高中物理中动态平衡问题

合集下载

高中物理精品试题:动态平衡

高中物理精品试题:动态平衡

动态平衡问题1.如图所示,轻绳一端系在质量为m 的物体A 上,另一端系在一个套装粗糙竖直杆MN 的圆环上。

现用水平力F 拉住绳子上一点O ,使物体A 从图中实线位置缓慢下降到虚线位置,但圆环仍保持着原来的位置不动,则在这一过程中,环对杆的摩擦力F 1和环对杆的压力F 2的变化情况是( ) A . F 1保持不变,F 2逐渐增大B . F 1逐渐增大,F 2保持不变C . F 1逐渐减小,F 2保持不变D . F 1保持不变,F 2逐渐减小2. (2010·山东济南模拟)如图,将物体Q 缓慢向右移动一点,P 、Q 始终平衡,物体Q 所受的力中,增大的是( )A .绳子所给的拉力B .地面所给的支持力C.地面所给的摩擦力D.以上各力均不增大3. (2010上海模拟)如图所示,在水平粗糙横杆上,有一质量为m 的小圆环A ,用一细线悬吊一个质量为M 的球B ,今用一水平力F 缓慢地拉起B ,A 仍保持静止不动,设圆环A 受到的支持力为N ,静摩擦力为f ,此过程中 ( )A.N 增大,f 减小B.N 减小,f 减小C.N 不变,f 增大D.N 减小,f 增大4. (2010福建省古田模拟)我国国家大剧院外部呈椭球形。

假没国家大剧院的屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上缓慢爬行(如图所示),他在向上爬的过程中( )A .屋顶对他的支持力变大B .屋顶对他的支持力变小C .屋顶对他的摩擦力变大D .屋顶对他的摩擦力变小5. 如图所示,小球被轻质细绳系住斜吊着放在静止的光滑斜面上,设小球质量m=0.5kg ,斜面倾角α=300,悬线与竖直方向夹角θ=300,光滑斜面的质量M 为3kg ,置于粗糙水平地面上,整个装置处于静止状态。

(取g=10m/s 2)求:(1)悬线对小球拉力的大小(2)地面对斜面的摩擦力大小和方向(3)若在斜面体上施加一水平向左的推力F ,使斜面体缓慢向左移动一小段距离,在此过程中绳子拉力T 和斜面体对球的弹力F N 如何变化?A N M F α θ。

高中物理受力分析(动态平衡问题)超精辟

高中物理受力分析(动态平衡问题)超精辟

做题技巧:高中物理受力分析(动态平衡问题一般有三种做法,一种是用矢量三角形也是本次专题所讲解的内容,另外两种分别是用相似三角形和动态圆,我们下次讲解)动态平衡(矢量三角形)的做法分为以下几步:1、找一个大小和方向都不改变的力(一般为重力)2、找另外一个力(方向不变,大小在改变)3、第三个力,可以看这个力是怎样转动的,或者看这个力与水平方向上或者竖直方向上的夹角怎么改变。

因为是受到三个力,三个力平移到一个三角形里面满足首尾相连的矢量三角形,故边长边长则力变大,否则反之。

三、单选题(共15小题)1.如图所示,保持θ不变,将B点向上移,则BO绳的拉力将:A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小例如:1、保持重力的大小方向不变,画出F1(OC方向上的力)2、保持角度θ不变,即AO方向上的力的方向不变3、B点上移,即BO与竖直方向上夹角变小接下来只需要构建矢量三角形即可,得出边长的变化关系进而得出力的变化关系2.如图,用两根等长轻绳将木板悬挂在竖直木桩上的等高的两点,制成一简易秋千.某次维修时将两绳各剪去一小段,但仍保持等长且悬挂点不变.木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小3.将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示.用力F拉小球b,使两个小球都处于静止状态,且细线Oa与竖直方向的夹角保持θ=60°,则F的最小值为()A. B.mgC.D.4.如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上.现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动.则在这一过程中,环对杆的摩擦力F f和环对杆的压力F N的变化情况是()A.F f不变,F N不变B.F f增大,F N不变C.F f增大,F N减小D.F f不变,F N减小5.如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向60°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是()A. 90°B. 45°C. 30°D. 0°6.如图所示,在倾角为α的斜面上,放一质量为m的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是()A.mg cosαB.mg tanαC.D.mg7.一个挡板固定于光滑水平地面上,截面为圆的柱状物体甲放在水平面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与地面接触而处于静止状态,如图所示.现在对甲施加一个水平向左的力F,使甲沿地面极其缓慢地移动,直至甲与挡板接触为止.设乙对挡板的压力F1,甲对地面的压力为F2,在此过程中()A.F1缓慢增大,F2缓慢增大B.F1缓慢增大,F2不变C.F1缓慢减小,F2不变D.F1缓慢减小,F2缓慢增大8.如图所示,一定质量的物体通过轻绳悬挂,结点为O.人沿水平方向拉着OB绳,物体和人均处于静止状态.若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是()A.OA绳中的拉力先减小后增大B.OB绳中的拉力不变C.人对地面的压力逐渐减小D.地面给人的摩擦力逐渐增大9.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大10.如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上.现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力F、环与杆的摩擦力F f和环对杆的压力F N的变化情况是()A.F逐渐增大,F f保持不变,F N逐渐增大B.F逐渐增大,F f逐渐增大,F N保持不变C.F逐渐减小,F f逐渐增大,F N逐渐减小D.F逐渐减小,F f逐渐减小,F N保持不变11.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大12.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1增大,F2增大C.F1减小,F2减小D.F1减小,F2增大13.如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中() A.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大14.半圆柱体P放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN.在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图所示是这个装置的纵截面图.若用外力使MN保持竖直,缓慢地向右移动,在Q落到地面以前,发现P始终保持静止.在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C.P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大15.如图所示,用OA、OB两根轻绳将物体悬于两竖直墙之间,开始时OB绳水平.现保持O点位置不变,改变OB 绳长使绳端由B点缓慢上移至B′点,此时绳OB′与绳OA之间的夹角θ<90°.设此过程中绳OA、OB的拉力分别为FOA、FOB,下列说法正确的是()A.FOA逐渐增大B.FOA逐渐减小C.FOB逐渐增大D.FOB逐渐减小答案解析1.【答案】C【解析】结点O在三个力作用下平衡,受力如图甲所示,根据平衡条件可知,这三个力必构成一个闭合的三角形,如图乙所示,由题意知,OC绳的拉力F3大小和方向都不变,OA绳的拉力F1方向不变,只有OB绳的拉力F2大小和方向都在变化,变化情况如图丙所示,则只有当OA⊥OB时,OB绳的拉力F2最小,故C选项正确.2.【答案】A【解析】木板静止,所受合力为零,所以F1不变,将两轻绳各减去一小段,木板再次静止,两绳之间的夹角变大,木板重力沿绳方向的分力变大,故F2变大,正确选项A.3.【答案】B【解析】以两个小球组成的整体为研究对象,分析受力,作出F在三个方向时整体的受力图,根据平衡条件得知:F与F T的合力与重力总是大小相等、方向相反,由力的合成图可知,当F与绳子oa垂直时,F有最小值,即图中2位置,F的最小值根据平衡条件得:F=2mg sin 60°=mg;故选B.4.【答案】B【解析】以结点O为研究对象进行受力分析如图(a).由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a).由图可知水平拉力增大.以环,绳和小球构成的整体作为研究对象,作受力分析图如图(b).由整个系统平衡可知:F N=(mA+mB)g;F f=F.即F f增大,F N不变,故B正确.5.【答案】C【解析】如图所示,小球受三个力而处于平衡状态,重力mg的大小和方向都不变,绳子拉力F T方向不变,因为绳子拉力F T和外力F 的合力等于重力,通过作图法知,当F的方向与绳子方向垂直时,由于垂线段最短,所以F最小,则由几何知识得θ=30°.故C正确,A、B、D错误.6.【答案】B【解析】法一(正交分解法):对小球受力分析如图甲所示,小球静止,处于平衡状态,沿水平和竖直方向建立坐标系,将F N2正交分解,列平衡方程为F N1=F N2sinα,mg=F N2cosα可得:球对挡板的压力F N1′=F N1=mg tanα,所以B正确.法二(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg平衡,即等大反向.解三角形可得:F N1=mg tanα,所以,球对挡板的压力F N1′=F N1=mg tanα.所以B正确.法三(三角形法则):如图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mg tanα,故挡板受压力F N1′=FN1=mg tanα.所以B正确.7.【答案】C【解析】先以小球为研究对象,分析受力情况,当柱状物体向左移动时,F N2与竖直方向的夹角减小,由图甲看出,柱状物体对球的弹力F N2与挡板对球的弹力F N1均减小.则由牛顿第三定律得知,球对挡板的弹力F1减小.再对整体受力分析如图乙所示,由平衡条件得知,F=F N1,推力F变小.地面对整体的支持力F N=G总,保持不变.则甲对地面的压力不变.故C正确.A、B、D错误.8.【答案】D【解析】将重物的重力进行分解,当人的拉力方向不变,缓慢向左移动一小段距离,则OA与竖直方向夹角变大,OA的拉力由图中1位置变到2位置,可见OA绳子拉力变大,OB绳拉力逐渐变大;OA拉力变大,则绳拉力水平方向分力变大,根据平衡条件知地面给人的摩擦力逐渐增大;人对地面的压力始终等于人的重力,保持不变.9.【答案】D【解析】对小球受力分析如图(重力mg、支持力F N,绳的拉力F T)画出一簇平行四边形如图所示,当F T方向与斜面平行时,F T最小,所以F T先减小后增大,F N一直增大,只有选项D正确.10.【答案】D【解析】物体在3个力的作用下处于平衡状态,根据矢量三角形法,画出力的矢量三角形,如图所示.其中,重力的大小和方向不变,力F的方向不变,绳子的拉力F T与竖直方向的夹角θ减小,由图可以看出,F随之减小,F f 也随之减小,D正确.11.【答案】B【解析】小球受力如图甲所示,因挡板是缓慢移动,所以小球处于动态平衡状态,在移动过程中,此三力(重力G、斜面的支持力F N、挡板的弹力F)组合成一矢量三角形的变化情况如图乙所示(重力大小方向均不变,斜面对其支持力方向始终不变),由图可知此过程中斜面对小球的支持力不断减小,挡板对小球弹力先减小后增大,再由牛顿第三定律知B对.12.【答案】B【解析】作出球在某位置时的受力分析图,如图所示,在小球运动的过程中,F1的方向不变,F2与竖直方向的夹角逐渐变大,画力的动态平行四边形,由图可知F1、F2均增大,选项B正确.13.【答案】B【解析】对小球受力分析,如图所示,根据物体在三个共点力作用下的平衡条件,可将三个力构建成矢量三角形,随着木板顺时针缓慢转到水平位置,球对木板的压力F N2逐渐减小,墙面对球的压力F N1逐渐减小,故B对.14.【答案】B【解析】对圆柱体Q受力分析如图所示,P对Q的弹力为F,MN对Q的弹力为F N,挡板MN向右运动时,F和竖直方向的夹角逐渐增大,如图所示,而圆柱体所受重力大小不变,所以F和F N的合力大小不变,故D选项错误;由图可知,F和F N都在不断增大,故A、C两项都错;对P、Q整体受力分析知,地面对P的摩擦力大小就等于F N,所以地面对P的摩擦力也逐渐增大.故选B.15.【答案】B【解析】以O点为研究对象,进行受力分析,其中OA绳拉力方向不变,OA绳、OB绳拉力的合力方向竖直向上,大小等于物体的重力,始终不变,根据力的矢量三角形定则可知,FOA逐渐减小,FOB先减小后增大,如图所示,选项B正确,A、C、D错误.。

高中物理必修二第三章—3.9动态平衡的问题

高中物理必修二第三章—3.9动态平衡的问题
杆的水平部分粗糙,竖直部分光滑,两部分各有
质量相等的小球A和B套在杆上,A、B间用不可 伸长的轻绳相连,用水平拉力F沿杆向右拉A使
之缓慢移动的过程中(AD )
A.A球受到杆的弹力保持不变
B.A球受到的摩擦力逐渐变小
C.B球受到杆的弹力保持不变
D.力F逐渐增大
例题7:如图所示,重为500N的人通过跨过定滑轮的 轻绳牵引重200N的物体,不计绳与滑轮间的摩擦。
二、解决动态平衡问题的方法:
1、图解法:
对物体进行受力分析,画出受力示意图,并根据平衡 条件,画出平行四边形。根据力或位置的变化,判 断平行四边如何变化,再根据四边形中各边长度变 化来确定各力的大小如何变化,这种方法叫图解法。
例题1:如图所示,重物G用绳子OA悬挂于天花板下。
在绳上的B点系一段绳子BC,现对BC绳施加一水平
③确定方向变化的力的方向如何改变,以及对应的角 度变化的范围。
④根据平行四边形形状的变化,确定各力大小的变化, 和各力大小的取值范围。
2、相似三角形法:
利用力构成的平行四边形中的三角形与支撑物体的 支架、细绳、支持面等组成的三角形相似对应边 成比例的规律来判断各力变化的方法。
例题3:光滑的半球固定在水平地面上。一小球(可 看作质点)通过细绳绕过光滑的定滑轮用手拉住。 如图所示,现拉动细绳,使小球在球面上缓慢移动, 请分析移动过程中,细绳的拉力、球面的支持力如 何变化。
例题5.如图所示,一端可绕0点自由转动的长木板上方 放一个物块,手持木板的另一端,使木板从水平位置沿 顺时针方向缓慢旋转,则在物块滑离木板前:( BCD )
A.物块对木板的压力不变 B.木板对物块的支持力一直减小。 C.木板对物块的作用力先不变,后减小。 D.物块受到的摩擦力先增大后减小

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为()A.FT 减小,F不变B.FT增大,F不变C.FT 增大,F减小D.FT增大,F增大3、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D用绳拴住通过滑轮固定于墙上的A点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移,则在移动过程中( )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

高中物理动态问题分类解析

高中物理动态问题分类解析
做加速度减小的变加速运动,当 时速度到达最大,因此 到达 时应有: ------〔4〕 解得
总结:〔1〕电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。〔2〕在分析运动导体的受力时,常画出平面示意图和物体受力图。
6、理想变压器中的动态问题
理想变压器中各物理量的制约关系为:
电压制约:当变压器原、副线圈的匝数比 一定时,输出电压 由输入电压 决定,即 ,可简述为“原制约副〞。
电流制约:当变压器原、副线圈的匝数比 一定时,且输入电压 确定时,原线圈中的电流 由副线圈中的输出电流 决定,即 ,可简述为“副制约原〞。
负载制约: 变压器副线圈中的功率 由用户负载决定, 变压器副线圈中的电流 由用户负载及电压 决定,即 ; 总功率
恒定功率的加速。由公式 和 知〔其中 为阻力〕,由于 恒定,随着 的增大, 必将减小, 也必将减小,汽车做加速度不断减小的加速运动,直到 ,这时 到达最大值 。可见恒定功率的加速一定不是匀加速。因为 为变力,这种加速过程发电机做的功只能用 计算,不能用 计算。
恒定牵引力的加速。由公式 和 知,由于 恒定,所以 恒定,汽车做匀加速运动,而随着 的增大, 也将不断增大,直到P到达额定功率 ,功率不能再增大了。这时匀加速运动完毕,其最大速度为 ,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。因为功率P是变化的,这种加速过程发电机做的功只能 用计算,不能 用计算。
动态问题分析的思路程序可表示为:
例6.图9为一理想变压器,S为单刀双掷开关,P为滑动变阻器的滑动触头, 为加在原线圈两端的电压, 为原线圈中的电流强度,那么保持 及P的位置不变,S由a合到b时, 将增大。保持 及P的位置不变,S由b合到a时,R消耗的功率减小。保持 不变,S合在a处,使P上滑, 将增大。保持P的位置不变,S合在a处,假设 增大, 将增大。

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

高中物理动态平衡问题

高中物理动态平衡问题

高中物理动态平衡问题
动态平衡是指在物体平衡的同时,物体的速度不变,即物体处于匀速直线运动状态。

在高中物理中,动态平衡问题通常与牛顿第二定律和牛顿第三定律相关。

以下是一些典型的动态平衡问题。

1. 一个物体在水平面上匀速运动,所受合外力为多少?
令物体质量为m,物体受到的合外力为F,根据牛顿第二定律,有F=ma。

因为物体处于动态平衡状态,所以a=0,即F=0,
即所受合外力为零。

2. 一个物体在竖直方向上匀速运动,所受合外力为多少?
令物体质量为m,物体受到的合外力为F,根据牛顿第二定律,有F=ma。

因为物体处于动态平衡状态,所以a=0,即F=mg,即所受合外力等于物体的重力,即F=mg。

3. 一个物体沿斜面向下匀速运动,所受合外力为多少?
令物体质量为m,物体所在的斜面与水平面夹角为θ,物体受
到的合外力为F,根据牛顿第二定律,有F=ma。

因为物体处
于动态平衡状态,所以a=0,即物体所受合外力等于物体沿斜
面方向的重力分量,即F=mg*sinθ。

4. 一个物体沿斜面向上匀速运动,所受合外力为多少?
令物体质量为m,物体所在的斜面与水平面夹角为θ,物体受到的合外力为F,根据牛顿第二定律,有F=ma,因为物体处于动态平衡状态,所以a=0,即物体所受合外力等于物体沿斜面方向的重力分量加上斜面提供的力,即F=mg*sinθ+Fn,其中Fn为斜面提供的法向力。

高中物理力的动态平衡专题

高中物理力的动态平衡专题

高中物理力的动态平衡专题摘要:1.动态平衡问题的定义与特点2.解析法求解动态平衡问题3.图解法求解动态平衡问题4.矢量三角形法求解动态平衡问题5.动态平衡问题的实际应用正文:一、动态平衡问题的定义与特点动态平衡问题是指在物体运动过程中,受到多个力的作用而达到平衡状态的问题。

在动态平衡问题中,物体的速度和方向可能发生变化,但其所受的合力为零。

动态平衡问题的特点是,物体受到的力不是恒定的,而是随着物体运动状态的变化而变化。

解决动态平衡问题时,需要分析物体在不同状态下的受力情况,建立平衡方程,求解力的变化。

二、解析法求解动态平衡问题解析法是解决动态平衡问题的一种常用方法。

它通过对研究对象的任一状态进行受力分析,建立平衡方程,求出应变参量与自变参量的一般函数式,然后根据自变参量的变化确定应变参量的变化。

具体步骤如下:1.对物体进行受力分析,列出平衡方程;2.求解平衡方程,得到应变参量与自变参量的关系式;3.根据自变参量的变化,确定应变参量的变化。

三、图解法求解动态平衡问题图解法是另一种解决动态平衡问题的方法。

它通过对研究对象进行受力分析,画出不同状态下力的矢量图,然后根据有向线段的长度变化判断各个力的变化。

具体步骤如下:1.对物体进行受力分析,画出力的矢量图;2.根据力的矢量图,确定各个力的变化;3.根据力的变化,求解应变参量与自变参量的关系式。

四、矢量三角形法求解动态平衡问题矢量三角形法是解决动态平衡问题的一种简便方法,特别是在处理变动中的三力问题时。

它通过画出力的矢量三角形,直观地反映出力的变化过程。

具体步骤如下:1.画出力的矢量三角形;2.分析力的变化,确定三角形的形状;3.根据三角形的形状,求解应变参量与自变参量的关系式。

五、动态平衡问题的实际应用动态平衡问题在实际生活中有广泛的应用,例如:分析汽车的行驶稳定性、飞机的飞行稳定性、运动员的平衡能力等。

高中物理《相互作用》核心考点精讲:动态平衡问题的分析

高中物理《相互作用》核心考点精讲:动态平衡问题的分析

高中物理《相互作用》核心考点精讲《对动态平衡问题的分析》(附例题解析)一.动态平衡概述:动态平衡问题是指通过控制某些物理量使物体的状态发生缓慢变化。

在这个过程中物体始终处于一系列平衡状态中。

二. 动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。

三. 平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。

【方法一】三角形图解法1、特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

2、方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

3、图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。

【典例1】如图所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?【解析】以物体为研究对象,对其受力分析,如图所示,受重力G、挡板对球的弹力F1和斜面对球的弹力F2;小球一直处于平衡状态,三个力中的任意两个力的合力与第三个力等值、反向、共线,故F1和F2合成的合力F一定与重力G等值、反向、共线.从图中可以看出,当挡板绕O点逆时针缓慢地转向水平位置的过程中,F1先变小,后增大;F2变小。

高中物理 动态平衡问题(含答案)

高中物理     动态平衡问题(含答案)

受力分析:动态平衡问题所谓动态平衡问题,是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态,常用方法:1:公式法。

2:矢量三角形法。

3:相似三角形法。

4:拉密定理。

1.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O 点转至水平位置,则此过程中球对挡板的压力F 1和球对斜面的压力F 2的变化情况是( ).答案 BA .F 1先增大后减小,F 2一直减小B .F 1先减小后增大,F 2一直减小C .F 1和F 2都一直减小D .F 1和F 2都一直增大2.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F 1、半球面对小球的支持力F 2的变化情况正确的是( ). 答案 BA .F 1增大,F 2减小B .F 1增大,F 2增大C .F 1减小,F 2减小D .F 1减小,F 2增大3.如图,半圆形金属框竖直放在粗糙的水平地面上,套在其上的光滑小球P 在水平外力F 的作用下处于静止状态,P 与圆心O 的连线与水平面的夹角为θ,现用力F 拉动小球,使其缓慢上移到框架的最高点,在此过程中金属框架始终保持静止,下列说法中正确的是( ) 答案 DA .框架对小球的支持力先减小后增大B .水平拉力F 先增大后减小C .地面对框架的支持力先减小后增大D .地面对框架的摩擦力一直减小4.甲、乙两人用两绳aO 和bO 通过装在P 楼和Q 楼楼顶的定滑轮,将质量为m 的物块由O 点沿Oa 直线缓慢向上提升,如图.则在物块由O 点沿直线Oa 缓慢上升过程中,以下判断正确的是( ) 答案 DA .aO 绳和bO 绳中的弹力都逐渐减小B .aO 绳和bO 绳中的弹力都逐渐增大C .aO 绳中的弹力先减小后增大,bO 绳中的弹力一直在增大D .aO 绳中的弹力一直在增大,bO 绳中的弹力先减小后增大5.如图所示,A 是一均匀小球,B 是一14圆弧形滑块,最初A 、B 相切于圆弧形滑块的最低点,一切摩擦均不计,开始B 与A 均处于静止状态,用一水平推力F 将滑块B 向右缓慢推过一段较小的距离,在此过程中 ( ) 答案 BA .墙壁对球的弹力不变B .滑块对球的弹力增大C .地面对滑块的弹力增大D .推力F 减小6、(单选)如图所示,一物块受一恒力F 作用,现要使该物块沿直线AB 运动,应该再加上另一个力的作用,则加上去的这个力的最小值为( ).答案 BA .F cos θB .F sin θC .F tan θD .F cot θ7、(多选)如图所示,质量均为m 的小球A 、B 用两根不可伸长的轻绳连接后悬挂于O 点,在外力F 的作用下,小球A 、B 处于静止状态.若要使两小球处于静止状态且悬线OA 与竖直方向的夹角θ保持30°不变,则外力F 的大小( ).答案 BCDA .可能为33mgB .可能为52mgC .可能为2mgD .可能为mg8、(多选)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力F ,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有( ) 答案ADA .轻绳对小球的拉力逐渐增大B .小球对斜劈的压力先减小后增大C .竖直杆对小滑块的弹力先增大后减小D .对小滑块施加的竖直向上的拉力逐渐增大9.重力都为G 的两个小球A 和B 用三段轻绳按如图所示连接后悬挂在O 点上,O 、B 间的绳子长度是A 、B 间的绳子长度的2倍,将一个拉力F 作用到小球B 上,使三段轻绳都伸直且O 、A 间和A 、B 间的两段绳子分别处于竖直和水平方向上,则拉力F 的最小值为( ) 答案 AA.12GB.33G C .G D.233G 10.如图所示,两个小球a 、b 的质量均为m ,用细线相连并悬挂于O 点.现用一轻质弹簧给小球a 施加一个拉力F ,使整个装置处于静止状态,且Oa 与竖直方向夹角为30°,已知弹簧的劲度系数为k ,重力加速度为g ,则弹簧的最短伸长量为( ) 答案 BA.mg 2kB.mg kC.3mg 3kD.3mg k11.用力F 拉小球b ,使两个小球都处于静止状态,且细线Oa 与竖直方向的夹角保持θ=30°,如图20所示,重力加速度为g ,则F 达到最小值时Oa 绳上的拉力为( ) 答案 AA.3mg B.mgC.32mg D.12mg12.[注意“活结”和“死结”的区别] (多选)如图所示,顶端附有光滑定滑轮的斜面体静止在粗糙水平地面上,三条细绳结于O点。

高中物理 物体的动态平衡问题解题技巧

高中物理 物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧一、总论1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动……2、动态平衡问题的解法——解析法、图解法解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律;图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。

3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、等腰三角形等二、例析1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形【例1】如图,一小球放置在木板与竖直墙面之间。

设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。

以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中A .F N1始终减小,F N2始终增大B .F N1始终减小,F N2始终减小C .F N1先增大后减小,F N2始终减小D .F N1先增大后减小,F N2先减小后增大解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论;【解析】小球受力如图,由平衡条件,有sin 2N =-mg F θ0cos 1N 2N =-F F θ联立,解得:θsin 2N mg F =,θtan 1N mgF =木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减小。

选B 。

解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规律转动F N2,即可看出结果。

【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右,而F N2的方向逐渐变得竖直。

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法若合力不变,两等大分力夹角变大,则分力变大.*若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大:2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( )A.'B.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变A C B(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

{1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大】3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

动态平衡五种方式及其例题

动态平衡五种方式及其例题

动态平衡五种方式及其例题
动态平衡是指物体在运动过程中保持平衡的状态。

在物理学中,动态平衡可以通过不同的方式实现。

以下是五种常见的动态平衡方
式及其例题:
1. 旋转平衡,当一个物体围绕其重心旋转时,可以通过调整物
体的形状或质量分布来实现动态平衡。

例如,考虑一个旋转的飞镖,通过在飞镖的尾部增加适当的质量,可以使飞镖在飞行时保持平衡。

2. 机械平衡,在机械系统中,可以通过调整零件的位置或者添
加平衡配重来实现动态平衡。

例如,一辆车轮的动态平衡可以通过
在轮胎上添加配重来实现,以减少车辆在高速行驶时的震动。

3. 流体力学平衡,在液体或气体流体系统中,可以通过调整管
道的形状或者增加阀门来实现动态平衡。

例如,一个水泵系统可以
通过调整管道的直径和长度来保持水流的平衡,以确保系统的稳定
运行。

4. 控制系统平衡,在自动控制系统中,可以通过调整控制器的
参数或者反馈信号来实现动态平衡。

例如,一个飞行器的自动驾驶
系统可以通过不断调整飞行姿态来保持平衡,以应对外部风力和气流的影响。

5. 动力平衡,在动力系统中,可以通过调整引擎或发动机的输出功率来实现动态平衡。

例如,一辆汽车在行驶过程中可以通过调整引擎的油门来保持速度和方向的平衡。

这些是常见的动态平衡方式及其例题,通过这些方式可以在不同的物理系统中实现动态平衡,确保系统的稳定运行。

高中三年级上学期物理《动态平衡问题》教学设计

高中三年级上学期物理《动态平衡问题》教学设计

动态平衡一.教学目标1.知道动态平衡的定义;2.知道动态平衡的方法,及知道其用法。

二.教学难点动态平衡方法的用法三.教学过程1.动态平衡的定义:所谓动态平衡,是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态中。

常见问题为三力动态平衡。

2.常用方法(1)解析法例题1:如图,一小球放置在木块与竖直墙面之间。

设墙面对球的压力大小为N 1,木板对球的支持力大小为N 2。

以木板与墙连接点所在水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中N 1、 N 2如何变化。

(2)图解法例题2:如图所示,小球用细绳系住放在倾角为 的光滑斜面上,当细绳由水平逐渐向上偏移时,细绳上的拉力将如何变化。

θ解析:对小球进行受力分析,设板与墙之间的夹角为,θ板转到水平位置的过程中逐渐增大。

12,tan sin mg mg N N θθ==12N N θ随着逐渐增大,、都减小。

,G T 解析:对小球进行受力分析,小球受到重力斜面的支持力 绳子的拉力,因为三力共点且平衡, 故三个力可以构成一个矢量三角形,如图所示。

T 显而易见在绳子竖直前,先是逐渐减小,再逐渐增大。

(3)相似三角形例题2:光滑半球面上的小球(可视为质点)被一通过定滑轮的绳由底端缓慢拉到顶端的过程中,试分析绳的拉力F 及半球面对小球的支持力N 的变化情况。

2.“活结”和“死结” “活结”与“死结”区别 (1)活结:一根轻绳绕过滑轮或挂钩,滑轮或挂钩只改变力的方向、不改变力的大小。

不计摩擦的情况下,绳上各点的弹力大小相等,所以合力一定沿着角平分线。

当合力大小和方向一定时,两分力的夹角越大,分力越大;夹角不变,分力不变。

(2)死结:两根绳子连接于一点,两绳的弹力大小不一定相等。

例题4:一根柔软的轻绳两端分别固定在两竖直的直杆上,绳上用一光滑的滑轮悬一重物,如图所示,设AO 段弹力大小为F 1, BO 段弹力大小为F 2,现保持左杆的位置不变,将右杆向右移动一小段距离,F 1、F 2如何变化?,,R h L 解析:设半球面的半径为定滑轮到半球面的最高点的距离为定滑轮到小球间绳长为,根据距三角形相似得:F N G L R h R ==+h R L F N 由于在拉动过程中、不变,变小;故减小,大小不变。

(完整)高中物理解决动态平衡问题的五种方法(带答案)

(完整)高中物理解决动态平衡问题的五种方法(带答案)
C.夏季与冬季,电线对电线杆的拉力一样大
D.夏季,电线杆对地面的压力较大
2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲) 移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为( )A.FT减小,F不变B.FT增大,F不变
C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大
3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁
在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑
块均静止。现将滑块平行于斜面向上拉过一较小的距离,球仍搁在挡板 与滑块上且处于静止状态,则与原来相比( )
C、N变小,T先变小后变大D、N不变,T变小
2、如图所示, 固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔。 质量为m的小球套在圆环上。 一根细线的下端系着小球,上端穿过小孔用 手拉住。现拉动细线,使小球沿圆环缓慢上移,在移动过程中手对线的拉 力F和轨道对小球的弹力FN的大小变化情况是( ) A.F不变,FN增大B.F不变,FN减小C.F减小,FN不变
缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,
A.F1增大,F2减小
C.F1增大,F2增大
B.F1减小,F2减小
D.F1减小,F2增大
12、如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移 动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G

高中物理共点力的动态平衡问题

高中物理共点力的动态平衡问题

共点力的动态平衡问题1、动态三角形法特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大小、方向均发生变化的问题。

分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。

看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。

1.★★如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中()A.N1始终增大,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大2.★★如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大2、相似三角形法特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二个分力力的方向均发生变化。

分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

3.★★一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO 与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是()A.F N减小,F增大B.F N、F都不变C.F增大,F N不变D.F、F N都减小4.★★光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分动态平衡分析动态平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。

方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

1 质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小【答案】A【解析】动态平衡问题,F与T的变化情况如图:- . - 总结资料-- . - 总结资料-可得:'''F F F →→↑'''T T T →→↑2 如图所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?【解析】取球为研究对象,如图所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。

因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。

F 1的方向不变,但方向不变,始终与斜面垂直。

F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图中一画出的一系列虚线表示变化的F 2。

由此可知,F 2先减小后增大,F 1随β增大而始终减小。

3 如图所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上力、斜面对小球的支持力的变化情况?【解析】绳上力减小,斜面对小球的支持力增大【同类题】如图所示,小球被轻质细绳系住斜吊着放在静止的光滑斜面上,设小球质量为m ,斜面倾角α=30°,细绳与竖直方向夹角θ=30°,斜面体的质量M =3m ,置于粗糙水平面上.求:图1-1图1-2- . - 总结资料-(1)当斜面体静止时,细绳对小球拉力的大小? (2)地面对斜面体的摩擦力的大小和方向?(3)若地面对斜面体的最大静摩擦力等于地面对斜面体支持力的k 倍,为了使整个系统始终处于静止状态,k 值必须满足什么条件?解:(1)选小球为研究对象,受力分析并合成如图: 由平衡条件:F ′= mg由平面几何知识可得:N 与F ′的夹角为30°,T 与F ′夹角也为30°故画出的平行四边形为菱形,连接对角线便可找出直角三角形:由:cos30°=TG2 得:T =mg 33(2)、(3)选小球和斜面组成的系统为研究对象,受力分析如图,由平衡条件得:N + T cos30°= (M +m )g ,方法二:相似三角形法特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

4 一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F 拉住,如图所示。

现将细绳缓慢往左拉,使杆BO与杆A O间的夹角θ逐渐减少,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( )A.F N先减小,后增大B. F N始终不变- . - 总结资料-- . - 总结资料-C .F 先减小,后增大 D. F 始终不变【答案】B【解析】 取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图所示,设AO 高为H ,BO 长为L ,绳长l ,)lFL F H G N ==,式中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。

正确答案为选项B5 如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( )。

(A) N 变大,T 变小, (B) N 变小,T 变大 (B) N 变小,T 先变小后变大 (D) N 不变,T 变小【答案】D【解析】如图所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg不变,支持力N,绳子的拉力T一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。

由于在这个三角形中有四个变量:支持力N的大小和方向、绳子的拉力T的大小和方向,所以还要利用其它条件。

实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNRhmgLT=+=可得:mgRhLT+=运动过程中L变小,T变小。

mgRhRN+=运动中各量均为定值,支持力N不变。

正确答案D。

方法三:作辅助圆法特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。

②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变,原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作ACBO- . - 总结资料-个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。

第二种情况以大小不变,方向变化的力为直径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的的力的矢量三角形,从而轻易判断各力的变化情况。

6 如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0>α,物体保持静止状态,在旋转过程中,设绳OA的拉力为F1,绳OB的拉力为F2,则()。

(A)F1先减小后增大(B)F1先增大后减小(C)F2逐渐减小(D)F2最终变为零【答案】B、C、D【解析】取绳子结点O为研究对角,受到三根绳的拉力,如图2所示分别为F1、F2、F3,将三力构成矢量三角形(如图3所示的实线三角形CDE),需满足力F3大小、方向不变,角∠CDE不变(因为角α不变),由于角∠DCE为直角,则三力的几何关系可以从以DE边为直径的圆中找,则动态矢量三角形如图3中一画出的一系列虚线表示的三角形。

由此可知,F1先增大后减小,F2随始终减- . - 总结资料-小,且转过90°时,当好为零。

正确答案选项为B、C、D6 如图所示,在做“验证力的平行四边形定则”的实验时,用M、N两个测力计通过细线拉橡皮条的结点,使其到达O点,此时α+β= 90°.然后保持M的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是()。

(A) 减小N的读数同时减小β角(B)减小N的读数同时增大β角(C)增大N的读数同时增大β角(D)增大N的读数同时减小β角【答案】A【解析】要保证结点不动,应保证合力不变,则由平行四边形定则可知,合力不变,M方向向合力方向靠拢,则N的拉力应减小,同时应减小β角;故选A方法四:解析法特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、方向不变的问题。

原理:先正确分析物体的受力,画出受力分析图,设一个角度,利用三力平衡得到拉力的解析方程式,然后作辅助线延长绳子一端交于题中的界面,找到所设角度的三角函数关系。

当受力动态变化是,抓住绳长不变,研究三角函数的变化,可清晰得到力的- . - 总结资料-变化关系。

7 如图所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G=40N,绳长L=2.5m,OA=1.5m,求绳中力的大小,并讨论:(1)当B点位置固定,A端缓慢左移时,绳中力如何变化?(2)当A点位置固定,B端缓慢下移时,绳中力又如何变化?【解析】取绳子C点为研究对角,受到三根绳的拉力,如图2所示分别为F1、F2、F3,延长绳AO交竖直墙于D点,由于是同一根轻绳,可得:21FF=,BC长度等于CD,AD长度等于绳长。

设角∠OAD为θ;根据三个力平衡可得:θsin21GF=;在三角形AOD中可知,ADOD=θsin。

如果A端左移,AD变为如图3中虚线A′D′所示,可知A′D′不变,OD′减小,θsin减小,F1变大。

如果B端下移,BC变为如图4虚线B′C′所示,可知AD、OD不变,θsin不变,F1不变。

8 如图所示,长度为5cm的细绳的两端分别系于竖立地面上相距为4m的两杆的顶端A、B,绳子上挂有一个光滑的轻质钩,其下端连着一个重12N的物体,平衡时绳中的力多大?图2′图3′图4- . - 总结资料-- . - 总结资料-【解析】由于绳上挂的一个光滑的轻质挂钩不是结点,即左右两部分绳子其实是一根绳子,同一根绳子上的力必然是相等的,设绳与水平方向夹角为α、β,则水平方向:T cosα=T cosβ,得:α = β设两杆间的距离为S ,细绳的总长度为L ,挂钩右侧长度为L 1,左侧长度为L 2,由题有S =4m ,L =5m . 由几何知识:得 S =L 1c osα+L 2cosα=L cosα 得 cos α =54=L S 分析挂钩受力情况,根据平衡条件2T cos[21(π-2α)]=G 解得,T =αsin 2G=10 N 方法五:极限分析法特点:运用极限思维,把所涉及的变量在不超过变量取值围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的方法。

相关文档
最新文档