(完整版)三年级重叠问题
小学三年级奥数-重叠问题
重叠问题
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
一、知识要点
三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份 纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因 为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。数学中, 我们将这样的问题称为重叠问题。 解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有 重复包含时,为了不重复计数,应从它们的和中排除重复部分。 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图 形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方 法。
练习2:
同学们排队跳舞,每行、每列人数同样多。小红的位置无论从前数 从后数,从左数还是从右数起都是第4个。跳舞的共有多少人?
为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置 从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜 花队共多少人?
三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置 从前数是第6个,从后数是第5个;从左数、从右数都是第3个。 三(4)班共有学生多少人?
练习4:
三(1)班有学生55人,每人至 少参加赛跑和跳绳比赛中的一种。 已知参加赛跑的有36人,参加 跳绳的有38人。两项比赛都参 加的有几人?
两块木板各长75厘米,像下图这样钉成一块长130厘 米的木板,中间重合部分是多少厘米?
三(5)班有42名同学,会下象棋的有21名同学,会 下围棋的有17名,两种棋都不会的有10名。两种棋都 会下的有多少名?
年级有107个小朋友去春游,带矿泉 的有78人,带水果的有77人,每人至 带一种。三年级既带矿泉水又带水果 小朋友有多少人?
完整版三年级重叠问题
重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5 份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理一一包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意,画出下图:从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+ 10 —仁17面。
练习1 :1. 小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2. 学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3. 同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意,画出下图:0OO0OO0OOO OOCOOOOOOO IOOOOOOOOOO B roooooooooo^ OOOOO00OO0 OOOOOOOQD0 左由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4 + 3 —仁6个人;从前数第5个,从后数第6个,说明竖行有5 + 6 —仁10人,所以做操的同学共有:6X 10=60人。
三年级---重叠问题
优优教育重叠问题一:例题1:有四块各长80 厘米的木板,把它们钉成一块木板(如图),中间钉在一起重叠的部分是10厘米,钉成的木板长多少厘米?2、把四根一样长的铁丝,每根长40 厘米,绑成一根长130厘米的长铁丝,那么每两根中间的重叠部分长多少厘米?3、二⑴班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班。
其中4人两个班都参加。
二⑴班一共有多少人?4、20个同学报名参加美术组和舞蹈组,其中有16 人参加了美术组,12人参加了舞蹈组。
问两个小组都参加的有多少个同学?5、学校开设了自然和趣味数学两门选修课,每个同学至少要选一门,二(3) 班共有48 人,有30 人选了自然课,有13人两门都选了,那么选趣味数学课的同学有多少人?二:练习题1、把两根长20厘米的筷子用绳子捆成一根长筷子,中间捆在一起的重叠部分是3厘米,捆成的长筷子长多少厘米?2、小玲用胶水将两张同样长的纸黏成了一张长为80厘米的长纸条,其中黏在一起的部分长10厘米,这两张纸条各长多少厘米?3、史老师出了两道测试题,全班每个同学都至少答对了一道,答对第一道题的有30人,答对第二道题的有28人,两道都答对的有16人,那么全班同学总共有多少人?4、在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过。
请问:这群小朋友一共有多少人?5、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
已知参加赛跑的有36人,参加跳绳的有38人。
两项比赛都参加的有几人?优优教育三:测试题1、有两块一样长的木板,钉在一起,如果每块木板长25厘米,中间钉在一起的长5厘米,现在长木板有多长?2、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?3、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人?4、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。
小学三年级奥数第19讲 重叠问题(含答案分析)
3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
4、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
练习3:
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
小学三年级奥数第19讲 重叠问题(含答案分析)
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
小学三年级奥数第19讲 重叠问题附答案解析
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
三年级数学应用题重叠
三年级数学应用题重叠在小学三年级的数学学习中,应用题是培养学生逻辑思维和解决问题能力的重要部分。
重叠问题是一种常见的数学问题类型,它涉及到两个或多个集合的交集部分。
以下是几个关于重叠问题的应用题例子,以帮助学生理解和练习解决这类问题。
# 应用题一:班级兴趣小组小明所在的班级有40名学生。
其中,有15名学生参加了数学兴趣小组,有12名学生参加了科学兴趣小组。
如果有两个学生同时参加了数学和科学兴趣小组,那么没有参加任何兴趣小组的学生有多少人?解题步骤:1. 首先确定参加数学兴趣小组和科学兴趣小组的学生总数:15 + 12= 27人。
2. 由于有2名学生同时参加了两个小组,所以这2名学生在总数中被重复计算了一次,需要减去这2人:27 - 2 = 25人。
3. 最后,用班级总人数减去参加了兴趣小组的学生人数,得到没有参加任何兴趣小组的学生人数:40 - 25 = 15人。
# 应用题二:图书馆借书图书馆有100本书。
其中,有30本是科幻小说,有20本是历史书籍。
如果有一部分书籍既是科幻小说又是历史书籍,那么这部分书籍有多少本?解题步骤:1. 首先确定科幻小说和历史书籍的总数:30 + 20 = 50本。
2. 由于图书馆总共只有100本书,如果科幻小说和历史书籍的总数超过了100本,说明有一部分书籍被重复计算了。
3. 计算重叠部分的书籍数量:50 - 100 = -50,这是不可能的,所以实际上重叠部分的书籍数量是科幻小说和历史书籍总数减去图书馆总书籍数的绝对值:|50 - 100| = 50本。
# 应用题三:学校运动会学校运动会上,有200名学生参加了比赛。
其中,有50名学生参加了跳远比赛,有60名学生参加了跑步比赛。
如果同时参加了跳远和跑步比赛的学生有10人,那么只参加一项比赛的学生有多少人?解题步骤:1. 首先确定参加跳远和跑步比赛的学生总数:50 + 60 = 110人。
2. 由于有10名学生同时参加了两项比赛,所以这10名学生在总数中被重复计算了一次,需要减去这10人:110 - 10 = 100人。
(完整版)三年级奥数--重叠问题
课堂小测(1)一、简便计算。
(每题5分)(1)585+199 (2)602+ 228 (3)885-698 (4)825-302(5)99999 +9999+999 +99+9 (6)121+119+120+118+123+122 (7)246+178+254+322 (8)471-284+129 (9)745+837-545 (10)785-227-373(11)457+(243+249)(12)871-(401-129)(13)455-(255-188)二、解决问题。
1.把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?2. 把两根同样长的鸡毛掸子绑在一起,使它们变成一根10分米长的棍子,中间重叠部分是10厘米,原来每根鸡毛掸子有多长?3. 从1楼走到4楼共要用30秒,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要用多少秒?4.有一根木头长6分米,打算把每根锯成6段,每锯开一处,需要5分钟,全部锯完需要多少分钟?5.小虎在做一道减法题时,把减数十位上的9写成了6,减数个位上的0写成了2,最后得到的差是376,正确的结果应该是多少?6.小龙在做一道减法题时,把被减数十位上的9看成了6,减数个位上的6看成了9,最后得到的差是545,正确的差是多少?重叠问题(1)(1)把两根长8分米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是15厘米,这根长木棍有多长?(2)把两根长15厘米的纸条贴在一起,使其成为一条长纸条,中间重叠部分是4厘米,这根长纸条有多长?(3)把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?(4)把两段一样长的纸条贴在一起,是它们变成一段54厘米的纸条,中间重叠部分是6厘米。
原来的纸条有多长?(5)把两段一样长的纸条贴在一起,是它们变成一段100厘米的纸条,中间重叠部分是1分米。
原来的纸条有多长?(6)把两根长的鸡毛掸子绑在一起,使它们变成一根12分米长的棍子,中间重叠部分是8厘米,原来每根鸡毛掸子有多长?(7)两块木板各长80厘米,钉成一块木板,中间重叠部分是12厘米,这块长木板有多长?(8)两块木板各长80厘米,钉成一块长150厘米的木板,中间重合部分是多少厘米?(9)两条长2分米的纸条,粘成一条长18厘米的长纸条,中间重合部分是多少厘米?(10)两根长2米的棍子,绑成一根长39分米的长棍子,中间重合部分是多少厘米?重叠问题(2)(1)同学们排队做操,每行每列的人数同样多。
三年级数学教学设计:“重叠问题”(精选5篇)
三年级数学教学设计:“重叠问题”(精选5篇)第一篇:三年级数学教学设计:“重叠问题”三年级数学教学设计:“重叠问题”三年级数学教学设计:“重叠问题”教学内容:人教版小学数学三年级下册第九单元《数学广角——重叠问题》教学目标:1.通过活动实例,初步渗透集合的思想方法,引导学生学会用韦恩图表示两个集合及它们的交集。
2.培养学生探索能力和会用集合思想解决实际问题的能力。
3.培养学生善于观察、善于思考,养成良好的学习习惯教学重、难点:理解集合图的各部分意义及解决简单问题的计算方法。
教学过程:一.问题情境,导入新课1、同学们,我们群力兆麟小学春季运动会即将召开了,来,看看我们班的报名单,这些是参加跑步比赛的同学(7人),这些是参加跳绳比赛的同学(8人),快来算一算,参加这两项比赛的同学一共有多少人?2、学生在汇报过程中发现问题(有人重复报名)3、教师追问:重复是什么意思?哪几人重复了?到底有几人参加比赛(12人)4、过渡:刚才我们在观察报名单,研究参加比赛总人数时,有同学说15人,有同学说14人,还有同学说12人,看来,问题的关键就在于这份报名单上没有将重复报名的3名同学清楚地表示出来。
你们能不能想个更加直观的办法,让我们一目了然就能知道哪些是参加跑步比赛的同学,哪些是参加跳绳比赛的同学,哪些是两项比赛都参加的同学。
(出现具体要求)二、自主探索,对比设计方案1、小组交流,教师巡视2、各小组汇报设计方案第一组:标注记号法第二组:分类记录第三组:利用两个交叉的圈表示4、对比交流,选择最佳方案(1)出示第二种和第三种方法,看看哪种方法更清楚,更直观,也更简便。
(2)学生发表自己的看法,达成共识(利用两个交叉的圈表示)(3)过渡:看来,我们在交流中发现,利用这样一幅图表示报名情况,不仅简便,而且还能从中获取这么多的信息,下面我们就一起将方法重新呈现在黑板上。
三、了解韦恩图的各部分意义1、教师在黑板上演示。
2、思考汇报:3、进一步巩固理解图中各部分表示的意思。
三年级奥数4种重叠问题
三年级奥数4种重叠问题
以下是三年级奥数中的 4 种重叠问题:
1. 鸡兔同笼问题:假设有若干只鸡和若干只兔子,它们共有若干只脚。
如果假设其中的一些鸡变成了兔子,那么脚的总数会增加;如果假设其中的一些兔子变成了鸡,那么脚的总数会减少。
问有多少只鸡和兔子?
2. 重叠盒子问题:有若干个盒子,每个盒子都可以容纳若干只小动物。
现在要根据每个盒子的容量,将小动物平均分到每个盒子中。
问有多少个盒子和小动物?
3. 重叠蛋糕问题:有若干个蛋糕,每个蛋糕都可以切成若干份。
现在要根据每个蛋糕的切块数,将蛋糕平均分到每个小朋友手中。
问有多少个蛋糕和小朋友?
4. 重叠排队问题:有若干个小朋友,每个小朋友都可以排在若干种位置。
现在要根据每个小朋友的位置,将小朋友排队。
问有多少个小朋友和排队方式?。
重叠问题练习题集锦带答案
重叠问题练习题集锦带答案在数学的世界里,重叠问题常常让同学们感到困惑,但只要我们掌握了方法,就能轻松应对。
下面为大家准备了一些重叠问题的练习题,一起来挑战一下吧!一、基础篇1、学校组织兴趣小组,参加绘画小组的有 25 人,参加书法小组的有 20 人,两个小组都参加的有 8 人。
参加兴趣小组的一共有多少人?答案:参加绘画小组的有 25 人,参加书法小组的有 20 人,但是有8 人两个小组都参加了,这 8 人在计算总人数时被重复计算了一次,所以需要减去一次。
则参加兴趣小组的总人数为 25 + 20 8 = 37(人)2、三(1)班有 45 人,喜欢唱歌的有 28 人,喜欢跳舞的有 20 人,既喜欢唱歌又喜欢跳舞的有 10 人,两种都不喜欢的有多少人?答案:喜欢唱歌的有 28 人,喜欢跳舞的有 20 人,其中既喜欢唱歌又喜欢跳舞的有 10 人,所以喜欢唱歌或者喜欢跳舞的人数为 28 + 20 10 = 38(人)。
班级总人数为 45 人,那么两种都不喜欢的人数为 45 38 = 7(人)3、一次数学测验,做对第一题的有 25 人,做对第二题的有 18 人,两题都做对的有 8 人,至少做对一题的有多少人?答案:做对第一题的有 25 人,做对第二题的有 18 人,两题都做对的有 8 人。
所以至少做对一题的人数为 25 + 18 8 = 35(人)二、提高篇1、某班有 50 名学生,在一次测验中,语文成绩优秀的有 30 人,数学成绩优秀的有 28 人,英语成绩优秀的有 20 人,语文和数学成绩都优秀的有 18 人,语文和英语成绩都优秀的有 12 人,数学和英语成绩都优秀的有 10 人,三科成绩都优秀的有 5 人。
请问:(1)三科成绩都不优秀的有多少人?(2)只有语文成绩优秀的有多少人?答案:(1)语文成绩优秀的有 30 人,数学成绩优秀的有 28 人,英语成绩优秀的有 20 人。
语文和数学成绩都优秀的有 18 人,语文和英语成绩都优秀的有 12 人,数学和英语成绩都优秀的有 10 人,三科成绩都优秀的有 5 人。
(完整版)三年级奥数--重叠问题
一、简易计算。
(每题5分)(1)585+199(2)602+ 228(3)885-698(4)825-302(5)99999+9999+999 +99+9(6)121+119+120+118+123+122(7)246+178+254+322(8)471-284+129(9)745+837-545(10)785-227-373(11)457+(243+249)(12)871-(401-129)(13)455-(255-188)二、解决问题。
1.把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?2.把两根同样长的鸡毛掸子绑在一起,使它们变成一根10分米长的棍子,中间重叠部分是10厘米,原来每根鸡毛掸子有多长?3.从1楼走到4楼共要用30秒,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要用多少秒?4.有一根木头长6分米,打算把每根锯成6段,每锯开一处,需要5分钟,全部锯完需要多少分钟?5.小虎在做一道减法题时,把减数十位上的9写成了6,减数个位上的0写成了2,最后得到的差是376,正确的结果应该是多少?6.小龙在做一道减法题时,把被减数十位上的9看成了6,减数个位上的6看成了9,最后得到的差是545,正确的差是多少?重叠问题(1)(1)把两根长8分米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是15厘米,这根长木棍有多长?(2)把两根长15厘米的纸条贴在一起,使其成为一条长纸条,中间重叠部分是4厘米,这根长纸条有多长?(3)把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?(4)把两段一样长的纸条贴在一起,是它们变成一段54厘米的纸条,中间重叠部分是6厘米。
原来的纸条有多长?(5)把两段一样长的纸条贴在一起,是它们变成一段100厘米的纸条,中间重叠部分是1分米。
原来的纸条有多长?(6)把两根长的鸡毛掸子绑在一起,使它们变成一根12分米长的棍子,中间重叠部分是8厘米,原来每根鸡毛掸子有多长?(7)两块木板各长80厘米,钉成一块木板,中间重叠部分是12厘米,这块长木板有多长?(8)两块木板各长80厘米,钉成一块长150厘米的木板,中间重合部分是多少厘米?(9)两条长2分米的纸条,粘成一条长18厘米的长纸条,中间重合部分是多少厘米?(10)两根长2米的棍子,绑成一根长39分米的长棍子,中间重合部分是多少厘米?重叠问题(2)(1)同学们排队做操,每行每列的人数同样多。
人教版三年级数学 简单的重叠问题
简单的年龄问题
例题1:姐姐今年10岁,弟弟今年6岁,姐姐比弟弟大几岁?5年后姐姐比弟弟大几岁?
提示:今年姐姐比弟弟大4岁,5年后姐姐长了5岁,弟弟也长了5岁,他们的差还是4岁。
不管几年后,他们的差永远是4岁。
结论:两个不同年龄的人,在任何时候两个人的年龄差是一定的。
练习:
1、小明今年8岁,妈妈32岁,小明比妈妈小几岁?小明20
岁时,小明比妈妈小几岁?
2、小林今年10岁,他比爸爸小25岁,5年前爸爸是多少岁?
3、今年弟弟8岁,哥哥14岁,当两人的年龄之和是34岁时,
应该是几年之后的事了?
4、欢欢今年12岁,玲玲4年后的年龄与欢欢今年的年龄相等,
问玲玲今年玲玲几岁?
例题2:小红今年6岁,爸爸30岁,几年后,爸爸的年龄正好是小红的3倍?
提示:
练习:
1、珍珍今年8岁,爸爸的年龄是珍珍的4倍。
4年前,爸爸
的年龄和珍珍的相差几岁?
2、小林今年3岁,爸爸今年31岁,几年后爸爸的年龄是小林
的5倍?
3、明明今年8岁,妈妈的年龄比明明的4倍还多3岁?
4、小红今年5岁,爸爸今年29岁,几年前爸爸的年龄是小红
的9倍?。
小学三年级逻辑思维 第十八讲 重叠问题
小学三年级逻辑思维第十八讲重叠问题【一】25个小朋友排队,从左边数起小林是第12个,从右边数小刚是第9个。
小林和小刚之间隔着几个小朋友?练习1、同学们排队做操,一排有18个小朋友,从前面数起青青是第6个,从后面数起兰兰是第7个。
青青和兰兰之间有多少个小朋友?2、有30个工人排成一行,其中有两个工人戴帽子,从左往右数,第7个戴红帽子,从右往左数,第8个戴蓝帽子。
戴帽子的两个工人中间有几个人?【二】一群小朋友排成一队,从前往后数,小乐是第7个,从后往前数,小乐是第8个。
这群小朋友有多少个?练习1、13个小朋友站成一队,小明站在从前面数第8个,那么从后面数他排在第几个?2、鱼妈妈带着一群鱼宝宝在水中散步,不管从前往后数,还是从后往前数,鱼妈妈都是第5个。
鱼妈妈一共带了多少个鱼宝宝散步呢?【三】三年级组同学参加“六一”节团体操表演,每组排人数同样多,每竖排人数也同样多。
小微的位置从左数是第10人,从右数第8人,从前数第9人,从后数第7人。
参加表演的三年级同学有多少人?练习1、庆祝“六一”,同学们排成方形的鲜花队,无论从前、从后数,还是从左、从右数,李丽都在第4个。
鲜花队共有多少人?2、一共有360名学生做操,小林站在右起第6列,左起第13列。
如果每行人数同样多,小林前面7人,他后面有多少人?【四】把两块一样长的木板,钉在一起,成了一块长木板。
如果这块钉在一起的长木板长45厘米,中间重叠部分是5厘米。
这两块木板各长多少厘米?练习1、把长38厘米和53厘米的两根铁条焊接成一根铁条。
已知焊接部分长4厘米,焊接后这根铁条有多长?2、把两条一样长的彩带扎在一起,形成一条更长的彩带。
这条彩带长27厘米,扎的部分每条彩带都用了3厘米。
原来这两条彩带各长多少厘米?【五】三年级科技活动组共有63人。
在一次定时科技活动比赛中,剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人,每个同学都至少完成了一项活动。
三年级点点乐园(7重叠问题)
第1题:
难度:★
为探测河流水深,研究人员将两根长200厘米的竹竿捆绑在一起进行测量。
为牢固起见,两根竹竿的重叠捆绑部分有30厘米。
请你帮忙算算,捆绑后的竹竿总长度是多少厘米?
A 340
B 370
C 430
第1题答案:B 370
少年宫老师解题:如果两根竹竿没有重叠捆绑,那竹竿的总长度是200×
2=400厘米,由于中间重叠了30厘米,捆绑后的竹竿总长度为400-30=370厘米。
第2题:
难度:★★
青少年活动中心的文学社团和数学俱乐部社团又开始招生了,三四年级共有100人参加这两个社团,经统计每人至少参加了一个社团。
其中参加文学社团的有68人,两个社团都参加的有69人,参加数学俱乐部社团的有几人?
A 99
B 101
C 137
第2题答案:B 101
少年宫老师解题:根据题意,参加两个社团的人数总和是100+69=169人,其中参加文学社团的有68人,那么参加数学俱乐部社团的有169-68=101人。
第3题:
难度:★★★
学校运动队进行“我最喜欢的运动员”调查,结果60名队员中,喜欢姚明的有42人,喜欢刘翔的有39人,一个也不喜欢的只有3人,即喜欢姚明又喜欢刘翔的有多少人呢?
A 18
B 21
C 24
第3题答案:C 24
少年宫老师解题:根据“60名队员中一个运动员也不喜欢的只有3人“,可以知道至少喜欢一名运动员的队员共有60-3=57人,那么即喜欢姚明又喜欢刘翔的有42+39-57=24人。
(完整版)三年级重叠问题
重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意,画出下图:从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+10-1=17面。
练习1:1.小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3.同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意,画出下图:由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。
练习2:1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重叠问题
一、知识要点
三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练
【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少
面?
【思路导航】根据题意,画出下图:
从图上可以看出,从前数起红旗是第8面,从后数起
是第10面,这样红旗就数了两次,重复了一次,所以这
行彩旗共有8+10-1=17面。
练习1:
1.小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?
2.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?
3.同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?
【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?
【思路导航】根据题意,画出下图:
由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。
练习2:
1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?
2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?
3.三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是
120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
2.把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?
3.两根木棍放在一起(如图),从头到尾共长66厘米,其中一
根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘
米?
【例题4】一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。
问两道聪明题都做对的有几人?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对
第二道题的人数加起来得21+18=39人,这39人比全班总人数36
多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,
也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
已知参加赛跑的有36人,参加跳绳的有38人。
两项比赛都参
加的有几人?
2.两块木板各长75厘米,像下图这样钉成一块长130
厘米的木板,中间重合部分是多少厘米?
3.三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。
两种棋都会下的有多少名?
【例题5】三(1)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸。
三(1)班有学生多少人?
【思路导航】根据题意,画出下图:
从上图可以看出,中间重叠部分表示两份报纸都订的10人,这10人既被包括在订《数学报》的32人内,又被包括在订《阅读报》的30人内,重复算了一次,所以要算出全班人数,必须从32+30=62人中去掉被重复算过的10人。
所以全班人数应是62-10=52人。
练习5:
1.三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。
三(4)班共有学生多少人?
2.两块木板各长90厘米,像下图这样钉成一块木板,中间重合部分是15厘米,这块钉在一起的木板总长多少厘米?
3.三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。
三年级既带矿泉水又带水果的小朋友有多少人?。