B.3个C.4个D.5个8.(2023秋•龙港区期中)函数y=ax2+bx+c与y=kx的图象如图所示,下列结论:①b2﹣4ac>0;②a+b+c=0;③x=﹣2时,函数y=﹣ax2+(k﹣b)x﹣c有最大值;④关于x的方程ax2+(b﹣k)x+c=0的根是x1=﹣1,x2=﹣3,其中正确的个数是( )A.1B.2C.3D.49.(2023•石城县模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax21+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有( )A.①④B.③④C.②⑤D.②③⑤10.(2024•苍溪县模拟)如图,已知二次函数y=ax2+bx+c(a,b,c是常数)的图象关于直线x=﹣1对称,则下列五个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c<0;④a(m2﹣1)+b(m+1)≤0(m为任意实数);⑤3a+c<0.其中结论正确的个数为( )A.2个B.3个C.4个D.5个11.(2024•高青县校级一模)小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0,你认为其中正确信息的个数有( )A.2个B.3个C.4个D.5个12.(2024•沂源县一模)已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x =1,下列结论:①abc>0;②a+c>0;③2a+3b>0;④a+b>am2+bm(m≠1);上述结论中正确结论的个数为( )A.1个B.2个C.3个D.4个13.(2024•桃江县一模)抛物线y =ax 2+bx +c 的顶点坐标为(2,﹣a )(如图所示),则下列说法:①abc <0;②(a +b )2≥c ;③关于x 的方程ax 2+bx =0有两个不相等的实数根;④﹣1≤a ≤0.则正确的结论有( )A .1个B .2个C .3个D .4个14.(2023秋•中山市校级期末)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.下列结论:①2a +b =0;②3a +c >0;③m 为任意实数,则a +b >am 2+bm ;④若A (x 1,0),B (x 2,0),则x 1+x 2=2,其中正确的有( )A .①②B .①③C .①④D .②④15.(2023秋•西城区校级月考)已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①a <0;②9a +3b +c >0;③c >0;④﹣3<―b 2a<0其中正确的有( )A .4个B .3个C .2个D .1个16.(2023•东港区校级三模)函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b +c =0;③2b +c +3=0;④当1<x <3时,x 2+(b ﹣1)x +c <0其中正确的有( )个.A .4B .3C .2D .117.(2023•双台子区校级一模)二次函数y =ax 2+bx +c 的图象如图所示,给出四个结论:①abc >0;②4a ﹣2b +c >0;③对于任意实数m ,有am 2+bm +c <a ﹣b +c ;④c a >―3,其中正确的有( )A .①②B .①④C .②③D .③④18.(2023•遂溪县模拟)如图是二次函数y =ax 2+bx +c 的图象,对称轴是直线l ,则以下说法:①a ﹣b +c =0;②4a +b =0;③ab c>0;④16a +5b +2c >0,其中正确的个数是( )A .1B .2C .3D .419.(2023秋•义乌市期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc >0;②b2>4ac;③a(m2﹣1)+b(m﹣1)<0(m≠1);④关于x的方程|ax2+bx+c|=1有四个根,且这四个根的和为4.其中正确的结论有( )A.①②③B.②③④C.①④D.②③20.(2023秋•铜梁区校级期中)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②2a+b<0;③若﹣1<m<n<1,则m+n<―b a ;④3|a|+|c|<2|b|.其中正确的结论有( )A.1个B.2个C.3个D.4个21.(2023•仁怀市模拟)如图,根据二次函数y=ax2+bx+c的图象得到如下结论:①abc>0 ②2a﹣b=0 ③a+b+c=0 ④3a+c<0 ⑤当x>﹣2时,y随x的增大而增大⑥一定存在实数x0,使得ax20+bx0>a﹣b 成立.上述结论,正确的是( )A.①②⑤B.②③④C.②③⑥D.③④⑤22.(2023•广东模拟)二次函数y =ax 2+bx +c 的图象如图所示,有如下结论:①abc <0;②2a ﹣b +c ≤0;③3b ﹣2c <0;④对任意实数m ,都有2am 2+2bm ﹣b ≥0.其中正确的有( )A .①②B .②③C .②④D .③④23.(2023•凤凰县模拟)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①abc <0;②3a +b >―13c ;③2c <3b ;④(k +1)(ak +a +b )≤a +b ,其中正确的是( )A .①③④B .C .①④D .②③④24.(2024•黄石模拟)已知抛物线y =ax 2+bx +c (a <0)与x 轴交于点(x 1,0),(2,0),其中﹣1<x 1<0.下列四个结论:①abc <0;②a ﹣b +c >0;③2b ﹣c <0;④不等式ax 2+bx +c >―c 2x +c 的解集为0<x <2.其中正确结论的序号为( )A .①②B .①③C .②③D .①④25.(2024•殷都区模拟)如图,在平面直角坐标系中,直线y 1=mx +n 与抛物线y 2=ax 2+bx ―3相交于点A ,B .结合图象,判断下列结论:①当﹣3<x <2时,y 1>y 2;②x =﹣3是方程ax 2+bx ﹣3=0的一个解;③若(﹣4,t 1),(1,t 2)是抛物线上的两点,则t 1>t 2;④对于抛物线y 2=ax 2+bx ―3,当﹣3<x <2时,y 2的取值范围是0<y 2<5.其中正确结论的个数是( )A .4个B .3个C .2个D .1个26.(2024•东港区校级一模)如图,抛物线 y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)和(0,3)两点之间(包含端点).下列结论中正确的是( )①不等式ax 2+c <﹣bx 的解集为x <﹣1或x >3;②9a 2﹣b 2<0;③一元二次方程cx 2+bx +a =0的两个根分别为x 1=13,x 2=﹣1;④6≤3n ﹣2≤10.A .①②③B .①②④C .②③④D .①③④二.填空题(共4小题)27.(2024•射洪市一模)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示(1<x =h <2,0<x A <1).下列结论:①abc <0;②2a +b >0;③若OC =2OA ,则2b ﹣ac =4;④3a ﹣c <0.其中正确的有 .(只填写序号)28.(2023秋•太康县期末)已知二次函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图象如图所示.下列4个结论:①b >0;②b <a +c ;③c <4b ;④a +b <k 2a +kb (k 为常数,且k ≠1).其中正确的结论序号是 .29.(2023秋•青山区期末)已知抛物线y =ax 2+bx +c 经过点(2,c ),且满足a ﹣b +c =0.下列四个结论:①抛物线的对称轴是直线x =1;②b 与c 同号;③若a +2b +4c >0,则不等式ax 2+bx +c <﹣2ax ﹣a ﹣b 的解集﹣2<x <2;④抛物线上的两个点M (m ﹣1,y 1),N (m +2,y 2),当c <0,且y 1>y 2时,m <12.其中一定正确的是 .(填写序号)30.(2023秋•城厢区校级月考)如图,是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标为A (1,3),与x 轴的一个交点为B (4,0),点A 和点B 均在直线y 2=mx +n (m ≠0)上.①2a +b =0;②abc >0;③抛物线与x 轴的另一个交点是(﹣4,0);④方程ax 2+bx +c =﹣3有两个不相等的实数根;⑤a ﹣b +c <4m +n ;⑥不等式mx +n >ax 2+bx +c 的解集为1<x <4.其中正确的是 .。
二次函数(压轴精选40题)(解析版)-2023-2024学年九年级数学上《重难点题型高分突破》人教版
第2单元二次函数压轴精选40题一.选择题(共3小题)1.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或B.﹣3<n<﹣1或C.n≤﹣1或D.﹣3<n<﹣1或n≥1【答案】A【解答】解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.2.如图,函数y=ax2+bx+c的图象过点(﹣1,0)和(m,0),请思考下列判断:①abc<0;②4a+c<2b;③=1﹣;④am2+(2a+b)m+a+b+c<0;⑤|am+a|=正确的是()A.①③⑤B.①②③④⑤C.①③④D.①②③⑤【答案】B【解答】解:∵抛物线开口向下,∴a<0,∵抛物线交y轴于正半轴,∴c>0,∵﹣>0,∴b>0,∴abc<0,故①正确,∵x=﹣2时,y<0,∴4a﹣2b+c<0,即4a+c<2b,故②正确,∵y=ax2+bx+c的图象过点(﹣1,0)和(m,0),∴﹣1×m=,am2+bm+c=0,∴++=0,∴=1﹣,故③正确,∵﹣1+m=﹣,∴﹣a+am=﹣b,∴am=a﹣b,∵am2+(2a+b)m+a+b+c=am2+bm+c+2am+a+b=2a﹣2b+a+b=3a﹣b<0,故④正确,∵m+1=|﹣|,∴m+1=||,∴|am+a|=,故⑤正确,故选:B.3.定义符号min{a,b}含义为:当a>b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,2)=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.0【答案】A【解答】解:在同一坐标系xOy中,画出二次函数y=﹣x2+1与正比例函数y =﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为小于;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所述,min{﹣x2+1,﹣x}的最大值是.故选:A.二.填空题(共2小题)4.设O为坐标原点,点A、B为抛物线y=2x2上的两个动点,且OA⊥OB.连接点A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值为.【答案】.【解答】解:如图,分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式为y=2x2,则AE=2a2,BF=2b2,作AH⊥BF于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),∵DG∥BH,∴△ADG∽△ABH,∴,即.化简得:m=2ab.∵∠AOB=90°,∴∠AOE+∠BOF=90°,又∠AOE+∠EAO=90°,∴∠BOF=∠EAO,又∠AEO=∠BFO=90°,∴△AEO∽△OFB.∴,即,化简得4ab=1.则,说明直线AB过定点D,D点坐标为.∵,∴点C是在以DO为直径的圆上运动,∴当点C到y轴距离为时,点C到y轴的距离最大.故答案为:.5.二次函数y=x2的图象如图.点A0位于坐标原点,点A1,A2,A3,…,A n在y轴的正半轴上,点B1,B2,B3,…,B n在二次函数位于第一象限的图象上,点C1,C2,C3,…,∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形A n﹣1B n A n∁n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3=…=∠A n﹣1B n A n=60°,则△A0B1A1的边长为B n A n∁n的周长为.,菱形A n﹣1【答案】,.【解答】解:过点B1作B1D1垂直x轴于点D1,过点B2作B2D2垂直x轴于点D2,过点B3作B3D3垂直x轴于点D3,过点A1E1⊥B2D2于点E1,过点A2E2⊥B3D3于点E2,∵四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形.A n﹣1B n A n∁n 都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3=⋅⋅⋅=∠A n﹣1B n A n=60°,∴△A0B1A1是等边三角形,设点B1坐标为(x,y),则:y=x2,∵∠A0B1A1=60°,∴∠B1A0D1=30°,在Rt△B1D1A0中,,∴,解得:(舍去)或,∴,∴,∴△A0B1A1的边长为,∴菱形A0B1A1C1的周长=;设点B2坐标为(x,y),在Rt△B2E1A1中,,且y=x2,∴,解得,或(舍去),∴,∵,∴,∴,∴菱形A1B2A2C2的周长=;同法可得:菱形A2B3A3C3的周长=;B n A n∁n的周长为:;∴菱形A n﹣1故答案为:,.三.解答题(共35小题)6.在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图甲,在y轴上找一点D,使△ACD为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)(0,0)或(0,﹣3)或(0,3﹣3)或(0,3+3);(3)存在,P(﹣1,3﹣),Q(﹣4,﹣)或P(﹣1,3+),Q(﹣4,)或P(﹣1,1),Q(﹣2,2)或P(﹣1,),Q(2,3+)或P(﹣1,﹣),Q(2,3﹣).【解答】解:(1)∵A(﹣3,0),B(1,0)两点在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴C(0,3),等腰△ACD,如图甲,当以点D为顶点时,DA=DC,点D与原点O重合,∴D(0,0);当以点A为顶点时,AC=AD,AO是等腰△ACD中线,∴OC=OD,∴D(0,﹣3);当以点C为顶点时,AC=CD===3,∴点D的纵坐标为3﹣3或3+3,∴D(0,3﹣3)或(0,3+3);综上所述,点D的坐标为(0,0)或(0,﹣3)或(0,3﹣3)或(0,3+3);(3)存在,理由如下:抛物线y=﹣x2﹣2x+3的对称轴为:x=﹣1,设P(﹣1,t),Q(m,n),∵A(﹣3,0),C(0,3),则AC2=(﹣3)2+32=18,AP2=(﹣1+3)2+t2=t2+4,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图1,∴t2﹣6t+10=18,解得:t=3±,∴P1(﹣1,3﹣),P2(﹣1,3+),∵四边形ACPQ是菱形,∴AP与CQ互相垂直平分,即AP与CQ的中点重合,当P1(﹣1,3﹣)时,∴=,=,解得:m=﹣4,n=﹣,∴Q1(﹣4,﹣),当P2(﹣1,3+)时,∴=,=,解得:m=﹣4,n=,∴Q2(﹣4,);②以AC为对角线时,则PC=AP,如图2,∴t2﹣6t+10=t2+4,解得:t=1,∴P3(﹣1,1),∵四边形APCQ是菱形,∴AC与PQ互相垂直平分,即AC与CQ中点重合,∴=,=,解得:m=﹣2,n=2,∴Q3(﹣2,2);③当以CP为对角线时,则AP=AC,如图3,∴t2+4=18,解得:t=±,∴P4(﹣1,),P5(﹣1,﹣),∵四边形ACQP是菱形,∴AQ与CP互相垂直平分,即AQ与CP的中点重合,∴=,=,解得:m=2,n=3±,∴Q4(2,3+),Q5(2,3﹣);综上所述,符合条件的点P、Q的坐标为:P(﹣1,3﹣),Q(﹣4,﹣)或P(﹣1,3+),Q(﹣4,)或P(﹣1,1),Q(﹣2,2)或P(﹣1,),Q(2,3+)或P(﹣1,﹣),Q(2,3﹣).7.已知函数y=﹣x2+(m﹣3)x+2m(m为常数).(1)试判断该函数的图象与x轴的公共点的个数;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上;(3)若直线y=x与二次函数图象交于A、B两点,当﹣4≤m≤2时,求线段AB的取值范围.【答案】(1)2个;(2)证明见解答过程;(3)4≤|AB|≤8.【解答】(1)解:∵Δ=(m﹣3)2+8m=(m+1)2+8>0,∴该函数图象与x轴的公共点的个数2个;(2)证明:∵y=﹣x2+(m﹣3)x+2m=﹣(x﹣)2+,把x=代入y=x2+4x+6=(x+2)2+2得:y=(+2)2+2=+2=,∴不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上.(3)解:过A作AC∥x轴,过B作BC∥y轴,如图,则△ACB是等腰直角三角形,设直线y=x与y=﹣x2+(m﹣3)x+2m的交点为A(x1,y1)B(x2,y2),联立方程得:,化简得:x2﹣(m﹣4)x﹣2m=0,∴x1+x2=m﹣4,x1x2=﹣2m,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣4)2﹣4(﹣2m)=m2+16,∴|AB|=,∵﹣4≤m≤2,∴当m=0时,|AB|有最小值为4,当m=﹣4时,|AB|有最大值为8,∴4≤|AB|≤8.8.如图,已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,点P为直线BC上方抛物线上一点.(1)求抛物线的解析式;(2)当点P的坐标为(1,4)时,求△PBC的面积;(3)当∠BCP=∠CAB时,求点P的坐标;(4)若点P的坐标为(2,3),连接PA,交直线BC于点E,交y轴于点F,点H在抛物线上,过H作HK∥y轴,交直线AP于点K.点Q是平面内一点,当以点E,H,K,Q为顶点的四边形是正方形时,请直接写出点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)3;(3);(4)点Q的坐标为(5,2)或或.【解答】解:(1)把A(﹣1,0)、B(3,0)、C(0,3)三点代入y=ax2+bx+c,得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)由(1)可知:y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∵点P的坐标为(1,4),∴点P即为抛物线的顶点,过点P作PM∥y轴,交BC于点M,∵B(3,0)、C(0,3),设直线BC的解析式为:y=k1x+b1,∴,解得:,∴直线BC的解析式为:y=﹣x+3,∵PM∥y轴,P(1,4),M(1,2),∴PM=2,=S△PCM+S△BPM=,=∴S△PBC=3;(3)过B点作BD⊥x轴交射线CP于D,如图所示:∵A(﹣1,0)、B(3,0)、C(0,3),∴AB=4,OB=OC=3,∴,∠ABC=∠DBC=45°,∵∠BCP=∠CAB,∴△ABC~△CBD,∴,∴,∴,∴,设直线CD的解析式为:y=k2x+3,将代入得,,∴,∴直线CD的解析式为:,∴,解得:或,∴(4)∵P(2,3),A(﹣1,0)设直线CD的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为:y=x+1,∴F(0,1),∴OF=OA=1,∴∠EAB=45°,∵∠EBA=45°,∴∠AEB=90°,∴AP⊥BC,由(1)可知:直线BC的解析式为:y=﹣x+3,∴,解得:,∴E(1,2),∵以点E,H,K,Q为顶点的四边形是正方形,∴分两种情况讨论,:①当EH⊥EK时,H点在BC上,K点在AP上,如图所示:∵点H在抛物线上,∴点H为直线BC与抛物线的交点,∴,∴或,H(0,3)或H(3,0),当H(0,3)时,,∴,∴K(0,1),∴HK的中点为(0,2),则EQ的中点也为(0,2),∴Q(﹣1,2),但此时HK与y轴重合,不符合与y轴平行,∴Q(﹣1,2)不符合题意;当H(3,0)时,,∴,∴K(3,4),∴HK的中点为(3,2),则EQ的中点也为(3,2),∴Q(5,2),②当EH⊥HK时,此时EH⊥y轴,如图所示:∵y=﹣x2+2x+3,令y=2,则﹣x2+2x+3=2,解得:,∴或,当时,,∴,∴;当时,,∴,∴;综上所述:当以点E,H,K,Q为顶点的四边形是正方形,点Q的坐标为(5,2)或或.9.如图,在平面直角坐标系中,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求线段AC的长度;(2)点P为直线AC下方抛物线上的一动点,且点P在抛物线对称轴左侧,过点P作PD∥y轴,交AC于点D,作PE∥x轴,交抛物线于点E.求3PD+PE 的最大值及此时点P的坐标;(3)在(2)中3PD+PE取得最大值的条件下,将该抛物线沿着射线CA方向平移个单位长度,得到一条新抛物线y′,M为射线CA上的动点,过点M作MF∥x轴交新抛物线y′的对称轴于点F,点N为直角坐标系内一点,请直接写出所有使得以点P,F,M,N为顶点的四边形是菱形的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.【答案】(1)线段AC的长度为;(2)3PD+PE取最大值6,P的坐标为(﹣2,﹣2);(3)N的坐标为(,﹣2)或(﹣6,)或(,﹣2)或(,﹣2).【解答】解:(1)在y=x2+x﹣2中,令x=0得y=﹣2;∴C(0,﹣2);令y=0得:0=x2+x﹣2,解得x=1或x=﹣3,∴A(﹣3,0),B(1,0),∴AC==,∴线段AC的长度为;(2)∵y=x2+x﹣2=(x+1)2﹣,∴抛物线y=x2+x﹣2的对称轴是直线x=﹣1,设P(m,m2+m﹣2),由A(﹣3,0),C(0,﹣2)得直线AC的解析式为y=﹣x﹣2,∴D(m,﹣m﹣2),∴PD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∵PE关于直线x=﹣1对称,∴PE=2(﹣1﹣m)=﹣2﹣2m,∴3PD+PE=3(﹣m2﹣2m)﹣2﹣2m=﹣2m2﹣8m﹣2=﹣2(m+2)2+6,∵﹣2<0,∴当m=﹣2时,3PD+PE取最大值6,此时P的坐标为(﹣2,﹣2);(3)∵A(﹣3,0),C(0,﹣2),∴将抛物线y=(x+1)2﹣沿着射线CA方向平移个单位长度相当于先向左平移3个单位,再向上平移2个单位,∴新抛物线解析式为y'=(x+1+3)2﹣+2=(x+4)2﹣,∴新抛物线的对称轴为直线x=﹣4;设M(t,﹣t﹣2),N(p,q),则F(﹣4,﹣t﹣2),而P(﹣2,﹣2),①若MN,FP为对角线,则MN,FP的中点重合,且PM=PN,∴,解得:或(此时M不在射线CA上,舍去);∴N(,﹣2);②若MF,NP为对角线,则MF,NP的中点重合,且PM=PF,∴,解得:(此时N,P重合,舍去)或,∴N(﹣6,);③若MP,NF为对角线,则MP,NF的中点重合,且MF=PF,∴,解得:或,∴N(,﹣2)或(,﹣2);综上所述,N的坐标为(,﹣2)或(﹣6,)或(,﹣2)或(,﹣2).10.如图所示,抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C.点M为抛物线的顶点.(1)求抛物线的表达式及顶点M的坐标;(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标;(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,请直接写出点G的坐标;若不存在,试说明理由.【答案】(1)y=x2﹣2x﹣3,顶点坐标为:(1,﹣4);(2)N的坐标为();(3)G点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5).【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3=(x﹣1)2﹣4;顶点坐标为:(1,﹣4).(2)过N点作x轴的垂线交直线BC于Q点,如图:在y=x2﹣2x﹣3中,令x=0得y=﹣3,∴C(0,﹣3),设直线BC解析式为y=kx+m,∴,解得,∴直线BC的解析式为:y=x﹣3,设N点坐标为(n,n2﹣2n﹣3),则Q点坐标为(n,n﹣3),其中0<n<3,∴NQ=n﹣3﹣(n2﹣2n﹣3)=﹣n2+3n,=NQ•|x B﹣x C|=(﹣n2+3n)×3=﹣n2+n=﹣(n﹣)2+,∴S△BCN∵﹣<0,有最大值为,∴当n=时,S△BCN此时n2﹣2n﹣3=()2﹣2×﹣3=﹣,∴N的坐标为();(3)设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),且B(3,0),C(0,﹣3).分情况讨论:①当DG为对角线时,则另一对角线是BC,由对角线互相平分及中点坐标公式可知,解得,经检验此时四边形DCGB为平行四边形,此时点G的坐标为(2,﹣3).②当DB为对角线时,则另一对角线是GC,由对角线互相平分及中点坐标公式可知,,解得,经检验此时四边形DCBG为平行四边形,此时点G的坐标为(4,5).③当DC为对角线时,则另一对角线是GB,由对角线互相平分及中点坐标公式可知,,解得,经检验此时四边形DGCB为平行四边形,此时点G的坐标为(﹣2,5).综上所述,G点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5).11.已知抛物线y=x2+bx﹣3与x轴交于A、B两点,与y轴交于点C,其中点A 在x轴的负半轴上,点B在x轴的正半轴上,且tan∠ACO=.(1)求抛物线的解析式.(2)如图1,在第一象限内的抛物线上是否存在点D,满足条件∠DCB=∠ACO?若存在,请求出点D的坐标;若不存在,请说明理由.(3)如图2,设P是y轴上的一个动点,连接AP并延长交抛物线于另一点M,连接BP并延长交抛物线于另一点N,若M、N的横坐标分别为m、n.试探究m、n之间的数量关系.【答案】(1)y=x2﹣2x﹣3;(2)存在;D(4,5);(3)m+3n=0.【解答】解:(1)由题意可得点C(0,﹣3),∴OC=3,∴OA=OC•tan∠ACO=1,∴点A的坐标为:(﹣1,0),′代入y=x2+bx﹣3,得0=1﹣b﹣3,∴b=﹣2,∴抛物线解析式为:y=x2﹣2x﹣3;(2)存在.设CD交x轴于点E,由(1)可得:B(3,0),C(0,﹣3),∴OB=OC=3,∠OBC=∠OCB=45°,∵∠DCB=∠ACO,∴∠AEC=∠DCB+45°=∠ACO+45°,又∵∠ACB=∠ACO+45°,∴∠AEC=∠ACB,而∠CAB=∠BAC,∴△ACE∽△ABC,∴.其中AB=4,AC=,∴AE=,∴OE=AE﹣OA=,即点E(,0).设CD:y=kx+a,把C、E的坐标代入,得:,解得:,∴CD:y=2x﹣3,联立方程组得:,解得:或(舍去),∴D(4,5);(3)设点P的坐标为(0,t),由A(﹣1,0),P(0,t)可得:AP:y=tx+t.把y=tx+t代入y=x2﹣2x﹣3,消去y,并化简得:x2﹣(t+2)x﹣t﹣3=0,∵x A=﹣1,x M=m是上面方程的两个根,∴x A•x M=﹣t﹣3,∴m=t+3①;同理可得BP:y=﹣x+t.把y=x+t代入y=x2﹣2x﹣3,消去y,并化简得:x﹣t﹣3=0,∵x B=3,x N=n是上面方程的两个根,∴x B•x N=﹣t﹣3,∴3n=﹣t﹣3②,由①+②得:m+3n=0.12.如图,在平面直角坐标系中,二次函数y=﹣+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点B的坐标是(﹣8,0),点P (m,n)为该二次函数在第二象限内图象上的动点,点D为(0,4),连接BD.(1)求该二次函数的表达式;(2)依题补图1:连接OP,过点P作PQ⊥x轴于点Q;当△OPQ和△OBD 相似时,求m的值;(3)如图2,过点P作直线PQ∥BD,和x轴交点为Q,在点P沿着抛物线从点A到点B运动过程中,当PQ与抛物线只有一个交点时,求点Q的坐标.【答案】(1);(2)m的值为﹣4或;(3).【解答】解:(1)把A(0,8),B(﹣8,0)代入得,,解得,∴该二次函数的表达为;(2)如图:设,由∠OQP=∠BOD=90°,分两种情况:当△POQ∽△BDO时,,∴,∴PQ=2OQ,即,解得m=﹣4,或m=8(舍去);当△POQ∽△DBO时,,∴OQ=2PQ,即,解或(舍去),综上所述,m的值为﹣4或;(3)如图,设直线BD解析式为y=kx+n,∴,解得,∴直线BD解析式为,∵PQ∥BD,∴设直线PQ的解析式为,当直线PQ与的图象只有一个交点时,联立,整理得x2+6x﹣32+4n2=0,∴Δ=62﹣4×(﹣32+4n2)=0,解得,∴当时,直线PQ的解析式为,此时直线PQ与的图象只有一个交点,令y=0,则,解得,此时.13.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A 在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)【答案】见试题解答内容【解答】解:(1)如图,设第一次落地时,抛物线的表达式为y=a(x﹣6)2+4.由已知:当x=0时y=1.即1=36a+4,∴a=﹣.∴表达式为y=﹣(x﹣6)2+4;(2)由题意得:0=﹣(x﹣6)2+4解得:x1=4+6≈13,x2=﹣4+6<0(舍去),∴点C坐标为(13,0).设第二次落地的抛物线为y=﹣(x﹣k)2+2.将C点坐标代入得:0=﹣(13﹣k)2+2.解得:k1=13﹣2<13(舍去),k2=13+2≈18.∴y=﹣(x﹣18)2+2.0=﹣(x﹣18)2+2.x 1=18﹣2(舍去),x2=18+2≈23,∴BD=23﹣6=17(米).答:运动员乙要抢到第二个落点D,他应再向前跑17米.14.如图1,在平面直角坐标系中,二次函数y=ax2+bx﹣3(a≠0)的图象与x 轴于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)当动点P运动到什么位置时,使四边形ACPB的面积最大,求出此时四边形ACPB的面积最大值和P的坐标;(3)如图2,点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、A、C为顶点的四边形是菱形?若存在,请直接写出所有M点的坐标;若不存在,请说明理由.【答案】(1)y2=x2﹣2x﹣3;(2)当时,四边形ABCP的最大值是,此时点P的坐标为;(3)存在,、;M 3(1,0);M5(1,﹣1).【解答】解:(1)∵二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,∴,解得:,∴这个二次函数的表达式为:y=x2﹣2x﹣3;(2)设点P的坐标为(m,m2﹣2m﹣3),S四边形ACPB=S△AOC+S△COP+S△BOP,===,∵,∴当时,四边形ABCP的最大值是,此时点P的坐标为,(3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,当x=0时,y=﹣3,∴C(0,﹣3),设点M的坐标为(1,t),则:AM2=(﹣1﹣1)2+(0﹣t)2,AC2=(﹣1﹣0)2+[0﹣(﹣3)]2,CM2=(0﹣1)2+(﹣3﹣t)2,设AC的中点为Q,则点Q的坐标为,即,∴,,当AM=AC时,则AM2=AC2,∴(﹣1﹣1)2+(0﹣t)2=(﹣1﹣0)2+[0﹣(﹣3)]2,解得,,∴、,;当CM=CA时,则CM2=CA2,∴(0﹣1)2+(﹣3﹣t)2=(﹣1﹣0)2+[0﹣(﹣3)]2,解得,t1=0,t2=﹣6,∴M3(1,0)、M4(1,﹣6)(舍去,此时M、A、C三点共线,无法构成菱形);当AC为对角线时则有:AQ2+QM2=AM2,∴=(﹣1﹣1)2+(0﹣t)2,解得,t=﹣1,∴M5(1,﹣1),∴存在这样的点M、N能够使得以点M、N、A、C为顶点的四边形是菱形,此时点M的坐标为:、、M 3(1,0)、M5(1,﹣1).15.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当时,求E点坐标;(3)在(2)的条件下,若点E位于对称轴左侧,点M是抛物线对称轴上一点,点N是抛物线上一点,当以M,N,E,B为顶点的四边形是菱形时,直接写出点M的坐标.【答案】(1)y=﹣2x2﹣4x+6;(2)E点坐标为(﹣2,6)或(﹣1,8);(3)M的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,)或(﹣1,﹣2+6)或(﹣1,2+6).【解答】解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=﹣3,∴C(0,6),A(﹣3,0),∵抛物线y=﹣2x2+bx+c的图象经过A、C两点,∴,解得,∴抛物线的解析式为y=﹣2x2﹣4x+6;(2)方法一:令﹣2x2﹣4x+6=0,解得x1=﹣3,x2=1,∴B(1,0),设E(t,﹣2t2﹣4t+6),如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,∵EF=BF,∴===,∵BH=1﹣t,∴BG=BH=﹣t,∴点F的横坐标为+t,∵点F在直线y=2x+6上,∴y=2(+t)+6=+t,∴F(+t,+t),∴﹣2t2﹣4t+6=(+t),∴t2+3t+2=0,解得t1=﹣2,t2=﹣1,当t=﹣2时,﹣2t2﹣4t+6=6,当t=﹣1时,﹣2t2﹣4t+6=8,∴E1(﹣2,6),E2(﹣1,8),综上所述:E点坐标为(﹣2,6)或(﹣1,8);方法二:过点E作EH⊥x轴交AC于点H,过点B作BM⊥x轴交AC于点M,∴EH∥BM,设E(m,﹣2m2﹣4m+6),∵直线AC解析式为y=2x+6,∴H(m,2m+6),M(1,8),∴EH=﹣2m2﹣4m+6﹣2m﹣6=﹣2m2﹣6m,MB=8,∵EH∥BM,∴△EHF∽△BMF,∴==,∴=,∴m1=﹣2,m2=﹣1,∴E1(﹣2,6),E2(﹣1,8),综上所述:E点坐标为(﹣2,6)或(﹣1,8);(3)∵抛物线的解析式为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,∴抛物线顶点坐标为(﹣1,8),对称轴方程为x=﹣1,在(2)的条件下,∵点E位于对称轴左侧,∴E(﹣2,6),∵点M是抛物线对称轴上一点,∴设M(﹣1,m),∵B(1,0),E(﹣2,6),∴BM2=(1+1)2+(0﹣m)2=m2+4,BE2=(1+2)2+(0﹣6)2=45,ME2=(﹣1+2)2+(m﹣6)2=m2﹣12m+37,①当EB为菱形的边时,BM=BE,即BM2=BE2,∴m2+4=45,∴m=±,∴M(﹣1,)或(﹣1,﹣);②当EB为菱形的对角线时,BM=ME,即BM2=ME2,∴m2+4=m2﹣12m+37,∴m=,∴M(﹣1,),③当BE=ME时,即BE2=ME2,∴45=m2﹣12m+37,∴m=﹣3+6或m=3+6,∴M(﹣1,﹣2+6)或(﹣1,2+6);综上所述,M的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,)或(﹣1,﹣2+6)或(﹣1,2+6).16.如图1,直线y=﹣2x+2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B.(1)请直接写出该抛物线的函数解析式;(2)点D是第二象限抛物线上一点,设D点横坐标为m.①如图2,连接BD,CD,BC,求△BDC面积的最大值;②如图3,连接OD,将线段OD绕O点顺时针旋转90°,得到线段OE,过点E作EF∥x轴交直线AC于F.求线段EF的最大值及此时点D的坐标.【答案】(1)y=﹣x+2;(2)①4;②(﹣2,3).【解答】解:(1)由题意可得,当x=0时,y=﹣2×0+2=2,当y=0时,﹣2x+2=0,解得x=1,∴A(1,0),B(0,2),代入y=﹣+bx+c得,y=﹣x+2;(2)①连接OD,,令y=0,则﹣x+2=0,解得x1=﹣4,x2=1,∴B(﹣4,0)D在第二象限,∴﹣4<m<0,=S△BOD+S△COD﹣S△BOC∴S△BCD=×4×2=﹣m2﹣4m=﹣(m+2)2+4,当m=﹣2时,△BCD的面积最大为4,②过D作DM⊥x轴于M,EF交y轴于N,在△ODM和△OEN中,,∴△ODM≌△OEN(AAS),∴DM=EN=﹣m+2OM=ON=﹣m,∴,令y=﹣m,则﹣m=﹣2x+2x=m+1EF=﹣m﹣1=﹣﹣2m+1=﹣(m+2)2+3,∴当m=﹣2时EF最大为3,D点的坐标(﹣2,3).17.如图1,抛物线y=ax2+x+c与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上的—个动点,使△PBC的面积等于△ABC面积的,求点P的坐标;(3)过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象(如图2),请你结合新图象解答:当直线y=﹣x+d与新图象只有一个公共点Q(m,n),且n≥﹣8时,求d 的取值范围.【答案】(1)抛物线的解析式为y=﹣x2+x+4;(2)点P的坐标为(1,)或(3,);(3)d的取值范围是﹣5≤d<4或d>.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+x+c得:,解得:,∴抛物线的解析式为y=﹣x2+x+4;(2)过P作PK∥y轴交BC于K,如图:在y=﹣x2+x+4中,令x=0得y=4,∴C(0,4),∵A(﹣2,0),B(4,0),∴AB=6,=×6×4=12,∴S△ABC由B(4,0),C(0,4)得直线BC函数表达式为y=﹣x+4,设P(m,﹣m2+m+4),则K(m,﹣m+4),∴PK=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∵△PBC的面积等于△ABC面积的,∴×(﹣m2+2m)×4=12×,解得m=1或m=3,∴点P的坐标为(1,)或(3,);(3)①当公共点Q(m,n)在C(0,4)下方时,在y=﹣x2+x+4中,令y=﹣8得:﹣8=﹣x2+x+4,解得x=6或x=﹣4,∵将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,∴新图象过点(6,﹣8),当直线y=﹣x+d与新图象公共点为(6,﹣8)时,﹣8=﹣×6+d,解得d=﹣5,如图:∵C(0,4),当﹣5≤d<4时,观察图象可知直线y=﹣x+d与翻折后的抛物线无交点,∴当﹣5≤d<4时,直线y=﹣x+d与新图象只有一个公共点;②当公共点Q(m,n)在C(0,4)上方时,如图:若有两个相等的实数解,即﹣x2+x+4﹣d=0的Δ=0,则()2﹣4×(﹣)(4﹣d)=0,解得d=;由图可知,当d>时,直线y=﹣x+d与新图象只有一个公共点;综上所述,d的取值范围是﹣5≤d<4或d>.18.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x 轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=1;n=3;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)1,3;(3)E的坐标为(﹣1,2);(4)点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).【解答】解:(1)把点B(﹣3,0),C(0,3)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式是y=﹣x2﹣2x+3;(2)把B(﹣3,0),C(0,3)代入y=mx+n中得:,解得:;故答案为:1,3;(3)如图1,由(2)知:直线BC的解析式为y=x+3,抛物线的对称轴为直线x=﹣=﹣1,直线BC与直线x=﹣1相交于点E,则EB=EA,此时AE+CE最小,此时点E的坐标为(﹣1,2);(4)∵B(﹣3,0),C(0,3),∴OB=OC=3,∴BC=3,分三种情况:①BC=BP,如图2,此时点P的坐标为(﹣3﹣3,0)或(3﹣3,0);②当P与O重合时,△BPC也是等腰三角形,此时P(0,0);③BC=CP,如图3,此时点P的坐标为(3,0);综上所述,点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).19.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是(1,0).(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.【答案】(1)直线x=﹣7,(﹣7,8);(2)(1,0);(3)y=x2﹣4x+3;(4)a的取值范围是:a=或0<a<或﹣5<a<0.【解答】解:(1)a=﹣时,y=﹣x2﹣x+∴对称轴为直线x=﹣=﹣7,把x=﹣7代入y=﹣x2﹣x+得,y=8,∴顶点坐标为(﹣7,8);(2)∵y=ax2﹣2(a+1)x+a+2(a≠0).∴对称轴为直线x=﹣=1+,∵y=ax2﹣2(a+1)x+a+2=a(x﹣1)2﹣2(x﹣1)=(x﹣1)[a(x﹣1)﹣2],∴二次函数经过的定点坐标为(1,0);故答案为:(1,0);(3)由(2)知:二次函数图象的对称轴为直线x=1+,分两种情况:①当a<0时,1+<1,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,∴当x=1时,y=0,而当1≤x≤5时,函数值有最大值为8,所以此种情况不成立;②当a>0时,1+>1,i)当1<1+≤3时,即a≥,当x=5时,二次函数的最大值为y=25a﹣10(a+1)+a+2=8,∴a=1,此时二次函数的解析式为y=x2﹣4x+3;ii)当1+>3时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,即x=1有最大值,所以此种情况不成立;综上所述:此时二次函数的解析式为:y=x2﹣4x+3;(4)分三种情况:①当抛物线的顶点在线段AB上时,抛物线与线段AB只有一个公共点,即当y=﹣3时,ax2﹣2(a+1)x+a+2=﹣3,ax2﹣2(a+1)x+a+5=0,Δ=4(a+1)2﹣4a(a+5)=0,∴a=,当a=时,x2﹣x+=0,解得:x1=x2=4(符合题意,如图1),②当a>0时,如图2,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴0<a<;③当a<0时,如图3,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴﹣5<a<0;综上所述,a的取值范围是:a=或0<a<或﹣5<a<0.20.如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,其中A(﹣3,0),∠ACB=90°.(1)求该抛物线的函数解析式;(2)点P是直线AC上方抛物线上的一动点,过P作PM⊥AC于M点,在射线MA上取一点N,使得2MN=AC,连接PN,求△PMN面积的最大值及此时点P的坐标;(3)如图2,在(2)中△PMN面积取得最大值的条件下,将抛物线向左平移,当平移后的抛物线过点P时停止平移,平移后点C的对应点为C',D为原抛物线上一点,E为直线AC上一点,若以O、C′、D、E为顶点的四边形为平行四边形,求符合条件的D点横坐标.【答案】(1)抛物线的解析式为y=﹣x2﹣x+;最大值为×=,点P的坐标为(﹣,);(2)S△PMN(3)满足条件的点D坐标为(,)或(,)或(1,0)或(﹣4,﹣).【解答】解:(1)当x=0时,y=,则C(0,),OC=,∵A(﹣3,0),∴OA=3,则tan∠OAC==,∴∠OAC=30°,又∠ACB=90°,∴∠ABC=90°﹣30°=60°,∴OB==1,则B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1),将C(0,)代入,得﹣3a=,解得a=﹣,∴抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)如图1,过P作PH∥y轴交AC于H,则∠PHM=∠ACO=90°﹣∠OAC =60°,∵PM⊥AC,∴PM=PH•sin∠PHM=PH,∵AC=2OC=2,2MN=AC,∴MN=,=•MN•PM=PM=PH,当PH最大时,S△PMN最大;∴S△PMN设直线AC解析式为y=kx+b′,将A(﹣3,0)、C(0,)代入,得,解得,∴直线AC的解析式为y=x+,由题意,设P(p,﹣p2﹣p+),则H(p,p+),∴PH=﹣p2﹣p+﹣(p+)=﹣p2﹣p=﹣(p+)2+,∵﹣<0,﹣3<p<0,∴当p=﹣时,PH有最大值,最大值为,最大,最大值为×=,此时,点P的坐标为(﹣,);即S△PMN(3)y=﹣x2﹣x+=﹣(x+1)2+,设抛物线向左平移a个单位,则新的抛物线解析式为y=﹣(x+1+a)2+,将点P(﹣,)代入,得=﹣(﹣+1+a)2+,解得a=1或a=0(不合题意,舍去),∴抛物线向左平移1个单位,∵C(0,),∴平移后点C的对应点C′的坐标为(﹣1,),由题意,设D(m,﹣m2﹣m+),E(n,n+),若以O、C′、D、E为顶点的四边形为平行四边形,则分三种情况:当OC′、DE为对角线时,则,消去n,得m2+3m﹣2=0,解得:m=,则点D坐标为(,)或(,);当OD、C′E为对角线时,则,消去n,得m2+3m+4=0,∵Δ=32﹣4×1×4=﹣7<0,∴方程无实数根,即点D不存在;当OE、C′D为对角线时,则,消去n,得m2+3m﹣4=0,解得:m=1或m=﹣4,∴点D的坐标为(1,0)或(﹣4,﹣),综上,满足条件的点D坐标为(,)或(,)或(1,0)或(﹣4,﹣).21.如图1,抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、点B,与y轴交于点C,顶点D的横坐标为1,对称轴交x轴于点E,交BC于点F.(1)求顶点D的坐标;(2)如图2所示,过点C的直线交线段BD于点M,交抛物线于点N.①若直线CM将△BCD分成的两部分面积之比为2:1,求点M的坐标;②若∠NCB=∠DBC,求点N的坐标.(3)如图1,若点P为线段OC上的一动点,请直接写出2AP+CP的最小值.【答案】(1)(1,4);(2)①或者;②;(3).【解答】解:(1)将A(﹣1,0)代入y=ax2+bx+3得:0=a﹣b+3①,∵顶点D的横坐标为1,∴,即b=﹣2a②,联立①②解得a=﹣1,b=2,∴y=﹣x2+2x+3,当x=1时,y=4,∴D(1,4);(2)①由(1)得y=﹣x2+2x+3,当y=0时,x1=﹣1,x2=3,∴B(3,0),即BO=3,如图,取DB的三等分点M1,M2,过点M1,M2分别作x轴,y轴的平行线分别交DE、x轴于点G、H、P、Q,∴△DGM1∽△DHM2∽△DEB,△BQM2∽△BPM1∽△BED,且相似比为1:2:3,∴,,∴,同理可得:,∴点M的坐标为:,;②∵∠NCB=∠DBC,∴CM=MB,取线段BC的中点G,作直线GM,。
二次函数60道压轴题型专项训练(12大题型)(原卷版)—2024-2025学年九年级数学上册(浙教)
二次函数60道压轴题型专项训练(12大题型)【题型目录】压轴题型一 二次函数的图象与性质压轴题压轴题型二 二次函数与各项系数符号压轴题压轴题型三 根据二次函数的对称性求值压轴题型四 二次函数的平移压轴题压轴题型五 二次函数与坐标轴交点压轴题压轴题型六 二次函数的应用(销售、增长率等问题)压轴题型七 二次函数的应用(图形运动、拱桥、投球等问题)压轴题型八 二次函数中的存在性问题压轴题型九 二次函数与一次函数压轴题压轴题型十 二次函数的翻折问题压轴题型十一 二次函数最值问题压轴题型十二 二次函数的综合【压轴题型一 二次函数的图象与性质压轴题】1.(2024·浙江嘉兴·二模)已知直线3y x =--与抛物线2()4=--y x m 对称轴左侧部分的图象有且只有一个交点,则m 的取值范围是( )A .54m £B .54m £或74m =C .1m £D .1m £或54m =2.(2024·浙江宁波·二模)已知二次函数2y x bx c =++的图象与x 轴只有一个公共点,且当x a =和x a n =+时函数值都为m ,则m 与n 的等量关系为 .3.(2024·浙江杭州·一模)已知二次函数()()13y a x x =--的图像过点()4,m ,(),p n (1)当1m =时,求a 的值;(2)若>>0m n ,求p 的取值范围;(3)求证:0>am an +.4.(2024·浙江杭州·一模)已知二次函数2(2)3(0)y m x m =-->的图象与x 轴交于点(,0),(,0)A a B b .(1)当3a =-时,求b 的值.(2)当0a b <<时,求m 的取值范围.(3)若(1,),(1,)P a p Q b q ++两点也都在此函数图象上,求证:0p q +>.5.(2024·浙江杭州·一模)在平面直角坐标系中,点(1,)m 和(3,)n 都在二次函数2y ax bx =+(0,,¹a a b 是常数)的图象上.(1)若6==-m n ,求该二次函数的表达式和函数图象的对称轴.(2)若1a =-,m n <,求b 的取值范围.(3)已知点()()()1231,,2,,4,y y y -也都在该二次函数图象上,若0mn <且a<0,试比较123y y y ,,的大小,并说明理由.【压轴题型二 二次函数与各项系数符号压轴题】1.(23-24九年级上·浙江杭州·阶段练习)抛物线()20y ax bx c a =++¹的顶点为(12)D -,,与x 轴的一个交点A 在点(30)-,和(20)-,之间,其部分图象如图,则以下结论:①0abc <;②若方程20ax bx c m ++-=没有实数根,则2m >;③320b c +<;④图象上有两点()11,P x y 和()22,Q x y ,若12x x <且122x x +<-,则一定有12y y >;正确的是( )A .4个B .3个C .2个D .1个2.(20-21九年级上·浙江·期末)抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ¹)经过点()1,0-和()0m ,;且12m <<,当1x <-时,y 随着x 的增大而减小.下列结论:①0abc >;②0a b +>③若点()13,A y -,点()23,B y 都在抛物线上,则12y y <;④()10a m b -+=;⑤若1c £-,则244b ac a -£.其中结论正确的是.3.(23-24九年级上·浙江杭州·期中)在二次函数223(0)y x tx t =-+>中.(1)若函数图象的顶点在x 轴上,求t 的值.(2)若点(,)t s 在抛物线上,令q t s =+,求证:134q £.(3)如果(2,)A m a -,()4,B b ,(,)C m a 都在这个二次函数图象上,且3a b <<,求m 的取值范围.4.(2024·云南昆明·二模)在平面直角坐标系中,抛物线()24430y mx mx m m =-+->与x 轴的交点为A ,B .(1)求抛物线的对称轴及顶点坐标;(2)若 1,m =当 3t x t +≤≤时,函数最小值为 2-,求t 的值;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点 A ,B 之间的部分与线段 AB 所围成的区域内(包括边界)恰有10个整点,求m 的取值范围.5.(23-24九年级下·北京·阶段练习)已知抛物线()20y ax bx c a =++>,(1)若抛物线过点()()35m m -,,,,求抛物线的对称轴;(2)已知点()()()()0112042y x y y n -,,,,,,,在抛物线上,其中121x -<<-,若存在1x 使1y n >,试比较012y y y ,,的大小关系.【压轴题型三 根据二次函数的对称性求值】1.(2024·山东淄博·二模)二次函数2y ax bx c =++(a ,b ,c 是常数,0a ¹)的自变量x 与函数值y 的部分对应值如下表:x…2-1-012…2y ax bx c=++…tm2-2-n…且当12x =-时,与其对应的函数值0y >,有下列结论:①函数图象的顶点在第四象限内;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③36m n +<-,其中正确的结论个数是( )A .0个B .1个C .2个D .3个2.(23-24九年级上·安徽芜湖·期中)已知二次函数2y ax bx c =++的图像过点(1,0)A -和(0,1)C .(1)若此抛物线的对称轴是直线12x =,点C 与点P 关于直线12x =对称,则点P 的坐标是 .(2)若此抛物线的顶点在第一象限,设t a b c =++,则t 的取值范围是 .3.(2024·云南曲靖·二模)已知抛物线²y ax bx c =++(a ,b ,c 为常数,0a ¹)(1)若20a b -=,4-+=a b c ,求此抛物线的顶点坐标;(2)在(1)的条件下,抛物线经过点()0,2,将抛物线²y ax bx c =++的图象0x <的部分向下平移h (h 为正整数)个单位长度,平移后的图象恰好与x 轴有2个交点,若点1(,)S m n y -与点2(,)Q m y 在平移后的抛物线上(点S ,Q 不重合),且点S 与点 Q 关于对称轴对称,求代数式22281244m mn n n h -+-+的值.4.(23-24九年级上·北京朝阳·期中)在平面直角坐标系xOy 中,点()1,m ,()4,n 在抛物线()20y ax bx c a =++>上.设抛物线的对称轴为直线x t =.(1)若30a b +=.比较,,m n c 的大小关系,并说明理由;(2)点()00),1(x m x ¹在抛物线上,若m c n <<,求t 及0x 的取值范围.5.(23-24九年级上·北京西城·期中)已知点()11,M x y ,()22,N x y 在抛物线()220y ax bx a =++>的图象上,设抛物线的对称轴为x t =.(1)若()2,1M -,()8,1N -,则t =_______;(2)当12x =-,223x <<时,都有122y y >>,求t 的取值范围.【压轴题型四 二次函数的平移压轴题】1.(2024·河北邯郸·二模)我们把横、纵坐标都是整数的点称为整点,如图,抛物线1C :224y x x =-++与()22:C y x m =-(m 是常数)围成的封闭区域(边界除外)内整点的个数不能是( )A .1个B .2个C .3个D .4个2.(2024·福建·模拟预测)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()02A ,,点()20C ,,则互异二次函数()2y x m m =--与正方形OABC 有交点时m 的最大值和最小值的差为3.(2024·广东广州·二模)在平面直角坐标系中,将过点()2,1-的抛物线211:4C y x bx =-+(b 为常数)向右平移m 个单位(0m >),再向上平移n 个单位(0n ³)得到新的抛物线2C ,其顶点为E .(1)求点E 的坐标;(用含m ,n 的式子表示)(2)若抛物线2C 与坐标轴有且只有两个公共点,求满足条件的点E 的纵坐标;(3)当1n =时,抛物线2C 与x 轴交于A 、B 两点,与y 轴交于点D ,且当02x ££时,对抛物线1C 上的任意一点P ,在抛物线2C 上总存在一点Q ,使得点P ,Q 的纵坐标相等,探究下列问题:①求m 的取值范围;②若存在一点F ,满足DF AF BF ==,求点F 的纵坐标的取值范围.4.(2024·内蒙古赤峰·二模)小爱同学学习二次函数后,对函数()21y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①至少写出该函数的两条性质;②直接写出方程()211x --=-的解;③直接写出方程()21x a --=有四个实数根时a 的取值范围.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <£时,自变量x 的取值范围.5.(2024·山东济南·二模)已知抛物线1C :26y x mx m =--+交x 轴于点A ,B ,交y 轴于点C .(1)如图1,当点A 坐标为()30-,时,求抛物线的解析式;(2)在(1)的条件下,点D 是第二象限内抛物线上的一点,连接BD ,若BD 将四边形ABCD 平分成面积相等的两部分,求点D 的横坐标;(3)如图2,EFH V 为等边三角形,点F ,H 在x 轴上,且点E 的坐标为()06,,将抛物线1C :26y x mx m =--+向右平移m 个单位,再向下平移6m 个单位后得到新的抛物线2C ,若2C 与等边EFH V 三边恰有四个交点,求m 的取值范围.【压轴题型五 二次函数与坐标轴交点压轴题】1.(2024·浙江杭州·一模)已知抛物线2y ax bx =+与2y bx ax =+的交点为A ,与x 轴的交点分别为B ,C ,点A ,B ,C 的横坐标分别为1x ,2x ,3x ,且1230x x x ¹.若0a b +<,20a b +>,则下列说法正确的是( )A .231x x x <<B .321x x x <<C .213x x x <<D .312x x x <<2.(2023·浙江绍兴·中考真题)在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-££的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++££图象的关联矩形恰好也是矩形OABC ,则b =.3.(23-24九年级上·浙江杭州·期中)已知抛物线()230y ax ax c a =++¹与y 轴交于点A .(1)当1a =,2c =,求该抛物线与x 轴交点坐标;(2)若1a =,点(),P m n 在二次函数抛物线23y ax ax c =++的图象上,且0n c ->,试求m 的值;(3)若点A 的坐标是()0,1,当2c c -<时,抛物线与x 轴只有一个公共点,求a 的取值范围.4.(22-23九年级上·浙江湖州·期末)在书本阅读材料中提到利用几何画板可以探索函数2y ax bx c =++的系数a ,b ,c 与图像的关系.如图1,在几何画板软件中绘制一个二次函数的图像的具体步骤如下:步骤一:在直角坐标系内的x 轴上取任意三个点A (A 不在原点),B ,C ,度量三个点的横坐标,分别记为a ,b ,c ;步骤二:绘制函数2y ax bx c =++;步骤三:任意移动A ,B ,C 三点的位置,发现抛物线的开口方向、大小、位置会发生变化.问题:如图2,将点A 移动到点()1,0-的位置.(1)若点B 移动到点()4,0-,请求出此时抛物线的对称轴;(2)在点B ,C 移动的过程中,且满足AB AC =,是否存在某一位置使得抛物线与x 轴只有一个交点,若存在,请求出此时点B 的坐标,若不存在,请说明理由.5.(22-23九年级上·浙江杭州·期末)已知二次函数2(0)y ax bx c a =++>的图象经过点(1,1)A -和(2,4)B .(1)求a ,b 满足的关系式;(2)当自变量x 的值满足12x -££时,y 随x 的增大而增大,求a 的取值范围;(3)若函数图象与x 轴无交点,求2a b +的取值范围.【压轴题型六 二次函数的应用(销售、增长率等问题)】1.(2024·天津红桥·三模)某服装店试销一种成本为每件60元的服装,规定试销期间每件服装的销售单价不低于成本,且获得的利润不得高于成本的45%.经试销发现,销售量y (件)与销售单价x (元)符合一次函数关系120y x =-+.有下列结论:①销售单价可以是90元;②该服装店销售这种服装可获得的最大利润为891元;③销售单价有两个不同的值满足该服装店销售这种服装获得的利润为500元,其中,正确结论的个数是( )A .0B .1C .2D .32.(2021·江苏连云港·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.3.(2024·四川德阳·三模)“端午节”吃粽子是中国传统习俗,在端午节来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒定价为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x 元,日销售量为P 盒.(1)当60x =时,P 等于______;(2)当每盒售价定为多少元时,日销售利润W (元)最大?最大利润是多少?(3)小强说:“当日销售利润最大时,日销售额不是最大.”小红说:“当日销售利润不低于8000元时,每盒售价x 的范围为6080x ££.”你认为他们的说法正确吗?4.(22-23八年级下·浙江杭州·期中)某商店进购一商品,第一天每件盈利(毛利润)10元,销售500件.(1)第二、三天该商品十分畅销.销售量持续走高.在售价不变的基础上,第二、三天的销售量达到605件,求第二、三天的日平均增长率;(2)经市场调查发现,在进货价不变的情况下,若每件涨价1元,日销量将减少20件.①现要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每件应张价多少元?②现需按毛利润的10%交纳各种税费,人工费每日按销售量每件支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每件涨价应为多少?5.(2023·湖北省直辖县级单位·一模)某销售卖场对一品牌商品的销售情况进行了调查,已知该商品的进价为每件3元,每周的销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x (元/件)456y (件)1000095009000(1)求y 关于x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品的售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠整数m 元()15m ££,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出整数m 的值.【压轴题型七 二次函数的应用(图形运动、拱桥、投球等问题)】1.(22-23九年级上·浙江台州·期末)以初速度v (单位:m/s )从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系是24.9h vt t =-.现将某弹性小球从地面竖直向上抛出,初速度为9.8m/s ,经过a 秒后,将第二个相同材质的小球从地面以初速度4.9m/s 竖直上抛.若两球能在空中相遇,则a 的取值范围为( )A .34a <<B .12a <<C .324a <<D 2a <<2.(23-24九年级上·浙江湖州·期末)如图,乒乓球桌桌面是长 2.7m AB =,宽 1.5m AD =的矩形,E F ,分别是AB 和CD 的中点,在E ,F 处设置高0.15m HE =的拦网.一次运动员在AD 端发球,在P 点击打乒乓球后经过桌面O 点反弹后的运行路径近似二次项系数427a =-的抛物线的一部分.已知本次发球反弹点O 在到桌面底边AD 的距离为0.1m ,到桌面侧边AB 的距离为0.1m 处.若乒乓球沿着正前方飞行(垂直于BC ),此时球在越过拦网时正好比拦网上端GH 高0.1m ,则乒乓球落在对面的落点Q 到拦网EF 的距离为 m ;若乒乓球运行轨迹不变,飞行方向从O 点反弹后飞向对方桌面,落点Q 在距离BC 为0.2m 的Q 点处,此时QC 的长度为 m .3.(2023·浙江杭州·模拟预测)已知点(2,2)A -和点(4,)B n -在抛物线2(0)y ax a =¹上.(1)求a 的值及点B 的坐标;(2)点P 在y 轴上,且ABP V 是以AB 为直角边的三角形,求点P 的坐标;(3)将抛物线2(0)y ax a =¹向右并向下平移,记平移后点A 的对应点为A ¢,点B 的对应点为B ¢,若四边形ABB A ¢¢为正方形,求此时抛物线的表达式.4.(22-23九年级上·天津河西·期末)如图所示,在ABC V 中,90B Ð=°,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm /s 的速度运动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度运动.P 、Q 分别从A 、B 同时出发,当P 、Q 两点中有一点停止运动时,则另一点也停止运动.设运动的时间为s t .(0)t ≥(1)当t 为何值时,PQ 的长度等于5cm ;(2)求出V BPQ S 关于t 的函数解析式,计算P 、Q 出发几秒时,V BPQ S 有最大值,并求出这个最大面积?5.(23-24九年级上·浙江温州·期中)如图,抛物线2y x bx c =-++与x 轴交于点()3,0A -、()1,0B ,与y 轴交于点C .(1)求抛物线的表达式.(2)已知点D 为y 轴上一点,点D 关于直线AC 的对称点为1D .①当点1D 刚好落在第二象限的抛物线上时,求出点D 的坐标.②点P 在抛物线上(点P 不与点A 、点C 重合),连接PD ,1PD ,1DD ,是否存在点P ,使1PDD △为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【压轴题型八 二次函数中的存在性问题】1.(2024·浙江宁波·一模)新定义:若一个点的横纵坐标之和为6,则称这个点为“和谐点”.若二次函数22y x x c =-+(c 为常数)在13-<<的图象上存在两个“和谐点”,则c 的取值范围是( )A .2574c <<B .2544c <<C .11c -<<D .2504c <<2.(23-24九年级上·浙江温州·期中)图1是洞头深门大桥,其桥底呈抛物线,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系(如图2所示),桥面CB ∥OA ,其抛物线解析式为()218020320y x =--+,抛物线上点A 离桥面距离22AB =米,若存在一点E 使得38CE CB =,则点E 到抛物线的距离ED = 米.3.(2024·浙江宁波·模拟预测)如图,一次函数y =的图象与坐标轴交于点A 、B ,抛物线2y x bx c =++的图象经过A 、B 两点.(1)求二次函数的表达式;(2)若点P 为抛物线上一动点,在直线AB 上方是否存在点P 使PAB V 的面积最大?若存在,请求出PAB V 面积的最大值及点P 的坐标,请说明理由.4.(23-24九年级上·黑龙江伊春·期末)如图,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为.(1)求此抛物线和直线AB 的表达式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M ,N ,C ,E 是平行四边形的四个顶点?若存在,直接写出点M 的坐标;若不存在,说明理由;5.(22-23九年级上·浙江温州·期中)如图,直线212y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线23103y ax x c =++经过B C ,两点,与x 轴交于另一点A ,点E 是直线BC 上方抛物线上的一动点,过E 作EF y ∥轴交x 轴于点F ,交直线BC 于点M .(1)求抛物线的解析式;(2)求线段EM 的最大值;(3)在(2)的条件下,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P Q A M ,,,为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【压轴题型九 二次函数与一次函数压轴题】1.(2024·浙江杭州·一模)二次函数21y x bx c =++(b ,c 是常数)过()2,0-,()0m ,两个不重合的点,一次函数2y x d =+过()0m ,和二次函数的顶点,则m 的值为( )A .﹣1B .0C .1D .22.(23-24九年级上·浙江绍兴·期末)二次函数2(,,y ax bx c a b c =++为常数,且0)ab ¹经过()()11,0,,0x ,一次函数y a x c =+经过()2,0x ,一次函数y b x c =+经过()3,0x .已知1254,1x m x m -<<-<<+,31n x n <<+,其中,m n 为整数,则m n +的值为 .3.(2024·浙江舟山·三模)已知一次函数5y x =-的图象与x 轴,y 轴分别交于点A ,B ,将点A 向左平移4个单位,得到点A ¢,且点A ¢恰好在二次函数23y ax bx =+-(a 、b 是常数,0a ¹)图象的对称轴上.(1)用含a 的代数式表示b .(2)求证:二次函数与一次函数图象交于一个定点,并求出该点的坐标.(3)若二次函数图象与线段AB 恰有一个公共点,结合函数图象,求a 的取值范围.4.(23-24九年级上·浙江宁波·期末)如图,在平面直角坐标系xOy 中,一次函数121y x =+的图象与二次函数22y x ax b =++的图象相交于A ,B 两点,点A 坐标为()1m -,,点B 坐标为()25,.(1)求m 的值以及二次函数的解析式.(2)根据图象,直接写出当1y >2y 时x 的取值范围.(3)若将二次函数向上平移t 个单位长度后,得到的图象与x 轴没有交点,求t 的取值范围.5.(2023·浙江金华·三模)如图,一次函数()00b y x b a b a=-+>>,与坐标轴交于A ,B 两点,以A 为顶点的抛物线过点B ,过点B 作y 轴的垂线交该抛物线另一点于点D ,以AB ,AD 为边构造ABCD Y ,延长BC 交抛物线于点E .(1)若2a b ==,如图1.①求该抛物线的表达式.②求点E 的坐标.(2)如图2,请问BE AB 是否为定值,若是,请求出该定值;若不是,请说明理由.【压轴题型十 二次函数的翻折问题】1.(22-23九年级上·浙江湖州·期末)抛物线223y x x =-++与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()1,M m y ,()21,N m y +为图形G 上两点,若12y y >,则m 的取值范围是( )A .102m £<B 1m <<C m <<D 12m <<2.(2023江苏南通·模拟预测)如图,将二次函数2y x m =-(其中0m >)的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为1y ,另有一次函数2y x =+的图象记为2y ,若1y 与2y 恰有两个交点时,则m 的范围是 .3.(2024·浙江·模拟预测)如图,抛物线22(0)y x x m m =-++>与y 轴交于A 点,其顶点为D .直线122y x m =--分别与x 轴、y 轴交于B 、C 两点,与直线AD 相交于E 点.(1)求A 、D 的坐标(用m 的代数式表示);(2)将ACE V 沿着y 轴翻折,若点E 的对称点P 恰好落在抛物线上,求m 的值;(3)抛物线22(0)y x x m m =-++>上是否存在一点P ,使得以P 、A 、C 、E 为顶点的四边形是平行四边形?若存在,求此抛物线的解析式;若不存在,请说明理由.4.(23-24九年级上·浙江绍兴·期中)如图,在平面直角坐标系中,将二次函数223y x x =--在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,将这个组合的图象记为M .(1)若直线12y x n =+与图象M 恰好有3个交点.求n 的值.(2)若直线12y x n =+与图象M 恰好有2个交点.求n 的取值范围.5.(2023·浙江杭州·二模)已知二次函数2420y mx mx m m =-+-¹(),且与x 轴交于不同点M 、N .(1)若二次函数图象经过点30A (,),①求二次函数的表达式和顶点坐标;②将抛物线在05x ££之间的那部分函数图象沿直线5x =翻折,将抛物线翻折前后的这两部分合记为图象F ,若直线y kx n =+过点151C (,),且与图象F 恰有两个交点,求n 的取值范围;(2)若0m <,当4MN £时,求实数m 的取值范围.【压轴题型十一 二次函数最值问题】1.(2024·浙江温州·二模)已知二次函数222y x x -=+, 当0x t ££时,函数最大值为M ,最小值为N .若5M N =,则t 的值为 ( )A .0.5B .1.5C .3D .42.(2023·浙江杭州·模拟预测)已知二次函数()2211y ax b x =--+(a ,b 为常数且0a >),当21x -££-时,y 随x 的增大而增大,则ab 的最大值为 .3.(2024·浙江嘉兴·三模)已知二次函数 23y x bx =++的图象经过点()()()12,,,43A x n B x t C -,,.(1)求二次函数的函数表达式;(2)当 212x x -=时,①若 0nt £,求 t n -的取值范围;②设直线AB 的函数表达式为y kx m =+,求m 的最大值.4.(2024·浙江宁波·模拟预测)已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ³.(1)当0=t 时.①求y 关于x 的函数解析式;求出当x 为何值时,y 有最大值?最大值为多少?②当x a =和x b =时()a b ¹,函数值相等,求a 的值.(2)当0t >时,在08x ££范围内,y 有最大值18,求相应的t 和x 的值.5.(23-24九年级上·浙江湖州·期末)设二次函数2y ax bx c =++(a b c ,,均为常数,且0a ¹).已知函数值y 和自变量x 的部分对应取值如下表所示:x L3-2-1-01L y L n 5a -n a-4a L (1)若1a =.①求二次函数的表达式,并写出顶点坐标;②已知点()1,m y 与()23,m y -都在该二次函数图象上,且12y y ³,请求出1y 的最小值.(2)将该二次函数图象向右平移k (02k <<)个单位,若平移后的二次函数图象在20x -££的范围内有最小值为3116a -,求k 的值.【压轴题型十二 二次函数的综合】1.(22-23九年级上·浙江宁波·阶段练习)如图,抛物线218333y x x =+-与x 轴交于点A 和点B 两点,与y 轴交于点C ,D 点为抛物线上第三象限内一动点,当2180ACD ABC Ð+Ð=°时,点D 的坐标为( )A .(8,3)--B .(,)--1673C .(6,7)--D .(5,8)--2.(23-24九年级上·浙江金华·期末)定义:若x ,y 满足:24x y k =+,24y x k =+(k 为常数)且x y ¹,则称点(),M x y 为“好点”.(1)若()5,P m 是“好点”,则m .(2)在32x -<<的范围内,若二次函数23y x x c =-+的图象上至少存在一个“好点”,则c 的取值范围为 .3(2024·浙江温州·二模)在平面直角坐标系中,已知抛物线()2233y mx m x m =--+-(m 是常数,且0m ¹)经过点()2,4,且与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求出二次函数的表达式.(2)垂直于y 轴的直线l 与抛物线交于点(),P a p 和(),Q b q ,与直线AB 交于点(),c n ,若a c b <<,直接写出a b c ++的取值范围.(3)当13x t =-,2x t =,33x t =+时,对应的函数值分别为1y ,2y ,3y .求证:123454y y y ++³.4.(23-24九年级下·浙江宁波·期中)如图,已知抛物线21:4C y x =,()01F ,,点()11,A x y ,()22,B x y 为抛物线上第一象限内的两点,且满足FA FB ^,以FA FB 、为边向右作矩形FAPB ,若P 点纵坐标为5.(1)求12y y +的值;(2)求12x x 的值;(3)求矩形FAPB 的面积.5.(21-22九年级上·浙江·周测)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B -和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q æöç÷èø,,点M 在x 轴上,点E 在平面内,若BME AOM V V ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH V 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值.。
二次函数压轴题专题分类训练
中考二次函数压轴题专题分类训练题型一:面积问题【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.2.如图,抛物线y = ax 2+ bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y图2轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.C ED GAxy OB F题型二:构造直角三角形【例2】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x =1上的一动点,求使∠PCB=90º的点P的坐标.【变式练习】1.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.E2.在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x轴的交点为N ,且COS ∠BCO。
二次函数 压轴题(八大题型)(原卷版)—2024-2025学年九年级数学上学期期中冲刺卷(浙教版)
二次函数 压轴题(八大题型)目录:题型1:存在性问题题型2:最值问题题型3:定值问题题型4:定点问题题型5:动点问题综合题型6:对称问题题型7:新定义题题型8:二次函数的代数(综合)应用题型1:存在性问题1.如图,抛物线26y ax x c =++与x 轴交于A 、()5,0B 两点,与y 轴交于点()0,5C -,点(),P t s 是抛物线上的一动点.(1)求该抛物线所对应的函数解析式;(2)如图,当点(),P t s 在直线BC 上方的抛物线时,过点P 作y 轴的平行线交直线BC 于点E .求PBC △面积的最大值;(3)如图,当点(),P t s 在直线BC 上方的抛物线时,过点P 作y 轴的平行线交直线BC 于点E .点M 是平面直角坐标系内一点,是否存在点P ,使得以点B ,E ,P ,M 为顶点的四边形是菱形,若存在,请求出所有点M 的坐标;若不存在,请说明理由.2.如下图,抛物线24y ax bx =+-与x 轴相交于(2,0)A ,0()6,B -两点,与y 轴相交于点C .连接BC ,过点A 作AD BC ∥交抛物线于点D .(1)求抛物线的解析式;(2)如下图,点M 为直线BC 下方抛物线上一点,连接DM 交BC 于N ,连接AM 、AN ,求AMN V 面积的最大值及此时点M 的坐标;(3)将抛物线沿DA 方向平移个单位,点P 为平移后的抛物线对称轴上一点,是否存在点P ,使得BCP V 为等腰三角形,若存在,写出点P 的坐标,并写出其中一个点的求解过程;若不存在,说明理由.3.如图,已知抛物线24y ax bx =++与x 轴交于(),40A B ,两点,与y 轴交于点C ,与直线BD 交于点51,2D æö-ç÷èø,其对称轴与直线BD 交于点E ,点F 是此抛物线上的一个动点.(1)求此抛物线的解析式并直接写出直线BD 的解析式;(2)如图1,若点F 是直线BD 上方抛物线上的一点,连接DF 、BF 和OD ,当BDF V 与BDO △面积相等时,求点F 的横坐标;(3)如图2,连接EF ,在此抛物线对称轴右侧的抛物线上是否存在点F 使得线段EF 最小?若存在,请求出点F 的坐标;若不存在,请说明理由.题型2:最值问题4.在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+-与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ^轴于点P ,交抛物线于点N .(ⅰ)如图1,当3PA PB=时,求线段MN 的长;(ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.5.已知抛物线(2)(4)(y a x x a =+-为常数,且0)a <与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,经过点B 的直线12y x b =+与抛物线的另一交点为点D ,与y 轴的交点为点E .(1)如图1,若点D 的横坐标为3,试求抛物线的函数表达式;(2)如图2,若DE BE =,试确定a 的值;(3)如图3,在(1)的情形下,连接AC ,BC ,点P 为抛物线在第一象限内的点,连接BP 交AC 于点Q ,当APQ BCQ S S -△△取最大值时,试求点P 的坐标.6.在平面直角坐标系中,抛物线23y ax bx =++交x 轴于点(1,0)A -、(3,0)B ,交y 轴于点C ,连结AC 、BC .点D 在该抛物线上,过点D 作∥D E A C ,交直线BC 于点E ,连结AD 、AE 、BD .设点D 横坐标为(0)m m >,DAE V 的面积为1S ,DBE V 的面积为2S .(1)求a ,b 的值;(2)设抛物线上D 、B 两个点和它们之间的部分为图象G ,当图象G 的最高点的纵坐标与m 无关时,求m 的取值范围;(3)当点D 在第一象限时,求1S +2S 的最大值;(4)当12:2:1S S =时,直接写出m 的值.7.如图1,在平面直角坐标系xOy 中,O 为坐标原点,已知抛物线2y x bx c ¢=-++的顶点坐标为()3,4C -,与x 轴分别交于点A ,B .连接AC ,点D 是线段AC 上方抛物线上的一动点.(1)求抛物线的解析式;(2)如图1,在点D 运动过程中,连接AD CD 、,求ADC △面积的最大值;(3)如图2,在点D 运动过程中,连接OD 交AC 于点E ,点F 在线段OA 上,连接OC DF EF 、、,若ACO FDO DFE Ð=Ð+Ð,求点F 横坐标的最大值.题型3:定值问题8.已知抛物线()²30y ax bx a =+-¹与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,若直线BC 下方的抛物线上有一动点M ,过点M 作y 轴平行线交BC 于N ,过点M 作BC 的垂线,垂足为H ,求HMN △周长的最大值;(3)若点P 在抛物线的对称轴上,点Q 在x 轴上,是否存在以B ,C ,P ,Q 为顶点的四边形为平行四边形,若存在,求出点Q 的坐标,若不存在,请说明理由;(4)将抛物线向左平移1个单位,再向上平移4个单位,得到一个新的抛物线,问在y 轴正半轴上是否存在一点F ,使得当经过点F 的任意一条直线与新抛物线交于S ,T 两点时,总有2211FS FT +为定值?若存在,求出点F 坐标及定值,若不存在,请说明理由.9.已知抛物线()212y x a x a =+-+-.(1)对于任意实数a ,该抛物线都会经过一个定点,求此定点的坐标.(2)当1a =-时,该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .①如图(1),若点P 是x 轴上的动点,当PD PC -取最大值时,求PBD △的面积;②小聪研究发现:如图(2),E ,F 是抛物线上异于B ,C 的两个动点,若直线CE 与直线BF 的交点始终在直线29y x =-上,那么在直线EF 存在点Q ,使得QCE V ,QAC △,QAF △中必存在定值的三角形,请直接写出其中面积为定值的三角形及其面积,不必说明理由.题型4:定点问题10.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点()2,0A -,()1,0B .(1)求抛物线的函数表达式;(2)直线43y x h =-+经过点B ,交抛物线于另一点C .P 是线段BC 上一点,过点P 作直线PQ y ∥轴交抛物线于点Q ,且PB PQ =,求点P 的坐标;(3)M ,N 是抛物线上的动点(不与点B 重合),直线BM ,BN 分别交y 轴于点E ,F ,若EBF EOB ∽△△,求证:直线MN 经过一个定点.11.已知二次函数2y x bx c =++图象1C 交x 轴于点()1,0-和()3,0两点;(1)求抛物线的解析式;(2)将抛物线1C 向上平移n 个单位得抛物线2C ,点P 为抛物线2C 的顶点,()0,4C ,过C 点作x 轴的平行线交抛物线2C 于点A ,点B 为y 轴上的一动点,若存在90ABP Ð=°有且只有一种情况,求此时n 的值;(3)如图2,恒过定点()1,1的直线QN 交抛物线1C 于点Q ,N 两点,过Q 点的直线2y x t =-+的直线交抛物线1C 于M 点,作直线MN ,求MN 恒过的定点坐标.题型5:动点问题综合12.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点A B ,(点A 在点B 的左侧),与y 轴交于点()0,3C -,其对称轴为直线1x =.(1)求该抛物线的函数解析式;(2)如图1,已知点D 为第三象限抛物线上一点,连接AC ,若90ABD BAC Ð+Ð=°,求点D 的坐标;(3)(),P m n 和点Q 分别是直线y x =--24和抛物线上的动点,且点Q 的横坐标比点P 的横坐标大4个单位长度,分别过P Q ,作坐标轴的平行线,得到矩形PMQN .设该抛物线在矩形PMQN 内部(包括边界)的图象的最高点与最低点的纵坐标的差为t .①如图2,当12m =-时,请直接写出t 的值;②请直接写出t 关于m 的函数关系式.13.如图, 抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,直线l 与抛物线交于A ,C 两点,其中点C 的横坐标为2.(1)求抛物线的解析式;(2)P 是线段AC 上的一个动点(P 与A , C 不重合),过 P 点作y 轴的平行线交抛物线于点 E ,求ACE △面积的最大值;(3)点H 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、H 四个点为顶点的四边形是平行四边形?如果存在,请求出所有满足条件的F 点坐标;如果不存在,请说明理由.(4)若直线PE 为抛物线的对称轴,抛物线与y 轴交于点 D ,直线AC 与y 轴交于点Q ,点M 为直线PE 上一动点,则在x 轴上是否存在一点N ,使四边形DMNQ 的周长最小?若存在,请直接写出点N 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,抛物线21322y x x =--与x 轴正半轴交于点A ,过点A 的直线y =kx +b (k ≠0)与该抛物线的另一个交点B 的横坐标为2,P 是该抛物线上的任意一点,其横坐标为1m +,过点P 作x 轴的垂线,交直线AB 于点C ,在该垂线的点P 上方取一点D ,使1PD =,以CD 为边作矩形CDEF ,设点E 的横坐标为2m .(1)写出抛物线21322y x x =--的顶点坐标______.(2)当点P 与点A 重合时,求点E 的坐标;(3)当点E 在该抛物线上时,求抛物线的顶点到EF 的距离;(4)当矩形CDEF 的一组邻边与该抛物线相交,且该抛物线在矩形CDEF 内的部分所对应的函数值y 随x 的增大而增大时,直接写出m 的取值范围.15.如图1,抛物线²y x bx c =-++过点()()1,0,3,0A B -.(1)求抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,①当P 为抛物线的顶点时,求证:PBC △是直角三角形;②求出PBC △的最大面积及此时P 点的坐标;③如图2,过点P 作PN x ^轴,垂足为N ,PN 与BC 交于点E .当PE 的值最大时,求点P 的坐标.题型6:对称问题16.如图1,二次函数214y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C .点B 坐标为(6,0),点C 坐标为(0,3),点P 是第一象限内抛物线上的一个动点,过点P 作PD x ^轴,垂足为D ,PD 交直线BC 于点E ,设点P 的横坐标为m .(1)求该二次函数的表达式;(2)如图2,过点P 作PF BC ^,垂足为F ,当m 为何值时,PF 最大?最大值是多少?(3)如图3,连接CP ,当四边形OCPD 是矩形时,在抛物线的对称轴上存在点Q ,使原点O 关于直线CQ 的对称点O ¢恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q 的坐标.17.如图1,已知抛物线23y ax bx =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,连接BC .(1)求a ,b 的值及直线BC 的解析式;(2)如图1,点P 是抛物线上位于直线BC 上方的一点,连接AP 交BC 于点E ,过P 作PF x ^轴于点F ,交BC 于点G ,(ⅰ)若EP EG =,求点P 的坐标,(ⅱ)连接CP ,CA ,记PCE V 的面积为1S ,ACE V 的面积为2S ,求12S S 的最大值;(3)如图2,将抛物线位于x 轴下方面的部分不变,位于x 轴上方面的部分关于x 轴对称,得到新的图形,将直线BC 向下平移n 个单位,得到直线l ,若直线l 与新的图形有四个不同交点,请直接写出n的取值范围.题型7:新定义题18.定义:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则称该函数为“()X n 函数”.(1)在下列函数中,是“()X n 函数”的有 (填序号).①y x =;②20241y x =+;③1y x =;④2y x =(2)若关于x 的函数()2y x h k =-+是“()0X 函数”,且图象与直线4y =相交于A ,B 两点,函数()2y x h k =-+图象的顶点为P ,当45PBA Ð=°时,求h ,k 的值.(3)若关于x 的函数()240y ax bx a =++¹是()1X 函数,且过点()3,1,当1t x t -££时,函数的最大值1y 与最小值2y 的差为2,求t 的值.19.以x 为自变量的两个函数y 与g ,令h y g =-,我们把函数h 称为y 与g 的“相关函数”例如:以x 为自变量的函数2y x =与21g x =-,则它们的“相关函数”为221h y g x x =-=-+.因为()222110h x x x =-+=-³恒成立.所以借助该“相关函数”可以证明:不论自变量x 取何值,y g ³恒成立.(1)已知函数2y x mx n =++与函数41g x =+相交于点()1,3--、()3,13.①此时m ,n 的值分别为:m =______,n =______;②求此时函数y 与g 的“相关函数”h ;(2)已知以x 为自变量的函数3y x t =+与2g x =-,当1x >时,对于x 的每一个值,函数y 与g 的“相关函数”0h >恒成立,求t 的取值范围;(3)已知以x 为自变量的函数2y ax bx c =++与2g bx c =--(,,a b c 为常数且0a >,0b ¹).点1,02A æöç÷èø,点()12,B y -,()21,C y 是它们的“相关函数”h 的图象上的三个点.且满足212c y y <<,求函数h 的图象截x 轴得到的线段长度的取值范围.题型8:二次函数的代数(综合)应用20.二次函数2y x bx c =++的图象与x 轴交于点()1,0A x ,()2,0B x 且12x x ¹.(1)当12x =,且6b c +=-时,①求b ,c 的值②当2x t -££时,二次函数2y x bx c =++的最大值与最小值的差为4,求t 的值;(2)若123x x =,求证:332b c -£.21.在平面直角坐标系中,已知抛物线()2233y mx m x m =--+-(m 是常数,且0m ¹)经过点()2,4,且与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求出二次函数的表达式.(2)垂直于y 轴的直线l 与抛物线交于点(),P a p 和(),Q b q ,与直线AB 交于点(),c n ,若a c b <<,直接写出a b c ++的取值范围.(3)当13x t =-,2x t =,33x t =+时,对应的函数值分别为1y ,2y ,3y .求证:123454y y y ++³.22.已知y 关于x 的两个函数y ax a =+(a 为常数,0a ¹,0x £)与22y ax ax a =-+(a 为常数,0a ¹,0x >)的图像组成一个新图形N .图形N 与x 轴交于A ,B 两点(点A 在点B 左边),交y 轴于点C .(1)求点A ,B 坐标;(2)若ABC V 为直角三角形;①求实数a 的值;②若直线(0)y kx b k =+¹与图形N 有且只有两个交点()11,x y ,()22,x y ,满足12202x x -<<<<,求实数k 满足条件.。
二次函数解答压轴题(共62题)(学生版)-2023年中考数学真题分项汇编(全国通用)
二次函数解答压轴题(62题)一、解答题1(2023·浙江绍兴·统考中考真题)已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.4(2023·浙江杭州·统考中考真题)设二次函数y=ax2+bx+1,(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x⋯-10123⋯y⋯m1n1p⋯(1)若m=4,求二次函数的表达式;(2)写出一个符合条件的x的取值范围,使得y随x的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求a的取值范围.5(2023·湖南常德·统考中考真题)如图,二次函数的图象与x轴交于A-1,0,B5,0两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1 5.(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.6(2023·山东烟台·统考中考真题)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx-1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+1PA的最小值.27(2023·江苏苏州·统考中考真题)如图,二次函数y=x2-6x+8的图像与x轴分别交于点A,B(点A 在点B的左侧),直线l是对称轴.点P在函数图像上,其横坐标大于4,连接PA,PB,过点P作PM⊥l,垂足为M,以点M为圆心,作半径为r的圆,PT与⊙M相切,切点为T.(1)求点A,B的坐标;(2)若以⊙M的切线长PT为边长的正方形的面积与△PAB的面积相等,且⊙M不经过点3,2,求PM长的取值范围.8(2023·山东东营·统考中考真题)如图,抛物线过点O0,0,矩形ABCD的边AB在线段,E10,0OE上(点B在点A的左侧),点C,D在抛物线上,设B t,0,当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.9(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线y=ax2+83x+c a≠0与x轴交于点A1,0和点B,与y轴交于点C0,-4.(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图,若点P在第三象限,且tan∠CPD=2,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E 落在y轴上时,请直接写出四边形PECE 的周长.10(2023·四川自贡·统考中考真题)如图,抛物线y=-43x2+bx+4与x轴交于A(-3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该抛物线对称轴上是否存在点E,使得∠ACE=45°,若存在,求出点E的坐标;若不存在,请说明理由.11(2023·四川达州·统考中考真题)如图,抛物线y =ax 2+bx +c 过点A -1,0 ,B 3,0 ,C 0,3 .(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出△PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B 、C 、M 、N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C0,6三点,其对称轴为x=2.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.①当CD=CE时,求CD的长;②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.13(2023·全国·统考中考真题)如图,在平面直角坐标系中,抛物线y=-x2+2x+c经过点A(0,1).点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2.当h2-h1=m时,直接写出m的值.14(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.15(2023·四川凉山·统考中考真题)如图,已知抛物线与x轴交于A1,0两点,与y轴交于和B-5,0点C.直线y=-3x+3过抛物线的顶点P.(1)求抛物线的函数解析式;(2)若直线x=m-5<m<0与抛物线交于点E,与直线BC交于点F.①当EF取得最大值时,求m的值和EF的最大值;②当△EFC是等腰三角形时,求点E的坐标.16(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P (4,-3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.17(2023·安徽·统考中考真题)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx a≠0经过点A3,3,对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(ⅰ)当0<t<2时,求△OBD与△ACE的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为32若存在,请求出点B的横坐标t的值;若不存在,请说明理由.18(2023·浙江金华·统考中考真题)如图,直线y =52x +5与x 轴,y 轴分别交于点A ,B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为C ,D ,其中点C 的坐标为2,0 .直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BEEC的值.(2)连接PC ,∠CPE 与∠BAO 能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.19(2023·湖南·统考中考真题)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于C点,其中B1,0.,C0,3(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P,使得S△PAC=S△ABC若存在,请求出P点坐标;若不存在,请说明理由;(3)点Q是对称轴l上一点,且点Q的纵坐标为a,当△QAC是锐角三角形时,求a的取值范围.20(2023·四川遂宁·统考中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.21(2023·四川眉山·统考中考真题)在平面直角坐标系中,已知抛物线y =ax 2+bx +c 与x 轴交于点A -3,0 ,B 1,0 两点,与y 轴交于点C 0,3 ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PDDB的值最大时,求点P 的坐标及PDDB的最大值;(3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将△PCM 沿直线PC 翻折,当点M 的对应点M '恰好落在y 轴上时,请直接写出此时点M 的坐标.22(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=2,动点P 以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF设点P的运动时间为ts,正方形DPEF的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当t=1时,S=.②S关于t的函数解析式为.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段AB的长.(3)延伸探究:若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2=;②当t3=4t1时,求正方形DPEF的面积.23(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.24(2023·甘肃武威·统考中考真题)如图1,抛物线y=-x2+bx与x轴交于点A,与直线y=-x交于点B4,-4在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.,点C0,-4(1)求抛物线y=-x2+bx的表达式;(2)当BP=22时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.25(2023·四川乐山·统考中考真题)已知x 1,y 1 ,x 2,y 2 是抛物C 1:y =-14x 2+bx (b 为常数)上的两点,当x 1+x 2=0时,总有y 1=y 2(1)求b 的值;(2)将抛物线C 1平移后得到抛物线C 2:y =-14(x -m )2+1(m >0).探究下列问题:①若抛物线C 1与抛物线C 2有一个交点,求m 的取值范围;②设抛物线C 2与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线C 2的顶点为点E ,△ABC 外接圆的圆心为点F ,如果对抛物线C 1上的任意一点P ,在抛物线C 2上总存在一点Q ,使得点P 、Q 的纵坐标相等.求EF 长的取值范围.26(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.27(2023·上海·统考中考真题)在平面直角坐标系xOy中,已知直线y=34x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.28(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy中,已知点A在y轴正半轴上.(1)如果四个点0,0中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象、-1,1、1,1、0,2上.①a=;②如图1,已知菱形ABCD的顶点B、C、D在该二次函数的图象上,且AD⊥y轴,求菱形的边长;③如图2,已知正方形ABCD的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究n-m是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD的顶点B、D在二次函数y=ax2(a为常数,且a>0)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.29(2023·湖南岳阳·统考中考真题)已知抛物线Q1:y=-x2+bx+c与x轴交于A-3,0,B两点,交y 轴于点C0,3.(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D0,-1,点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.30(2023·湖南永州·统考中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.31(2023·山东枣庄·统考中考真题)如图,抛物线y=-x2+bx+c经过A(-1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.32(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(-1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC 于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.33(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于B 4,0 ,C -2,0 两点.与y 轴交于点A 0,-2 .(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK +PD 的最大值及此时点P 的坐标;(3)在抛物线的对称轴上是否存在一点M ,使得△MAB 是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.34(2023·湖南·统考中考真题)已知二次函数y =ax 2+bx +c a >0 .(1)若a =1,c =-1,且该二次函数的图像过点2,0 ,求b 的值;(2)如图所示,在平面直角坐标系Oxy 中,该二次函数的图像与x 轴交于点A x 1,0 ,B x 2,0 ,且x 1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO=23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =-a 2-b 2,求2a +b 的值.35(2023·山西·统考中考真题)如图,二次函数y =-x 2+4x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,3 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ ⊥x 轴于点Q ,BQ 与OP 交于点F ,连接DF .设四边形FQED 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.36(2023·湖北武汉·统考中考真题)抛物线C1:y=x2-2x-8交x轴于A,B两点(A在B的左边),交y 轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t0<t<4,分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF.若△BDE 与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线C2交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.37(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.38(2023·湖南郴州·统考中考真题)已知抛物线y=ax2+bx+4与x轴相交于点A1,0,与y,B4,0轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC的值;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12若存在,求出点Q的坐标;若不存在,请说明理由.39(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.40(2023·湖南·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A-2,0和点B4,0,且与直线l:y=-x-1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M 的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.41(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+4的图象与x 轴交于点A-2,0,B4,0,与y轴交于点C.(1)求抛物线的解析式;(2)已知E为抛物线上一点,F为抛物线对称轴l上一点,以B,E,F为顶点的三角形是等腰直角三角形,且∠BFE=90°,求出点F的坐标;(3)如图2,P为第一象限内抛物线上一点,连接AP交y轴于点M,连接BP并延长交y轴于点N,在点P运动过程中,OM+12ON是否为定值?若是,求出这个定值;若不是,请说明理由.42(2023·山东聊城·统考中考真题)如图①,抛物线y=ax2+bx-9与x轴交于点A-3,0,,B6,0与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P m,0从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.43(2023·湖北荆州·统考中考真题)已知:y关于x的函数y=a-2x+b.x2+a+1(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A-2,0,B4,0,并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE 的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1-S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.44(2023·福建·统考中考真题)已知抛物线y=ax2+bx+3交x轴于A1,0,B3,0两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.(1)求抛物线的函数表达式;(2)若C4,3,D m,-3 4,且m<2,求证:C,D,E三点共线;(3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.45(2023·山东·统考中考真题)如图,直线y=-x+4交x轴于点B,交y轴于点C,对称轴为x=32的抛物线经过B,C两点,交x轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若0<m<32,当m为何值时,四边形CDNP是平行四边形?(3)若m<32,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m 的值;若不存在,请说明理由.46(2023·山东·统考中考真题)已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C 0,4 ,其对称轴为x =-32.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD ,BD ,将△ABD 沿直线AD 翻折,得到△AB D ,当点B 恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG ⊥x 轴,垂足为G ,求FG +2FP 的最大值.47(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,抛物线C 1:y =x 2上有两点A 、B ,其中点A 的横坐标为-2,点B 的横坐标为1,抛物线C 2:y =-x 2+bx +c 过点A 、B .过A 作AC ∥x 轴交抛物线C 1另一点为点C .以AC 、12AC 长为边向上构造矩形ACDE .(1)求抛物线C 2的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ,点C 的对应点C 落在抛物线C 1上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E 交抛物线C 1于点P ,交抛物线C 2于点Q .当点E 为线段PQ 的中点时,求m 的值;③抛物线C 2与边E D 、A C 分别相交于点M 、N ,点M 、N 在抛物线C 2的对称轴同侧,当MN =2103时,求点C 的坐标.48(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c的图象与x轴交于点A-2,0.点D为线段BC上的一动点. 和点B6,0两点,与y轴交于点C0,6(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.49(2023·黑龙江绥化·统考中考真题)如图,抛物线y1=ax2+bx+c的图象经过A(-6,0),B(-2,0),C (0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为PD有最大值,最大值是多少?m.过点P作PD⊥NC于点D.求m为何值时,CD+1250(2023·四川南充·统考中考真题)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A-1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点K1,3的直线(直线KD除外)与抛物线交于G,H两点,直线DG,DH分别交x轴于点M,N.试探究EM⋅EN是否为定值,若是,求出该定值;若不是,说明理由.51(2023·四川宜宾·统考中考真题)如图,抛物线y=ax2+bx+c与x轴交于点A-4,0,且经、B2,0过点C-2,6.(1)求抛物线的表达式;(2)在x轴上方的抛物线上任取一点N,射线AN、BN分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为Q ,求△APQ 的面积;(3)点M是y轴上一动点,当∠AMC最大时,求M的坐标.52(2023·四川广安·统考中考真题)如图,二次函数y=x2+bx+c的图象交x轴于点A,B,交y轴于点C,点B的坐标为1,0,对称轴是直线x=-1,点P是x轴上一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的解析式.(2)若点P在线段AO上运动(点P与点A、点O不重合),求四边形ABCN面积的最大值,并求出此时点P 的坐标.(3)若点P在x轴上运动,则在y轴上是否存在点Q,使以M、N、C、Q为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。
初中中考二次函数压轴试卷试题分类汇编及含答案
中考二次函数压轴题分类汇编一.极值问题1.二次函数 y=ax2+bx+c 的图象经过点(﹣ 1,4),且与直线 y=﹣x+1 订交于 A、B 两点(如图),A 点在 y 轴上,过点 B 作 BC⊥ x 轴,垂足为点 C(﹣ 3,0).(1)求二次函数的表达式;(2)点 N是二次函数图象上一点(点 N在 AB上方),过 N作 NP⊥x 轴,垂足为点 P,交 AB于点 M,求MN的最大值;(3)在( 2)的条件下,点N在何地址时, BM与 NC互相垂直均分并求出所有满足条件的N 点的坐标.解析:(1)第一求得 A、 B 的坐标,尔后利用待定系数法即可求得二次函数的解析式;(2)设 M的横坐标是 x,则依照 M和 N 所在函数的解析式,即可利用 x 表示出 M、 N 的坐标,利用 x 表示出 MN的长,利用二次函数的性质求解;(3)BM与 NC互相垂直均分,即四边形 BCMN是菱形,则 BC=MC,据此即可列方程,求得 x 的值,进而获取 N 的坐标.解:(1)由题设可知A( 0, 1),B(﹣ 3,),依照题意得:,解得:,则二次函数的解析式是:y=﹣﹣ x+1;(2)设 N(x,﹣ x2﹣x+1),则 M、 P 点的坐标分别是( x,﹣ x+1),(x,0).∴MN=PN﹣PM=﹣ x2﹣x+1﹣(﹣ x+1)=﹣x2﹣x=﹣( x+)2+,则当 x=﹣时, MN的最大值为;(3)连接 MN、BN、BM与 NC互相垂直均分,即四边形 BCMN是菱形,由于 BC∥MN,即 MN=BC,且 BC=MC,即﹣ x2﹣ x=,且(﹣ x+1)2+( x+3)2=,解得: x=1,故当 N(﹣ 1, 4)时, MN和 NC互相垂直均分.谈论:此题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判断的综合应用,利用二次函数的性质能够解决实责问题中求最大值或最小值问题.2. 如图,抛物线 y=x2+bx+c 与 y 轴交于点 C(0,﹣ 4),与 x 轴交于点 A,B,且 B 点的坐标为( 2, 0)(1)求该抛物线的解析式.(2)若点 P 是 AB上的一动点,过点P 作 PE∥AC,交 BC于 E,连接 CP,求△ PCE面积的最大值.(3)若点 D为 OA的中点,点 M是线段 AC上一点,且△ OMD为等腰三角形,求M点的坐标.考点:二次函数综合题.解析:(1)利用待定系数法求出抛物线的解析式;(2)第一求出△ PCE面积的表达式,尔后利用二次函数的性质求出其最大值;(3)△ OMD为等腰三角形,可能有三种状况,需要分类谈论.2 解答:解:( 1)把点 C( 0,﹣ 4), B( 2, 0)分别代入 y=x +bx+c 中,得,∴该抛物线的解析式为y=x2+x﹣4.(2)令 y=0,即 x2+x﹣4=0,解得 x1=﹣4,x2=2,∴A(﹣ 4,0), S△ABC=AB?OC=12.设P 点坐标为( x, 0),则 PB=2﹣x.∵PE∥AC,∴∠ BPE=∠BAC,∠ BEP=∠BCA,∴△ PBE∽△ ABC,∴,即,化简得: S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB?OC﹣ S△PBE=×( 2﹣x)× 4﹣( 2﹣ x)2=x2﹣x+=( x+1)2+3∴当 x=﹣1 时, S△PCE的最大值为 3.(3)△ OMD为等腰三角形,可能有三种状况:( I )当 DM=DO时,如答图①所示.DO=DM=DA=2,∴∠ OAC=∠AMD=45°,∴∠ ADM=90°,∴M点的坐标为(﹣ 2,﹣ 2);(II )当 MD=MO时,如答图②所示.过点 M作 MN⊥ OD于点 N,则点 N 为 OD的中点,∴DN=ON=1, AN=AD+DN=3,又△ AMN为等腰直角三角形,∴ MN=AN=3,∴M点的坐标为(﹣ 1,﹣ 3);(I II )当 OD=OM时,∵△ OAC为等腰直角三角形,∴点 O到 AC的距离为× 4=,即 AC上的点与点 O之间的最小距离为.∵> 2,∴ OD=OM的状况不存在.综上所述,点 M的坐标为(﹣ 2,﹣ 2)或(﹣ 1,﹣ 3).谈论:此题是二次函数综合题,观察了二次函数的图象与性质、待定系数法、相似三角形、等腰三角形等知识点,以及分类谈论的数学思想.第( 2)问将面积的最值转变成二次函数的极值问题,注意其中求面积表达式的方法;第( 3)问重在观察分类谈论的数学思想,注意三种可能的状况需要一一解析,不能够遗漏.二.组成图形的问题1.如图,抛物线y=ax 2+bx+c(a≠ O)与 y 轴交于点C(O,4) ,与 x 轴交于点 A 和点 B,其中点 A 的坐标为( -2,0 ),抛物线的对称轴x=1 与抛物线交于点D,与直线 BC交于点 E(1)求抛物线的解析式;(2) 若点 F 是直线 BC上方的抛物线上的一个动点,可否存在点 F 使四边形ABFC的面积为17,若存在,求出点 F 的坐标;若不存在,请说明原由;(3)平行于 DE的一条动直线 Z 与直线 BC订交于点 P,与抛物线订交于点 Q,若以 D、 E、P、Q为极点的四边形是平行四边形,求点 P 的坐标。
中考数学压轴题专练之二次函数综合(含20题)
中考数学压轴题专练之二次函数综合(含20题)1.如图1,平面直角坐标系中,O为坐标原点,抛物线y=12x2+bx+c经过点A(﹣2,0),B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)点P是直线BC下方抛物线上一点,PH⊥BC于H,当PH=3√24时,求P点坐标;(3)如图2,∠DAE=90°,直线DE经过点C,且CE=2CD,直线m经过点D,直线n经过点E,且m∥AC∥n,则直线m与n之间的最大距离为.2.如图,二次函数y=(x﹣1)2+a与x轴相交于点A,B,点A在x轴负半轴,过点A的直线y=x+b交该抛物线于另一点D,交y轴正半轴于点H.(1)如图1,若OH=1,求该抛物线的解析式;(2)如图1,若点P是线段HD上一点,当1AH +1AD=3AP时,求点P的坐标(用含b的代数式表示);(3)如图2,在(1)的条件下,设抛物线交y轴于点C,过A,B,C三点作⊙Q,经过点Q的直线y=hx+q交⊙Q于点F,I,交抛物线于点E,G.当EI=GI+FI时,求2h2的值.3.如图1,在平面直角坐标系中,直线y=1与抛物线y=4x2相交于A,B两点(点B在第一象限),点C在AB的延长线上.且BC=n•AB(n为正整数).过点B,C的抛物线L,其顶点M在x轴上.(1)A点的坐标为;B点的坐标为;(2)当n=1时,抛物线L的函数表达式为;(3)如图2,抛物线E:,经过B、C两点,顶点为P.且O、B、P三点在同一直线上,求a n与n的关系式.4.如图,在平面直角坐标系中,二次函数y=14x2+bx+c的图象经过点A(6,0)、C(0,﹣3),点P为抛物线上一动点,其横坐标为m(m≥1).(1)求该抛物线对应的函数表达式.(2)若此抛物线在点P右侧部分(包括点P)的最低点的纵坐标为﹣5+m时,求m的值.(3)已知点M(m,m﹣3),点N(m﹣1,m﹣4),以MP、MN为邻边作▱PMNQ.①当抛物线在▱PMNQ 内部的部分的函数值y 随x 的增大而增大时,直接写出m 的取值范围;②当抛物线在▱PMNQ 内部的部分的函数值y 随x 的增大而增大或y 随x 的增大而减小时,抛物线与▱PMNQ 的边交点的纵坐标之差为12时,直接写出m 的值.5.综合与探究如图1,平面直角坐标系xOy 中,抛物线y =−38x 2+bx +3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(﹣2,0),抛物线上有一动点P ,点P 在第一象限,过点P 作y 轴的平行线分别交x 轴和直线BC 于点D 和点E . (1)求抛物线及直线BC 的函数关系式;(2)当点E 为线段DP 的中点时,求点E 的坐标;(3)如图2,作射线OP ,交直线BC 于点F ,当△OBF 是等腰三角形时,求点F 的坐标.6.如图,抛物线y=ax2+bx﹣4(a≠0).与x轴交于A(4,0)和B(﹣1,0)两点,与y 轴交于点C,点P是直线AC下方的抛物线上一动点.(1)求抛物线的解析式;(2)过点P作PD⊥x轴于点D,交直线AC于点E,求线段PE的最大值及此时点P的坐标;(3)取(2)中PE最大值时的P点,在坐标平面内是否存在点Q,使得以点A、C、P、Q为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标,若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于A(﹣2,0)、B(4,0)两点(点A在点B的左侧),与y轴交于点C,连接AC、BC,点P为直线BC上方抛物线上一动点,连接OP交BC于点Q.(1)求抛物线的函数表达式;(2)当PQOQ 的值最大时,求点P的坐标和PQOQ的最大值;(3)把抛物线y=−12x2+bx+c向右平移1个单位,再向上平移2个单位得新抛物线y',M是新抛物线上一点,N是新抛物线对称轴上一点,当以M、N、B、C为顶点的四边形是平行四边形时,写出所有符合条件的N点的坐标,并写出求解点N的坐标的其中一种情况的过程.8.如图,△ABC的三个顶点坐标分别为A(﹣1,0),B(0,32),C(3,0),抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点.(1)求抛物线y=ax2+bx+c(a≠0)的函数表达式;(2)点M是抛物线在第一象限上一点.①连接AM与BC相交于点E,即将△ABC分为两个三角形,若这两个三角形的面积之比为1:2时,则点M的坐标为,直线AM的函数表达式为;②将△ABO沿着x轴正方向平移,当点B与点M重合时停止,点A的对应点为A',点O 的对应点为点O'.求出△A'MO'与△BOC重合部分的图形的周长;(3)在抛物线y=ax2+bx+c(a≠0)的对称轴上取一点K,连接CK,使∠ACK+∠BAO =90°,延长CK交抛物线于点P,连接AK.动点Q从C点出发,沿射线CA以每秒1个单位长度的速度运动,是否存在某一时刻,使∠AQP=∠AKP?若存在,请直接写出此时t的值;若不存在,请说明理由.9.在平面直角坐标系中,抛物线y=x2+bx+c(b、c为常数)与x轴交点坐标为(1,0),与y轴交点的坐标为(0,3),点A、点B均在这个抛物线上,点A的横坐标为m,点B 的横坐标为1﹣m.当B在A的左侧时,抛物线上A、B两点之间的部分(包括A、B两点)记为图象G.(1)求此抛物线对应的函数表达式;(2)当图象G对应的函数值y随x的增大而减小时,求m的取值范围;(3)图象G最大值与最小值差为h,求h与m之间的函数关系式;(4)设点E的坐标为(m﹣3,2),点F的坐标(m﹣3,m﹣3),连结EF,以EF为边长向右作正方形EFPQ,当抛物线与正方形EFPQ的边只有两个交点,且交点的纵坐标之差为1时,直接写出m的值.10.如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣2),B(2,0).(Ⅰ)求该抛物线的解析式;(Ⅱ)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,交线段AB于点H.求PC的最大值及此时点P的坐标;(Ⅲ)若点M是抛物线的顶点,在x轴上存在一点N,使△AMN的周长最小,求此时点N的坐标.11.在平面直角坐标系中,∠ACB=90°,AB∥x轴,如图1,C(1,0),且OC:OA=AC:BC=1:2.(1)求点A、点B的坐标;(2)已知抛物线y=ax2+bx+c(a≠0)过A、B、C三点,求该抛物线的表达式;(3)如图2,抛物线对称轴与AB交于点D,现有一点P从点A出发,以每秒1个单位的速度在AB上向点B运动,另一点Q从点D与点P同时出发,以每秒5个单位在抛物线对称轴上运动.当点P到达B点时,点P、Q同时停止运动,问点P、Q运动到何处时,△PQB面积最大,并求出最大面积.12.如图,抛物线y =ax 2+bx +2与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交点C ,连接AC ,BC .抛物线的对称轴交x 轴于点E ,交BC 于点F ,顶点为M . (1)求抛物线的解析式及顶点M 的坐标;(2)若D 是直线BC 上方抛物线上一动点,连接OD 交BC 于点E ,当DE OE的值最大时,求点D 的坐标;(3)已知点G 是抛物线上的一点,连接CG ,若∠GCB =∠ABC ,求点G 的坐标.13.如图,抛物线y =ax 2﹣8ax +12a (a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且使∠OCA =∠OBC . (1)求线段OC 的长;(2)求该抛物线的函数关系式;(3)在抛物线的对称轴上是否存在一点P ,使得△BCP 是以BC 为腰的等腰三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0),B (4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线在第一象限交于点P,与直线BC交于点M,记m=S△CPMS△CDM,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,m取最大值时,是否存在x轴上的点Q及坐标平面内的点N,使得P,D,Q,N四点组成的四边形是矩形?若存在,请直接写出所有满足条件的Q点和N点的坐标;若不存在,请说明理由.15.已知:y=12x2+bx+c经过点A(﹣2,﹣1),B(0,﹣3).(1)求函数的解析式;(2)平移抛物线使得新顶点为点P(m,n).①当m>0时,若S△OPB=3,且在直线x=k的右侧,两函数值y都随x的增大而增大,求k的取值范围;②点P在原抛物线上,新抛物线与y轴交于点Q,当∠BPQ=120°时,求点P的坐标.16.已知抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,交y 轴于点C ,M 是抛物线顶点.(1)直接写出抛物线的函数解析式;(2)如图1,点P 在抛物线上,若直线AP 经过△CBM 外接圆的圆心,判断△CBM 的形状并求点P 的横坐标;(3)以点P (1,t )为圆心的⊙P 与x 轴相切且与抛物线只有两个公共点,求t 的取值范围.17.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (4,0),C (﹣1,0)与y 轴交于点B ,已知tan ∠BAC =34. (1)求抛物线的函数表达式;(2)如图1,点P 为抛物线上的点,且点P 的横坐标为3,F 是抛物线上异于点P 的点,连接P A ,PB ,当S △P AB =S △F AB ,求点F 的横坐标;(3)如图2,点Q 为直线AB 上方抛物线上一点,OQ 交AB 于点D ,QE ∥BO 交AB 于点E .记△QDE ,△QDB ,△BDO 的面积分别为S 1,S 2,S 3.求S 1S 2+S 2S 3的最大值.18.如图1,对于平面上小于或等于90°的∠MON,我们给出如下定义:若点P在∠MON 的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON 的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角记为∠xOy.(1)已知点A(4,0)、点B(3,1),则d(∠xOy,A)=,d(∠xOy,B)=.(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=4,在图2中画出点P 运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=43x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=−12x2+2x+c经过A(5,0),与射线OT交于点D,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求c的值和当d(∠xOT,Q)取最大值时点Q的坐标.19.如图,已知抛物线y=ax2+bx+c(a>0)与x轴交于A、B两点,与y轴交于点C(0,2),抛物线的对称轴为直线x=52,且OB=2OC.连接BC,点D是线段OB上一点(不与点O、B重合),过点D作x轴的垂线,交BC于点M,交抛物线于点N.(1)求抛物线的表达式;(2)当线段MN最大时,求点M的坐标;(3)连接BN,以B、D、N为顶点的三角形是否能够与△OBC相似?若能,请求出点N 的坐标;若不能,请说明理由.20.如图,已知抛物线y=﹣x2﹣2x+3的顶点为D点,且与x轴交于B,A两点(B在A的左侧),与y轴交于点C.点E为抛物线对称轴上的一个动点:(1)当点E在x轴上方且CE∥BD时,求sin∠DEC的值;(2)若点P在抛物线上,是否存在以点B,E,C,P为顶点的四边形是平行四边形?请求出点P的坐标;(3)若抛物线对称轴上有点E,使得AE+√55DE取得最小值,连接AE并延长交第二象限抛物线为点M,从请直接写出AM的长度.。
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。
二次函数压轴题集锦带答案(2024年中考真题)
二次函数压轴题汇编带答案(中考真题)1.(24年安徽中考)已知物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点11(,)A x y 在抛物线22y x x =-+上,点11(,)B x t y h ++在抛物线2y x bx =-+上.(i)若3h t =,且10,0x t > ,求h 的值;(ii)若 11x t =-,求h 的最大值.2.(24年包头中考)如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.3.(24年成都中考)如图,在平面直角坐标系xOy 中,抛物线()2:230L y ax ax a a =-->与x 轴交于,A B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长(2)当1a =时,若ACD ∆的面积与ABD ∆的面积相等,求tan ABD ∠的值:(3)延长CD =交x =轴于点E =,当AD DE =时,将ADB ∆沿DE 方向平移得到A EB ''∆.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.4.(24年重庆中考)如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.5.(24年浙江中考)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A -,对称轴为直线12x =-.(1)求二次函数的表达式(1)若点(1,7)B 向上平移2个单位长度,向左平移(0)m m >个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值(3)当2≤a ≤n 时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.6.(24年呼伦贝尔中考)如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①m 为何值时线段PD 的长度最大,并求出最大值;②是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.7.(24年广州中考)已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴(2)求m 的值(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.8.(24年绥化中考)综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B ,D ,E ,F 为顶点的四边形是菱形时,请直接写出点F 的坐标.9.(24年上海中考)在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式(2)直线x m =(0m >)与新抛物线交于点P,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.10.(24年乐山中考)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M ,N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.11.(24年甘肃武威中考)如图1,抛物线()2y a x h k =-+交x 轴于O,()4,0A 两点,顶点为(2,B.点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.12.(24年枣庄中考)在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.13.(24年四川广安中考)如图,抛物线223y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.14.(24年四川南充中考)已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B.(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.15.(24年四川泸州中考)如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D,在y 轴上是否存在点E,使得以B,C,D,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.16.(24年河北中考)如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时①求直线PQ 的解析式.②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n.17.(24年武汉中考)抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.18.(24年四川德阳中考)如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求5PA PM +的最小值.19.(24年湖北中考)如图,二次函数23y x bx =-++交x 轴于(1,0)A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图像上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)将二次函数沿水平方向平移,新的图像记为L ,L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图像为,U U 与ABC ∆重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围。
2024年中考数学二次函数压轴题归类(30个)
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题18:抛物线上找一点P, 作x轴, 交线段AC于点N, 使AC分∆ 的面积为2:1两
部分?
形
顶点坐标(h, k)
原始三角
形;重视
四点围成
的三角形
(边、角
关系)
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题2:判断∆ 的形状,并说明理由
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
二次函数压轴题归类(30个)
题号
针对变式题目
形定问题
1-解析式、2-三角形形状
线段问题
3-线段相等、4-线段成比例
最值问题
5-线段最值1 (直)、6-线段最值2 (斜) 、7-和最小8-差最大 、9-两村一路
面积问题
10-定点求面积 、11-斜三角形求面积 、12--(定+动) 求面积、13-同底等高 (直) 、14同底等高(斜) 、 15-面积平分1、16-面积平分 2 、 17-面积平分3 、18-面积分割
时M点坐标
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题9:线段 MN=1,在对称轴上运动 (M点在N点上方),求四边形BMNC周长的最小值及此
时M点坐标
将军饮马解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,
对称。解题策略:对称、翻折→化同为异;化异为同;化折为直。
中考数学—二次函数的综合压轴题专题复习附答案
一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二次函数压轴题专题分类训练题型一:面积问题【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S△PAB =89S △C AB,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段O A绕原点O顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△B OC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.图22.(2010绵阳)如图,抛物线y = a x2+ bx + 4与x 轴的两个交点分别为A (-4,0)、B(2,0),与y 轴交于点C,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x轴、y轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF 上求一点H,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A,交y 轴于点B,抛物线y=ax 2+b x+c经过A、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE 的面积等于四边形APC E的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.C ED GAxy OB F题型二:构造直角三角形【例2】(2010山东聊城)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.【变式练习】1.(2012广州)如图,抛物线y =与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式. E2.(2009成都)在平面直角坐标系xOy 中,已知抛物线y =2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N,且C OS∠BCO=10。
(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?3.(2012杭州) 在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值4.如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C.(1)求点A的坐标;4>-时,上述关,求出b;若不存题型三:构造等腰三角形【例3】如图,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A(1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)在x 轴上是否存在一点Q 使得△A CQ 为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【变式练习】1.如图,在平面直角坐标系中,点A 的坐标为(m ,m),点B 的坐标为(n ,﹣n),抛物线经过A 、O 、B 三点,连接OA、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n(m<n)分别是方程x2﹣2x﹣3=0的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD. ①当△OPC 为等腰三角形时,求点P的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标.2.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)写出A,B,C三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.3.(2010黄冈)已知抛物线2(0)y ax bx c a =++≠顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线54y =作垂线,垂足为M,连FM (如图). (1)求字母a,b,c的值;(2)在直线x=1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使P M=PN 恒成立,若存在请求出t 值,若不存在请说明理由.AC By x0 11题型四:构造相似三角形【例4】(2011临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.(2012天水)如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.ﻫ(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7),且顶点C的横坐标为4,该图象在x 轴上截2. 如图,二次函数的图象经过点D(0,39得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【例5】(2012苏州)如图,已知抛物线y=x2 - (b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.ﻫ(1)点B的坐标为 ,点C的坐标为(用含b的代数式表示);ﻫ(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;ﻫ(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.ﻬ【变式练习】1.(2012上海宝山)如图,平面直角坐标系xOy中,已知点A(2,3),线段AB垂直于y轴,垂足为B ,将线段AB 绕点A 逆时针方向旋转90°,点B 落在点C 处,直线BC 与x 轴的交于点D .(1)试求出点D的坐标;(2)试求经过A 、B 、D 三点的抛物线的表达式,并写出其顶点E 的坐标;(3)在(2)中所求抛物线的对称轴上找点F ,使得以点A 、E 、F 为顶点的三角形与△ACD 相似.2.(2012上海杨浦区)已知直线112y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 绕点O 顺时针旋转90︒,使点A 落在点C ,点B 落在点D ,抛物线2y ax bx c =++过点A 、D 、C ,其对称轴与直线AB 交于点P , (1)求抛物线的表达式; (2)求∠POC 的正切值; (3)点M 在x 轴上,且△ABM 与△APD 相似,求点M的坐标。
3.(2012宁波)如图,二次函数y =ax 2+bx +c 的图象交x 轴于A (﹣1,0),B(2,0),交y 轴于C (0,﹣2),过A,C 画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.题型五:构造梯形【例6】已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.【变式练习】1.已知平面直角坐标系xOy 中, 抛物线y =ax2-(a +1)x与直线y =kx 的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P 在线段OA 上,过点P作y 轴的平行线交(1)中抛物线于点Q ,求线段P Q长度的最大值;(3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N的坐标及梯形AOMN 的面积.2.(2011义乌)已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B . (1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN//x 轴,交P B于点N. 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.3.如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M(0,m )作y轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D,使以A 、B、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.题型六:构造平行四边形【例7】(2010陕西)如图,在平面直角坐标系中,抛物线经过A(—1,0),B(3,0),C(0,—1)三点。