南昌大学铁磁材料的磁滞回线和基本磁化曲线
12铁磁材料的磁滞回线和基本磁化曲线
![12铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/41fba59abd64783e08122b09.png)
实验报告:铁磁材料的磁滞回线和基本磁化曲线一、实验题目:铁磁材料的磁滞回线和基本磁化曲线二、实验目的:1 认识铁磁物质的磁化规律,比较两种典型的铁磁物质动态磁化特性。
2 测定样品的基本磁化曲线,作μ-H曲线。
3 计算样品的H c、B r、B m和(H m·B m)等参数。
4 测绘样品的磁滞回线,估算其磁滞损耗。
三、实验原理:1 铁磁材料的磁滞现象铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质磁感应强度 B与磁化场强度H之间的关系曲线。
图中的原点0表示磁化之前铁磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段0a所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H m时,B到达饱和值,0abs称为起始磁化曲线,图1表明,当磁场从H m逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“0”点,而是沿另一条新曲线SR下降,比较线段0S和SR可知,H减小B相应也减小,但B的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。
2C磁场,H C 称为矫顽力,它的大小反映铁磁材料保持剩磁状态能力,线段RD 称为退磁曲线。
图1还表明,当磁场按H m →0→H C →-H m →0→H C →H m 次序变化,相应的磁感应强度B 则沿闭合曲线SRDS ′R ′D ′S 变化,这条闭合曲线称为磁滞回线,所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗。
可以证明,磁滞损耗与磁滞回线所围面积成正比。
铁磁材料的磁滞回线和基本磁化曲线sc
![铁磁材料的磁滞回线和基本磁化曲线sc](https://img.taocdn.com/s3/m/cefbc4ceb8f67c1cfad6b832.png)
南昌大学物理实验报告课程名称:大学物理实验实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:引言:铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞曲线是反映该材料的重要特性,也是设计选用材料的重大依据。
一、实验目的1.掌握使用磁滞回线测试仪测绘磁滞回线的方法2.了解铁磁材料的磁化规律,用示波器法观察磁滞回线,比较两种典型铁磁物质的动态磁化特性3.测定样品的基本磁化特性曲线(B-H曲线),并作μ-H曲线。
4.测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关的Hc、、、H、B等参量二、实验仪器TH-MHC型智能磁滞回线测试仪、示波器。
三、实验原理1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H 迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至HS时,B到达饱和值BS,oabs称为起始磁化曲线。
图1表明,当磁场从HS逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。
当磁场反向从O逐渐变至-时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,HD称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。
图1还表明,当磁场按HS→O→HD→-HS→O→HD´→HS次序变化,相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化,这闭合曲线称为磁滞回线。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/9770a9cfbe23482fb5da4c38.png)
铁磁材料的磁滞回线和基本磁化曲线【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2. 测定样品的基本磁化曲线,作μ-H曲线。
3. 测定样品的H D、B r、B S和(H m·B m)等参数。
4. 测绘样品的磁滞回线,估算其磁滞损耗。
【实验仪器】DH4516型磁滞回线实验仪,数字万用表,示波器。
【实验原理】铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。
图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。
当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。
图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S次序变化,相应的磁感应强度B则沿闭合曲线'变化,这闭合曲线称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁SR'DSRD'S心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。
铁磁材料的磁滞回线圈和基本磁化曲线
![铁磁材料的磁滞回线圈和基本磁化曲线](https://img.taocdn.com/s3/m/cefd9dae376baf1ffc4fadc2.png)
0.09500
0.01575
2.8
2080
595
0.06933
0.09917
0.01430
3.0
2240
610
0.07467
0.10167
0.01362
表二 B-H 曲线
测试条件:
NO. (mV)
1
910
2
-910
3
360
4
-360
5
0
6
0
7
600
8
400
9
200
10
600
11
-400
12
-600
13
从图 1 可以看出: (1)当 H=0 时,B 不为零,铁磁材料还保留一定值的磁感应强度 Br ,通
常称 Br 为铁磁材料的剩磁。
(2)要消除剩磁 Br ,使 B 降为零,必须加一个反方向磁场 HC ,这个反向
磁场强度 HC 叫做该铁磁材料的矫顽磁力。 (3)H 上升到某一个值和下降到同一数值时,铁磁材料内的 B 值并不相同,
南昌大学物理实验报告
课程名称:
大学物理实验(下)_____________
实验名称: 铁磁材料的磁滞回线圈和基本磁化曲线
学院: 信息工程学院 专业班级:
学生姓名:
学号: __
实验地点: 基础实验大楼 B208 座位号: ___
实验时间: 第 8 周星期三下午三点四十五分_______
一、 实验目的
1、 掌握用磁滞回线测试仪测绘磁滞回线的方法。 2、 了解铁磁材料的磁化规律,用示波器法观察磁滞线,比较两种典型铁磁
物质的动态磁化特性。 3、 测定样品的基本磁化特性曲线(B-H 曲线),并作μ-H 曲线。 4、 测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关参量。
磁滞回线和基本磁化曲线
![磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/3f13294a804d2b160b4ec054.png)
磁滞回线和基本磁化曲线【实验原理】铁材料的磁滞现象: 铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间的关系的特征。
将一块未被磁化的铁磁材料放在磁场中进行磁化.当磁场强度H由零增加时,磁感应强度B由零开始增加。
H继续增加,B增加缓慢,这个过程的B -H 曲线称为起始磁化曲线,如图l 中的oa 段所示。
当磁场强度H减小,B也跟着减小,但不按起始磁化曲线原路返回,而是沿另一条曲线(图1中)ab 段下降,当H 返回到零时,B不为零,而保留一定的值Br,即铁磁材料仍处于磁化状态,通常Br称为磁材料的剩磁。
将磁化场反向,使磁场强度负向增加,当H达到某一值材料中的磁感应强度才为零,这个磁场强度Hc 继续增加反向磁场强度,磁感应强度B反向增加。
如图1中cd 段所示。
Hc时,铁磁称为磁材料的矫顽力。
增加到Hm时,其过程与磁场强度从Hm减小到-Hm 过程类似。
这样形成一个闭合的磁滞回线。
逐渐增加H从值,可以得到一系列的逐渐增大的磁滞回线,如图 2 所示。
把原点与每个磁滞回线的顶端基本磁化曲线。
如图1中oa 段所示。
当Hm增加到一定程度时,磁滞回线两端较平,即H增加,B增加很小,在此时附近铁磁材料处于饱和状态。
基本磁化曲线上的点与原点连线的斜率称为磁导率。
在给定磁场强度条件下表征单位H 所激励出的磁感应强度B ,直接表示材料磁化性能强弱。
从磁化曲线上可以看出磁导率并不是常数。
当铁磁材料处于磁饱和状态时,磁导率减小较快。
曲线起始点对应的磁导率称为初始磁导率。
磁导率的最大值称为最大磁导率。
这两者反映 2 、示波器显示样品磁滞回线的实验原理及电路2 、示波器显示样品磁滞回线的实验原理及电路曲线的特点。
如图3所示。
只要设法使示波器X 轴输入正比于被测样品中的H,使Y 轴输入正比于样品的B , 保持H和B为样品中的原有关系就可在示波器荧光屏上如实地显示出样品的磁滞回线。
怎样才能使示波器的X轴输入正比于H , Y轴输入正比于B 呢?图4为测试磁滞回线的原理图。
铁磁材料的磁滞回线和基本磁化曲线2021推选
![铁磁材料的磁滞回线和基本磁化曲线2021推选](https://img.taocdn.com/s3/m/c006cd312cc58bd63086bd61.png)
磁选滞样回 品线1按顶实点验的仪连上线所为给铁的磁电材路料图的连基接本线磁路化,曲令线,磁导率。,“U选择” 置于0位。
样品退磁。 按观照察实 比验较内样容品的1和要2求的,磁记化录性所能需。的数据,自己画数据表格。
当铁磁材料处于交变磁场中,将沿磁滞回线反复运动,在此过程中要消耗额外的能量,并以热的形式释放,为磁滞损耗。
现磁滞回线。
操作指南(续1)
观察基本磁化曲线。对样品进行退磁,从 U=0开始提高励磁电压,将在显示屏上得到 面积由小到大的一族磁滞回线。这些磁滞回 线的顶点就是样品的基本磁化曲线,长余辉 示波器,便可观察到该曲线的轨迹 。
O在点外为磁磁场中作性用状下态,,能即被强烈磁化,,磁当导磁率场很H高从。0开始增加时,B随之缓慢上升,并当H到 时,B达到饱和值 ,到此为磁化曲线。
连接线路,令 R2 .5 ,“U选择” 置于0 观按察照比 实较验样内品容的1和要2求的,磁记化录性所能需。的数据,自己画数据表格。
在磁外场磁 作场用作停用止下后,能仍被保强持烈磁磁化化状,态磁,导即率磁很滞高。。 磁 令场作用停止后,仍保测持定磁样化品状1态的,特即性磁参滞数。
精品课件!
精品课件!
5,数据处理
按照实验内容的要求,记录所需的数据,自己 画数据表格。
作图。画磁滞回线至少取50个数据。
谢谢观看
当 可磁以场证反 明向 ,从 磁滞0逐损渐耗变与为磁时滞,回B线消所失围,面即积要成消正除比剩。磁,必须加反向磁场。
观察磁滞回线。令U 2 .2 V ,调节示波器,出 对选样品进1按行实退验磁仪,上从所U给=0的开电始路提图高连励接磁线电路压,,令将在显示屏上,得“到U选面择积”由小置到于大0位的。一族磁滞回线。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/261caa5450e2524de5187e95.png)
物理实验报告课程名称:大学物理实验实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、掌握用磁滞回线测试仪测绘磁滞回线的方法。
2、了解铁磁材料的磁化规律,用示波器法观察磁滞回线比较两种典型铁磁物质的动态磁化特性。
3、测定样品的磁化特性曲线(B-H曲线),并作μ-H曲线。
4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关的等参量。
二、实验原理:1、铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B 随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至时,B到达饱和值,OabS称为起始磁化曲线。
图1表明,当磁场从逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR 下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁。
当磁场反向从O逐渐变至-时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。
图1还表明,当磁场按→O→→-→O→´→次序变化,相应的磁感应强度B则沿闭合曲线变化,这闭合曲线称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁芯),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/c965806edd36a32d7275812c.png)
铁磁材料的磁滞回线和基本磁化曲线在各类磁介质中,应用最广泛的是铁磁物质。
在20世纪初期,铁磁材料主要用在电机制造业和通讯器件中,如发电机、变压器和电表磁头,而自20世纪50年代以来,随着电子计算机和信息科学的发展,应用铁磁材料进行信息的存储和纪录,例如现以成为家喻户晓的磁带、磁盘,不仅可存储数字信息,也可以存储随时间变化的信息;不仅可用作计算机的存储器,而且可用于录音和录像,已发展成为引人注目的系列新技术,预计新的应用还将不断得到发展。
因此,对铁磁材料性能的研究,无论在理论上或实用上都有很重要的意义。
磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。
本实验仪用交流电对铁磁材料样品进行磁化,测绘的B-H曲线称为动态磁滞回线。
测量铁磁材料动态磁滞回线的方法很多,用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测绘的独特优点。
一、实验目的1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2.掌握铁磁材料磁滞回线的概念。
3.掌握测绘动态磁滞回线的原理和方法。
4.测定样品的基本磁化曲线,作μ-H曲线。
5.测定样品的H C、B r、H m和B m等参数。
6.测绘样品的磁滞回线,估算其磁滞损耗。
二、实验原理1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特性之一是在外磁场作用下能被强烈磁化,故磁导率μ=B/H很高。
另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。
即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。
将一块未被磁化的铁磁材料放在磁场中进行磁化,图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线oa所示,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H 增至H S时,B达到饱和值B S,这个过程的oabS曲线称为起始磁化曲线。
铁磁材料的磁滞回线及基本磁化曲线_实验报告
![铁磁材料的磁滞回线及基本磁化曲线_实验报告](https://img.taocdn.com/s3/m/9ac357d1710abb68a98271fe910ef12d2af9a9be.png)
铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。
根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。
从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。
关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。
2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。
3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。
4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。
(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。
(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。
5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。
实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/320042d6c1c708a1284a4462.png)
铁磁材料的磁滞回线和基本磁化曲线实验讲义铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性,也是设计选用材料的重要依据。
一:实验目的:1...认识铁磁材料的磁化规律,比较两种典型铁磁物质的动态磁特性。
2...测定样品的基本磁化特性曲线(B m-H m曲线),并作μ—H曲线。
3...测绘样品在给定条件下的磁滞回线,以及相关的H c,B r,B m,和[H B ]等参数。
二:实验原理:铁磁物质是一种性能特异,在现代科技和国防上用途广泛的材料。
铁,钴,镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,磁导率μ 很高。
另一特性是磁滞,即磁场作用停止后,铁磁材料仍保留磁化状态。
图一为铁磁物质的磁感应强度Β与磁场强度HH图一铁磁物质的起始磁化曲线和磁滞回线图中的原点。
表示磁化之前铁磁物质处于磁中性状态,即B=H=O 。
当外磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段落0a所示;继之B随H迅速增长,如ab段所示;其后,B的增长又趋缓慢;当H值增至Hs 时,B 的值达到Bs ,在S点的B s和H s,通常又称本次磁滞回线的B m和H m。
曲线oabs段称为起始磁化曲线。
当磁场从H s逐渐减少至零时,磁感应强度B并不沿起始磁化曲线恢复到o点,而是沿一条新的曲线sr下降,比较线段os和sr,我们看到:H减小,B也相应减小,但B的变化滞后于H的变化,这个现象称为磁滞,磁滞的明显特征就是当H=0时,B不为0,而保留剩磁B r。
当磁场反向从o逐渐变为-H c时,磁感应强度B=O,这就说明要想消除剩磁,必须施加反向磁场,H c称为矫顽力。
它的大小反映铁磁材料保持剩磁状态的能力,线段rc称为退磁曲线。
图一还表明,当外磁场按H s →0→-H c→-H s→0 → H c→ H s次序变化时,相应的磁感应强度则按闭合曲线srcs’r’c’s变化时,这闭合曲线称为磁滞回线。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/6a2d49f3c5da50e2534d7f6d.png)
铁磁材料的磁滞回线和基本磁化曲线铁磁材料的磁滞回线和基本磁化曲线v>铁磁材料的磁滞回线和基本磁化曲线在各类磁介质中,应用最广泛的是铁磁物质。
在 20 世纪初期,铁磁材料主要用在电机制造业和通讯器件中,如发电机、变压器和电表磁头,而自 20 世纪 50 年代以来,随着电子计算机和信息科学的发展,应用铁磁材料进行信息的存储和纪录,例如现以成为家喻户晓的磁带、磁盘,不仅可存储数字信息,也可以存储随时间变化的信息;不仅可用作计算机的存储器,而且可用于录音和录像,已发展成为引人注目的系列新技术,预计新的应用还将不断得到发展。
因此,对铁磁材料性能的研究,无论在理论上或实用上都有很重要的意义。
磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。
本实验仪用交流电对铁磁材料样品进行磁化,测绘的 B-H 曲线称为动态磁滞回线。
测量铁磁材料动态磁滞回线的方法很多,用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测绘的独特优点。
一、实验目的 1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2.掌握铁磁材料磁滞回线的概念。
3.掌握测绘动态磁滞回线的原理和方法。
4.测定样品的基本磁化曲线,作μ-H 曲线。
5.测定样品的 HC、Br、Hm 和Bm 等参数。
6.测绘样品的磁滞回线,估算其磁滞损耗。
二、实验原理 1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特性之一是在外磁场作用下能被强烈磁化,故磁导率μ=B/H很高。
另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度 H 与磁感应强度 B 之间关系的特性。
即磁场作用停止后,铁磁物质仍保留磁化状态,图1 为铁磁物质的磁感应强度 B 与磁场强度 H 之间的关系曲线。
将一块未被磁化的铁磁材料放在磁场中进行磁化,图中的原点 O 表示磁化之前铁磁物质处于磁中性状态,即 B=H=O,当磁场强度 H 从零开始增加时,磁感应强度 B 随之从零缓慢上升,如曲线 oa 所示,继之 B 随H 迅速增长,如曲线ab 所示,其后 B 的增长又趋缓慢,并当 H 增至HS 时,B 达到饱和值 BS,这个过程的 oabS 曲线称为起始磁化曲线。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/683788f1c1c708a1284a447d.png)
实验九 铁磁材料的磁滞回线和基本磁化曲线实验目的:1、认识铁磁物质的磁化规律。
2、测定样品的基本磁化曲线,作μ-H 曲线。
3、测定样品的H c 、B r 、B m 和[H m ∙B m ]等参数4、测绘样品的磁滞回线,估算其磁滞损耗。
实验仪器:示波器、磁滞回线实验箱,导线。
实验原理:铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态(有剩磁),图一为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。
图一图一中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B=H=0,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。
图一表明,当磁场从Hs 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H=0时,B 不为零,而保留剩磁Br 。
当磁场反向从零逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。
图一还表明,当磁场按H S →O →-H D →-H S →O →H D →H S次序变化,相应的磁感应强度B 则沿闭合曲线SRDS ’R ’D ’S 变化,这闭合曲线称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/9e0dde8001f69e31433294fe.png)
铁磁材料的磁滞回线和基本磁化曲线铁磁材料具有独特的磁化性质,我们在一块未磁化的铁磁材料(铁、镍、钴或其他铁磁合金)的外面密绕线圈,但流过线圈的磁化电流从零逐渐增大时,铁磁材料的磁感应强度B是沿起始磁化曲线随线圈的磁场强度H变化的。
当H增大到最大值后,继续减小到-,然后回复到初始0值时,我们发现:B 是按照 0→→→0→-→-→0→的规律变化,我们称B按照这个变化过程所描绘的曲线为磁滞回线。
对同一铁磁材料且开始时不带磁性,如果取一系列的磁化电流值 0﹤﹤﹤﹤……﹤我们会得到一系列逐渐增大的磁滞回线,如果将每一条磁滞回线的顶点(、)在同一坐标图上标出并光滑连接,我们就得到了铁磁材料的基本磁化曲线。
本实验的主要学习内容为:1、实验原理:a、认识铁磁材料的磁化规律b、了解示波器法显示磁滞回线的基本原理2、实验方法:a、掌握用磁滞回线测试仪测绘磁滞回线的方法。
b、掌握用5703A型示波器测绘基本磁化曲线的方法。
这是一个扩展性的电磁学实验,难度系数1.10较适合理工科各专业学生选做,对非物理、电子专业学生,实验原理理解有一定的困难,实验方法难度适中,本实验的实验思想很有开创性,值得其他专业借鉴。
实验具体内容与要求1、样品退磁开启电源后,顺时针转动“U选择”旋钮,使U从0逐渐增大到3V,然后逆时针旋转使U从3V降到0,清除剩磁。
2、观察磁滞回线,测定基本磁化曲线开启示波器电源,调节好示波器的初始预备状态,对示波器的使用方法应参照实验十一。
示波器选择合适档位,使显示器出现大小合适的磁滞回线图形。
在样品退磁的前提下,励磁电压从0开始逐档升高,记录下每档U所显示的磁滞回线的顶点(、)在坐标值上描点,用一条光滑曲线连接各点,得到基本磁化曲线。
3、B—H曲线测绘选择合适的U值,在仔细阅读本实验附录上磁滞回线测试仪使用说明的基础上,按步骤操作测试仪,取得各采样点的H、B值,作图。
实验仪器简介1、磁滞回线实验仪:主要由试样、励磁电源、电路组成,用于产生基本磁化曲线和磁滞回线各H、B量值。
铁磁材料的磁滞回线和基本磁化曲线
![铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/320042d6c1c708a1284a4462.png)
铁磁材料的磁滞回线和基本磁化曲线实验讲义铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性,也是设计选用材料的重要依据。
一:实验目的:1...认识铁磁材料的磁化规律,比较两种典型铁磁物质的动态磁特性。
2...测定样品的基本磁化特性曲线(B m-H m曲线),并作μ—H曲线。
3...测绘样品在给定条件下的磁滞回线,以及相关的H c,B r,B m,和[H B ]等参数。
二:实验原理:铁磁物质是一种性能特异,在现代科技和国防上用途广泛的材料。
铁,钴,镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,磁导率μ 很高。
另一特性是磁滞,即磁场作用停止后,铁磁材料仍保留磁化状态。
图一为铁磁物质的磁感应强度Β与磁场强度HH图一铁磁物质的起始磁化曲线和磁滞回线图中的原点。
表示磁化之前铁磁物质处于磁中性状态,即B=H=O 。
当外磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段落0a所示;继之B随H迅速增长,如ab段所示;其后,B的增长又趋缓慢;当H值增至Hs 时,B 的值达到Bs ,在S点的B s和H s,通常又称本次磁滞回线的B m和H m。
曲线oabs段称为起始磁化曲线。
当磁场从H s逐渐减少至零时,磁感应强度B并不沿起始磁化曲线恢复到o点,而是沿一条新的曲线sr下降,比较线段os和sr,我们看到:H减小,B也相应减小,但B的变化滞后于H的变化,这个现象称为磁滞,磁滞的明显特征就是当H=0时,B不为0,而保留剩磁B r。
当磁场反向从o逐渐变为-H c时,磁感应强度B=O,这就说明要想消除剩磁,必须施加反向磁场,H c称为矫顽力。
它的大小反映铁磁材料保持剩磁状态的能力,线段rc称为退磁曲线。
图一还表明,当外磁场按H s →0→-H c→-H s→0 → H c→ H s次序变化时,相应的磁感应强度则按闭合曲线srcs’r’c’s变化时,这闭合曲线称为磁滞回线。
铁磁材料的磁滞回线和基本磁化曲线实验报告
![铁磁材料的磁滞回线和基本磁化曲线实验报告](https://img.taocdn.com/s3/m/88a888a3998fcc22bcd10dd6.png)
实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=;H m=m;B r=;H c=m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
南昌大学铁磁材料的磁滞回线和基本磁化曲线
![南昌大学铁磁材料的磁滞回线和基本磁化曲线](https://img.taocdn.com/s3/m/44444ac3f90f76c661371ac7.png)
南昌大学物理实验报告
课程名称:大学物理实验
实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:专业班级:
学生姓名:学号:
实验地点:座位号:
实验时间:
的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的图2 同一铁磁材料的 一簇磁滞回线
图1 铁磁质起始磁化 曲线和磁滞回线
观察和测量磁滞回线和基本磁化曲线的线路如图五所示。
待测样品为磁感应强度B 而设置的绕组。
R 1化场强 L
i
N H 1= L 为样品的平均磁路 ∵ 1R U i =
图 4 不同铁磁材料的磁滞回线图5 实验线路
图6 退磁示意图图7 U B和B的相位差等因素引起的畸变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学物理实验报告
课程名称:大学物理实验
实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:专业班级:
学生姓名:学号:
实验地点:座位号:
实验时间:
一、实验目的:
1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2.测定样品的基本磁化曲线,作μ-H曲线。
3.测定样品的H D、B r、B S和(H m·B m)等参数。
4.测绘样品的磁滞回线,估算其磁滞损耗。
二、实验原理:
铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。
图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。
当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。
图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S次序变化,相应的磁感应强度B则沿闭合曲线S
SRD'S
D
R'
'变化,这闭合曲线称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。
应该说明,当初始态为H=B=O的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图2所示,这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线,由此可近似确定其磁导率
H
B
μ=,因B与H非线性,故铁磁材料的μ不是常数而是随H而变化(如图3所示)。
铁磁材料的相对磁导率可高达数千乃至数万,这一特点是它用途广泛的主要原因之一。
可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图4为常见的两种典型的磁滞回线,其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小,是制造变压器、电机、和交流磁铁的主要材料。
而硬磁材料的磁滞回线较宽,矫顽力大,剩磁强,可用来制造永磁体。
图2 同一铁磁材料的
一簇磁滞回线
图1 铁磁质起始磁化
曲线和磁滞回线
图 3 铁磁材料µ与H并系曲
观察和测量磁滞回线和基本磁化曲线的线路如图五所示。
待测样品为EI 型矽钢片,N 为励磁绕组,n 为用来测量磁感应强度B 而设置的绕组。
R 1为励磁电流取样电阻,设通过N 的交流励磁电流为i ,根据安培环路定律,样品的磁化场强
L
i
N H 1=
L 为样品的平均磁路 ∵ 1
1R U i =
H 1
1
U LR N H •=
∴ (1) (1)式中的N 1、L 、1R 均为已知常数,所以由H U 可确定H 。
在交变磁场下,样品的磁感应强度瞬时值B 是测量绕组n 和C R 2电路给定的,根据法拉第电磁感应定律,由于样品中的磁通φ的变化,在测量线圈中产生的感生电动势的大小为
(2)
S 为样品的截面积。
如果忽略自感电动势和电路损耗,则回路方程为
B U R i ε222+=
图 4 不同铁磁材料的磁滞回线
dt
d n ϕε=2⎰=
dt n 21
εϕ⎰==dt
nS S B 21εϕ图5 实验线路
式中
2i 为感生电流,U B 为积分电容C 两端电压,设在Δt 时间内,i 2向电容2C 的充电电量为Q ,则
C Q U B =
C
Q R i ε222+=∴ 如果选取足够大的R 2和C ,使i 2R 2>>Q/C ,则
222R i =ε
∵dt
dU C dt dQ
i B 2
2==
dt
dU R C εB
2
22=∴ (3) 由(2)、(3)两式可得
B 22
U S
N CR B =
(4)
上式中C 、R 2、n 和S 均为已知常数。
所以由U B 可确定B 0
综上所述,将图5中的U H 和U B 分别加到示波器的“X 输入”和“Y 输入”便可观察样品的B -H 曲线;如将U H 和U B 加到测试仪的信号输入端可测定样品的饱和磁感应强度B S 、剩磁R r 、矫顽力H D 、磁滞损耗〔WBH 〕以及磁导率µ等参数。
三、实验内容和步骤:
1. 电路连接:选样品1按实验仪上所给的电路图连接线路,并令R 1=
2.5Ω,“U 选择”置于O 位。
U H 和U B 分别接示波器的“X 输入”和“Y 输入”,插孔⊥为公共端。
2.样品退磁:开启实验仪电源,对试样进行退磁,即顺时针方向转动“U 选择”旋钮,令U 从0增至3V ,然后逆时针方向转动旋钮,将U 从最大值降为O ,其目的是消除剩磁,确保样品处于磁中性状态,即B =H =0,如图6所示。
3.观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U =2.2V ,并分别调节示波器x 和y 轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线(若图形顶部出现编织状的小环,如图7所示,这时可降低励磁电压U 予以消除)。
图6 退磁示意图 图7 U B 和B 的相位差等因素引起的畸变
4.观察基本磁化曲线,按步骤2对样品进行退磁,从U=0开始,逐档提高励磁电压,将在显示屏上得到面积由小到大一个套一个的一簇磁滞回线。
这些磁滞回线顶点的连线就是样品的基本磁化曲线,借助长余辉示波器,便可观察到该曲线的轨迹。
5.观察、比较样品1和样品2的磁化性能。
6.测绘μ-H曲线:仔细阅读测试仪的使用说明,接通实验仪和测试仪之间的连线。
开启电源,对样品进行退磁后,依次测定U=0.5,1.0…3.0V时的十组H m和B m值,作μ~H曲线。
7.令U=3.0V,R1=2.5Ω测定样品1的B S,R r,H D,W BH,等参数。
8.取步骤7中的H和其相应的B值,用坐标纸绘制B-H曲线(如何取数?取多少组数据?自行考虑),并估算曲线所围面积。
四、实验数据与处理:
电容C1(μF):20 电阻R1(Ω):2.5 电阻R2(kΩ):10 截面S(mm2): 80
励磁绕组N1(匝):150 测量绕组N2(匝):150 平均磁路L(mm):60
表一基本磁化曲线与µ-H曲线
U(V)H×104安/米B×102特斯拉µ=B/H享利/米
0.5 0.0053333330.0006666670.00125
1.0 0.010.0010833330.001083333
1.2 0.0120.0014166670.001180556
1.5 0.0186666670.001750.0009375
1.8 0.0240.0020.000833333
2.0 0.029*******.002250.000767045
2.2 0.0333333330.00250.00075
2.5 0.0433333330.0026666670.000615385
2.8 0.050.0028333330.000566667
3.0 0.0566666670.0030.000529412
表二.磁滞回线
U=1.2V R1=2.5欧姆
H D=43.33 B r=0.083 Bm=0.11
NO H×104A/m B×102T NO H×104A/m B×102T
1
-120-0.1333333339
-33.333333330.033333333
2
1200.133********
-33.33333333-0.1
3
00.0833*******
33.333333330.1
4
0-0.06666666712
33.33333333-0.016666667
5
-46.66666667013
66.666666670.083333333
6
43.33333333014
66.666666670.116666667
7
-66.66666667-0.06666666715
-400.016666667
8
-66.66666667-0.116
600.066666667。