2017-2018学年八年级化学下学期期末考试试题
【精品】河北省石家庄市2017-2018学年高二下学期期末考试化学试题-含答案
说明1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分100分,答题时间90分钟。
2.第I卷和第II卷均分为必做题和选做题两部分,选做题根据各校要求选择一个模块的试题进行作答,若两个模块都作答,按照(有机化学基础)模块计分。
可能用到的相对原子质量H—1 C—12 O—16第I卷选择题一、必做选择题(本题包括20小题,每小题2分,共40分,每小题只有一项符合题意)。
1.化学与生活密切相关。
下列说法正确的是A.聚乙烯塑料的老化是因为发生了加成反应B.煤经过气化和液化等物理变化可转化为清洁燃料C乙烯可作水果的催熟剂D.福尔马林可作食品的保鲜剂2.下列各组混合物中,用分液漏斗不能分离的是A.苯和水B.乙酸乙酯和水C.溴乙烷和水D.乙酸和水3.下列各组物质能用酸性高锰酸钾溶液鉴别的是A.乙烯、乙炔B.1一已烯、甲苯C. 苯、1一已炔D.苯、正已烷4.某有机物的结构简式为,该有机物不可能发生的化学反应是A水解反应 B.酯化反应 C.加成反应 D.还原反应5.分别完全燃烧1mol下列物质,需要氧气的量最多的是A丙烯 B.丙三醇 C.乙烷 D.丙酸6.下列关于乙醇在各种化学反应中化学键断裂情况的说法不正确的是A.与乙酸、浓硫酸共热时,①键断裂B.与浓硫酸共热至170℃时,②、④键断裂C.在Ag催化下与O2加热反应时, ①、③键断裂D.与浓氢溴酸混合加热时,①键断裂7.下列方法可用于提纯液态有机物的是A.过滤B.蒸馏C.重结晶D.萃取8.下列能够获得有机物所含官能团信息的方法是A.红外光谱B.质谱法C.色谱法D.核磁共振氢谱9.下列物质中不能形成顺反异构体的是A.2一丁烯B.2,3一二氯一2一丁烯C.2一甲基一2丁烯D.1,2-二溴乙烯10.下列除杂方法正确的是A.苯中含有苯酚杂质加入溴水,过滤B.乙醇中含有乙酸杂质:加入饱和碳酸钠溶液,分液C乙醛中含有乙酸杂质加入氢氧化钠溶液,分液D.乙酸丁酯中含乙酸杂质加入饱和碳酸钠溶液,分液11.下列化学反应的有机产物间不存在同分异构现象的是A.乙烷与Cl2光照条件下的反应B.甲苯与浓硝酸和浓硫酸的混合物在30℃时反应C.CH3CHBrCH2CH3与NaOH的乙醇溶液共热反应D.CH3CH2CH2Br在NaOH水溶液中加热反应12.下列不属于高分子化合物的是A.淀粉B.油脂C.纤维素D.核酸13.用甘氨酸和丙氨酸缩合,形成的二肽最多可以有A.4种B.3种C.2种D.1种14.下列物质中,水解前后均可发生银镜反应的是A.蔗糖B.麦芽糖C.淀粉D.乙酸甲酯15.某工程塑料的结构简式为,合成该塑料时用到的单体有A.1种B.2种C.3种D.4种16.下列各组内的物质一定互为同系物的是A.C4H10和C6H14B.C3H6和C4H8C. 和D.甲酸和乙二酸17. 两种气态烃的混合气体共1mol,在氧气中完全燃烧后生成 1.5molCO2和2molH2O。
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
人教版2017-2018学年八年级下期中考试数学试题(含答案解析)
2017-2018学年甘肃省武威市八年级(下)期中数学试卷一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,143.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=69.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠212.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.2513.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是.17.如图,数轴上点A表示的实数是.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG =.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣×22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2017-2018学年甘肃省武威市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,14【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,所以是直角三角形;D、52+122≠142,不符合勾股定理的逆定理,所以不是直角三角形;故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直【分析】根据正方形的性质和菱形的性质,容易得出结论.【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB.∵AB=AE,AB=2CB,∴AE=2AD.∴∠DEA=30°.∵DC∥AB,∴∠DEA=∠EAB=30°.∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°.∵∠ABC=90°,∴∠EBC=90°﹣75°=15°.故选:A.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=6【分析】根据二次根式的乘法法则:•=(a≥0,b≥0),二次根式的除法法则:=(a ≥0,b>0)进行计算即可.【解答】解:A、5=,故原题计算错误;B、==(a>0,b>0),故原题计算正确;C、×3=3=,故原题计算错误;D、×=×16=24,故原题计算错误;故选:B.【点评】此题主要考查了二次根式的乘除法,关键是掌握计算法则.9.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定【分析】根据平行四边形的性质得到AB=DC,而△CMB的面积为S=CD•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,这样得到S1+S2=MA•高+BM•高=(MA+BM)•高=AB•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,∵△CMB的面积为S=DC•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,而它们的高都是等于平行四边形的高,∴S1+S2=AD•高+BM•高=(MA+BM)•高=AB•高=CD•高=S,则S,S1,S2的大小关系是S=S1+S2.故选:A.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式,分别表示出图形面积是解题关键.11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.12.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【分析】先将中能开方的因数开方,然后再判断n的最小正整数值.【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.【点评】解答此题的关键是能够正确的对进行开方化简.13.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是记住菱形的性质,学会利用菱形的面积的两种求法,构建方程解决问题,属于中考常考题型.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形.【分析】根据互逆命题的概念解答.【解答】解:命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形.【点评】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17.如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得答案.【解答】解:由直角三角形的性质,得CE=AB=5,故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,利用直角三角形的性质是解题关键.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).【分析】根据二次根式的性质和已知得出即可.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG= 4 .【分析】连接EO ,可得S △ABO =S △AEO +S △BEO ,再把AO =BO =4代入可求EF +EG 的值. 【解答】解:连接EO∵ABCD 为正方形∴AC ⊥BD ,AO =BO =CO =DO 且AC =BD =8 ∴AO =CO =BO =4 ∵S △ABO =S △AEO +S △BEO∴+∴EF +EG =4 故答案为4.【点评】本题考查了正方形的性质,本题关键是运用面积法解决问题. 三、解答题(本大题共8小题,共60分) 21.(6分)计算:(1)﹣5+(2)÷﹣× 【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=4﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.【分析】连接BD,根据勾股定理可求出BC、CD、BD的值,再由BC2+CD2=BD2利用勾股定理的逆定理,即可证出∠BCD=90°.【解答】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.【分析】通过△AEF≌△ABF,可以求证FE=FB,然后证得△CEF为等腰直角三角形即可.【解答】解:在Rt△AEF和Rt△ABF中,,∴Rt△AEF≌Rt△ABF(HL),∴FE=FB.∵正方形ABCD,∴∠ACB=∠BCD=45°,在Rt△CEF中,∵∠ACB=45°,∴∠CFE=45°,∴∠ACB=∠CFE,∴EC=EF,∴FB=EC=EF.【点评】本题考查了全等三角形的证明,考查了等腰直角三角形的判定,本题求证Rt△AEF≌Rt△ABF是解本题的关键.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.【分析】(1)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题;(2)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2y﹣xy2=xy(x﹣y)=1×2=2;(2))∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2﹣xy+y2=(x﹣y)2+xy=22+1=4+1=5.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.【分析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴四边形ANMD为平行四边形,∴AN=CM,∴AB﹣AN=CD﹣CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°﹣50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【点评】考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【解答】解:在Rt△AOC中,∵OA=OC,AC=18km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD==26(km).答:此时B处距离D处26km远.【点评】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.。
2017-2018学年八年级(下)期末数学试卷(含答案)
2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2017~2018学年度人教版八年级第二学期期末测试语文试题[含答案]
2017~2018学年度人教版八年级第二学期期末测试语文试题[含答案]一、基础(24分)1.根据课文默写古诗文。
(10分)(1)此地一为别,___________。
___________,落日故人情。
(李白《送友人》)(2分)(2)微君之故,___________?(《式微》)(1分)(3)呜呼!______________________,______________________!(杜甫《茅屋为秋风所破歌》)(2分)(4)怒而飞,_______________。
(《北冥有鱼》)(2分)(5)(5)城阙辅三秦,风烟望五津。
___________,___________。
___________,___________。
无为在歧路,儿女共沾巾。
(王勃《送杜少府之任蜀州》)(4分)2.根据拼音写出相应的词语(4分)(1)fǔ kàn( )脚下峡谷,只见其间一股清流急湍。
(2)岩层的年龄为6500万年,因此可以zhuī sù( )到恐龙灭绝的年代。
(3)(3)当它jiá rán ér zhǐ( )的时候,世界出奇地寂静……(4)此刻倒霉迹象jiē zhǒng ér zhì( ),频频小震酝酿着某一两次大地震。
3.3.下列句子中加点的词语使用不恰当的一项是( )(3分)A.我们对来宾要热情接待,千万不能怠慢。
B.他为人处事十分洒脱,即使在生人面前也从不拘束。
C.她看过配料单后,自行换了一些配料如法炮制出这道菜。
D.桂林山水甲天下,真是名副其实,让人叹为观止。
4.4.下列对病句的修改不正确的一项是( )(3分)A.“黑匣子”可以记录飞行速度、飞行方位、飞行高度、飞行航向和飞行数据等,作用很大。
(将“飞行数据”前面的“和”改为“等”,后面的“等”删掉)B.为了大家有一个干净卫生的环境,环卫工人们冒着酷暑严寒打扫和清洁各条街道。
(把“打扫和”或“和清洁”删去一个)C.广州供电局重点推动和解决城中村用电不安全、电力不足、服务不周等问题。
2017-2018学年第二学期浙江省杭州市高一年级期末教学质量检测化学试题及答案
2018年杭州市高一年级教学质量检测化学试题参考答案及评分标准三、非选择题(本大题共4小题,共50分)21.(5分)(1)Na +Na +(1分) (2)2Fe 3++Cu=2Fe 2++Cu 2+(2分)(3)Na 2SO 3+H 2O+SO 2=2NaHSO 3(2分)22.(5分)(1)Mg 2Si (2分) (2)SiO 44-(1分) MgO ∙2SiO 2(2分)23.(4分)(1)羟基(1分) 氧化(1分) (2)C 6H 5CH 2OH+CH 3COOH CH 3COOCH 2C 6H 5+H 2O (2分)24.(6分) (1)MnO 2+4HCl(浓)MnCl 2+Cl 2↑+2H 2O (2分) 棕色烟(1分)(2)C (2分) (3)吸收余氯、防止空气中水气进入(1分)25.(10分)(1)第二周期、第IV A 族(1分) 直线型(1分) (2)还原(1分) bd (2分)(3)+4(1分) 5HCHO+4ClO 2→5CO 2+3H 2O+4HCl (2分) 177.5(2分)26.(1)BC (2分) (2)D (2分) (3)AB (2分)(4)FeS 2+14Fe 3++8H 2O=15Fe 2++2SO 42-+16H +(2分)取样品滴加KSCN 溶液,观察是否变红(2分)27.(10分)(1)25.74(2分) 不能(1分) 因为海水中氯化钠浓度太低,直接冷却达不到饱和(2分)(2)Ca 2++HCO 3-+OH -=CaCO 3↓+H 2O (2分,若多写不给分)(3)没有(1分)Mg 2+~Mg(OH)2~MgO1mol 40g x mol 1.92g x=ggmol 4092.11 =0.048mol所以,Mg 2+转化为MgO 的百分率为mol mol 05.0048.0×100%=96%(2分)。
2023-2024学年山东省泰安市宁阳县八年级下学期期末考试化学试题
2023-2024学年山东省泰安市宁阳县八年级下学期期末考试化学试题1.物质世界是不断运动和变化的。
下列变化中,主要涉及物理变化的是A.陶瓷器具烧制B.木材剧烈燃烧C.灯泡通电发光D.面包久放发霉2. 2024年3月22日是第三十二届“世界水日”,我国纪念2024年“世界水日”“中国水周”活动主题为“精打细算用好水资源,从严从细管好水资源”.下列有关水的说法正确的是A.地球上的淡水资源十分丰富B.工业上使用明矾对自来水消毒C.冰和水的共存物属于混合物D.生活中用煮沸的方法降低水的硬度3.下列物质的用途不是利用物质化学性质的是A.天然气可做燃料B.氮气充入食品袋延长保质期C.干冰用于人工降雨D.氧气用于气焊气割4.某方便面面饼的营养成分表如图所示,表中“钠”指的是面饼(每份)C.元素D.原子5.“见著知微”是化学学科的重要特点,下列宏观事实的微观解释不正确的是A.固体碘和碘蒸气都能使淀粉溶液变蓝——同种分子化学性质相同B.夏天汽车轮胎炸裂——分子间间隔变大C.结成冰的水不能流动——零度以下,水分子不再运动D.石油气压入钢瓶液化——分子间间隔变小6.所示为实验室制取二氧化碳的部分操作,其中正确的是A.检查气密性B.加入石灰石C.加入稀盐酸D.收集CO 27.下图中不同小球代表不同原子,其中能表示化合物的是A.B.C.D.8.下列化学用语表示错误的是A.两个氦分子:B.氯离子:C.二氧化硫分子:D.氧化铝中铝元素显价:9.下列关于燃烧与灭火的说法不正确的是A.森林失火时,可将大火蔓延路线前一片树木砍掉,形成隔离带B.煤炉生火时,利用木材引燃煤炭,是为了降低煤炭的着火点C.燃着的酒精灯不慎碰倒,若洒出的酒精燃烧起来,应立刻用湿抹布扑灭D.木柴架空有利于促进燃烧,是因为增大了木柴与氧气的接触面积10.下列对实验现象的描述不正确的是A.铁丝在氧气中剧烈燃烧,火星四射,生成黑色固体B.红磷在空气中燃烧,产生大量白烟C.向澄清石灰水中通入二氧化碳,溶液变浑浊D.电解水时,电源正极产生氧气,负极产生氢气11.科学家利用“基因剪刀”技术降低了水稻中砷的含量。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)
2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。
2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
2017—2018学年度第二学期期末考试初二数学试题及答案
2017—2018学年度第二学期期末考试初二数学试题题目一二三总分评卷人得分一、选择题(每小题3分,共30分)1.下列调查中,适合用普查方式的是()A.调査绥化市市民的吸烟情况B.调查绥化市电视台某节目的收视率C.调查绥化市市民家庭日常生活支出情况D.调査绥化市某校某班学生对“文明佛山”的知晓率2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三角形三个顶点的坐标分别是()A.(1,7)、(-2,2)、(3,4)B.(1,7)、(2,2)、(3,4)C.(1,7)、(2,-2)、(3,3)D.(1,7)、(2,2) 、( 3,4)3.已知直线a外有一点P,则点P到直线a的距离是()A.点P到直线的垂线的长度B.点P到直线的垂线段C.点P到直线的垂线段的长度D.点P到直线的垂线4.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:1,则∠AOF的度数是()A.130°B.125°C.140°D.135°5.已知关于x的不等式(1-a)x>3的解集为x<31a-,则a的取值范围是()A.a>0 B.a<0 C.a<1 D.a>16.如果点P(5,y)在第四象限,那么y的取值范围是()A.y>0 B.y<0 C.y≤0D.y=07.下列说法正确的是()A.2π是分数B.2π是无理数C.如果a为实数,那么2a为正数D.如果a为实数,那么-a为负数7.若点A(a,4)和点B(3,b)关于y轴对称,则a,b的值分别是()A.3,4 B.2,-4 C.-3,4 D.-3,-49.有40个数据,共分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.20 B.0.30 C.0.25 D.0.1510.已知4520430X Y ZX Y Z-+=⎧⎨+-=⎩(xyx≠0),则x:y:x的值是()A.2:1:3 B.1:2:3 C.3:2:1 D.不能确定二、填空题: (每题3分,共33分)11.如果点P(a+6,a-3)在x轴上,那么其坐标是。
山西省太原市2017-2018学年八年级上学期期末考试生物试题(解析版)
2017——2018 学年第一学期八年级期末考试生物试卷一、选择题1. 若在清澈且水草茂盛的溪流中仔细寻找,你可能会发现水螅和涡虫,二者的共同特征是A. 背腹扁平B. 身体呈辐射对称C. 有口无肛门D. 体表有刺细胞【答案】C2. 软体动物与人类生活的关系非常密切,下列有关软体动物的描述中,不正确的是A. 身体外面都有坚硬的贝壳B. 大多数种类生活在水中C. 柔软的身体表面有外套膜D. 很多种类可供人类食用【答案】A............3. 成语“金蝉脱壳”中的“壳”俗称“蝉蜕” (如图所示),是蝉的幼虫最后一次蜕下来的A. 甲B. 贝壳C. 鳞片D. 外骨骼【答案】D【解析】金蝉的体表具有坚硬的外骨骼,外骨骼不能随着身体的生长而长大,所以在金蝉的生长发育过程中,有脱掉原来的外骨骼的现象,这就是蜕皮,因此,成语“金蝉脱壳”中的“壳”指的是“外骨骼”,D正确。
4. 在观察蚯蚓的实验中,需要经常用浸水的棉球轻擦蚯蚓体表,这样做主要是为了保证其正常的A. 运动B. 消化C. 呼吸D. 体色【答案】C【解析】蚯蚓是用湿润的体壁进行呼吸的,蚯蚓的体壁能够分泌粘液,使体壁始终保持湿润,以保证正常的呼吸,同时减少与土壤的摩擦,所以在观察蚯蚓的实验过程中,要经常用水湿润它的皮肤,是为了保证蚯蚓的正常呼吸,C正确。
5. 下列动物中,真正适应陆地环境的脊椎动物是A. 嵘螺B. 蚯蚓C. 蝗虫D. 壁虎【答案】D【解析】蝾螈是有尾两栖动物,体内有脊椎,但生活在水里,A错误;蚯蚓环节动物,属于无脊椎动物,B 错误;蝗虫体外有外骨骼,适应陆地生活,但体内无脊椎,是陆生无脊椎动物,C错误;壁虎是爬行动物,体内有脊椎,生殖发育完全摆脱了对水的依赖,是真正适应陆地环境的脊椎动物,D正确。
6. 下列动物中,形态结构特征与鲫鱼最为相似的是A. 鲢鱼B. 章鱼C. 娃娃鱼D. 鲸鱼【答案】A【解析】鲫鱼、鲢鱼都是鱼类,都用鳃呼吸,形态结构特征最为相似,A正确;章鱼的身体柔软,有外套膜,是软体动物,B错误;娃娃鱼又叫大鲵,幼时用鳃呼吸,成体用肺呼吸,世界上现存最大的也是最珍贵的两栖动物,C错误;鲸鱼具有胎生哺乳的特点,属于哺乳动物,D错误。
2017-2018学年度上学期期末教学质量检测试题八年级历史卷及答案
2017-2018学年度上学期期末教学质量检测试题八年级历史(时间60分钟;分数100分)第一卷单项选择题(每小题2分,共40分。
)1.2017年是香港回归祖国20周年。
香港的回归不仅洗雪了中国百年国耻,更促进了香港的持续稳定、繁荣。
香港问题的形成开始于A.《南京条约》B.《瑷珲条约》C.《北京条约》D.《马关条约》2.恩格斯说到某国在第二次鸦片战争期间,不费一枪一弹“从中国夺取了一块大小等于法德两国面积的领土和一条同多瑙河一样长的河流”。
这个国家是A.美国B.俄国C.英国D.法国3.当代美国历史学家费正清写道:“它使中国两千多年的皇帝制度彻底崩溃,是中国帝制与共和意识的分水岭,尽管它的结局是悲剧性的……”“它”高举的旗帜应是A.自强求富B.民主科学C.三民主义D.实业救国4.据载:中国外交失败的消息被蔡元培先生所获悉,他于5月2日将此消息告诉北大学生……5月3日晚,北大全体学生和其他北京高校的学生举行动员大会,提出拒绝在巴黎和会上签字……材料描述的是中国近代一场著名运动的情景,这场运动A.是旧民主主义革命的开端B.终被北洋政府镇压而失败C.斗争主力始终是无产阶级D.是反帝反封建的爱国运动5.2016年7月,一位老者动情地写下:“一声惊雷震九天,南湖九十五年前。
唤起工农千百万,同心干,红旗漫卷映河山。
”这首词赞颂的历史事件是A.五四运动爆发B.中国共产党诞生C.黄埔军校创建D.国民革命军出师北伐6.2016年,为纪念孙中山先生诞辰150周年,广州市开展了“一城一中山”的纪念活动。
假如你暑期到广州游学,探寻孙中山先生的革命足迹,应该去A.中国同盟会成立大会旧址B.黄埔陆军军官学校旧址C.中华民国临时政府旧址D.辛亥革命首义纪念馆7.歌谣“国共联手为革命,荡平军阀促统一”反映的历史事件是A.抗日民族统一战线的建立B.西安事变C.北伐战争D.重庆谈判8.“这个伟大的事件,以打响武装反抗国民党反动派第一枪的英雄壮举,以党独立领导的新型人民军队诞生的重要标志,载入了中国革命史册。
2017-2018学年度高二下期期末考试化学试卷(含参考答案)
C.铝合金的大量使用归功于人们能使用焦炭从氧化铝中获得铝
D.锅炉水垢中的硫酸钙可用碳酸钠溶液处理,使之转化为碳酸钙,再用酸除去
2.设NA为阿伏伽德罗常数的值,下列说法正确的是
A.100g46%的乙醇溶4在熔融状态下电离出的阳离子数为2NA
B.X、Z的浓度相等时
D.密闭容器内气体的密度不再发生变化
4.由下列实验操作及现象能推出相应结论的是
2017-2018学年度高二下期期末考试
化学试卷
可能用到的相对原子质量:N—14O—16Na—23Ag—108S-32Cu-64Cl-35.5
第I卷选择题(共42分)
选择题(1-10为必做题,11-14为选做题,每题3分共42分)
1.下列有关化学与生产、生活的说法中,不正确的是
A.陶瓷、水泥和玻璃都属于硅酸盐产品
C.氢氧燃料电池负极消耗1.12L气体时,电路中转移的电子数为0.1NA
D.常温常压下,92g的NO2和N2O4混合气体含有的原子数为6NA
3.一定条件下的恒容密闭容器中,能表示反应X(g)+2Y(s)
Z(g)一定达到化学平衡状态的是
A.正反应和逆反应的速率均相等且都为零
C.容器中的压强不再发生变化
海阳市十中师范大学附属中学八年级化学下学期期中试题 新人教版
北京师范大学附属中学2017-2018学年八年级化学下学期期中试题满分60分,考试时间40分钟。
一、选择题(每小题只有一个正确选项)1. 化学学习中,我们获得结论的最重要依据是A. 老师的结论B. 同学的结论C. 网上查到的结论D. 分析实验事实得出的结论2. 下列仪器中不.可直接加热的是A. 试管B. 烧杯C. 燃烧匙D. 蒸发皿3. 下列化学实验操作错误..的是A. 液体的倾倒B. 读液体的体积C. 滴加液体试剂D. 液体加热4. 常用于检验二氧化碳气体的物质是A. 水B. 澄清石灰水C. 食盐水D. 糖水5. 下列化学实验基本操作不正确...的是A. 给物质加热时,应使用酒精灯的外焰部分B. 酒精灯的火焰必须用灯帽盖灭不能用嘴吹C. 向酒精灯中添加酒精时必须先熄灭酒精灯D. 若不慎碰翻酒精灯导致酒精洒出并失火,应立即用水冲灭6. 为保证实验安全,下列操作合理的是A. 加热时试管外壁有水不会影响实验B. 加热后的试管,立即用冷水冲洗干净C. 加热时试管内液体体积不超过试管容积的1/3D. 加热固体时试管与桌面成45°且试管口向上7. 某同学制作的试剂标签如下,其中化学式书写不正确...的是8. 以下是常用的危险品标志,装运乙醇(俗称酒精)的包装箱应贴的标志是9. 下列变化中有一种变化与其它三种变化有着本质上的不同,这种变化是10. 在一辆行驶的客车上,突然闻到车内有越来越浓汽油味,这时应该采取的应急措施是A. 让乘客集中到车厢后部B. 拨打119火警电话C. 洒水降温溶解汽油蒸汽D. 打开所有车窗,严禁一切烟火,尽快疏散乘客二、填空题1. 补充完整下列表格中所给元素的元素序号、元素名称或元素符号。
2. 判断下列事例是物理变化还是化学变化?并将相应选项序号填入后面对应的空格中。
①物理变化②化学变化1. 铁生锈 5. 水变成水蒸气2. 酒精挥发 6. 潮湿的衣服被晒干3. 纸张燃烧7. 以粮食为原料酿酒4. 冬天向窗玻璃上哈气,会出现一层水雾8. 石灰石遇到盐酸后会生成二氧化碳3. 找出下图中实验仪器的正确答案,并用直线与仪器连接起来。
2017-2018学年八年级(下)期末数学试卷含答案解析
2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。
—18学年上学期八年级期末考试语文试题(附答案)(8)
西华县2017-2018学年度上期期末八年级考试试题卷语文注意事项:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分。
2.考生要首先阅读试题卷上的文字信息,然后在答题卷上作答,在试题卷上作答无效,交卷时只交答题卷。
一、积累与运用。
(共24分)1.下列词语中加横线的字,每对读音都不同的一项是(2分)()A . 相等/相面丧乱/丧葬拾取/拾级排行/行走B . 旗帜/炽热濒临/频发摄取/慑服采樵/香蕉C .给予/给力吹拂/拂士荷箪/荷花地壳/脑壳D.棱镜/丘陵逡巡/严峻嘱咐/瞩目分泌/沁人心脾2.下列词语中没有错别字的一项是(2分)()A . 并蒂自诩稽首布衾不知所错B . 深邃怡然场圃饯行杳无音信C . 褪色慷概矜持裨益矢志不移D. 踌躇折戟畸形肃穆万事具备3.下列词语句子中加横线的成语运用不正确一项是(2分)()A.不言而喻,在创造的宇宙中,爱因斯坦、莎士比亚、贝多芬都是灿烂的明星。
B.你别危言耸听,他的病情我知道,实际上并不十分严重。
C.见义勇为小英雄一出报告厅,立刻被采访的记者们围得水泄不通。
D.这份试卷的第一小题他花了十分钟时间才完成,真是小题大做。
4.下列选项中表述正确的一项是(2分)()A.《花儿为什么这样红》是一篇事物性说明文,作者贾祖璋是我国著名的生物科普作家。
B.《杂交水稻之父------袁隆平》是一篇说明文,按照时间顺序报道了袁隆平在杂交水稻方面对中国和世界的卓越贡献。
C.《教学相长》开篇以“虽有佳肴,弗食,不知其旨也”设喻,引出“虽有至道弗学,不知其善也”,强调了“学”与“教”的重要性,然后进一步分析,最终得出“教学相长”的结论。
D.《小石潭记》的“记”是一种文体,可记叙描写,也可议论抒情,属于说明文范畴。
5.古诗文默写。
(8分)①右手拾遗穗,________________________________。
(白居易《观刈麦》)②_______________________________ ,自将磨洗认前朝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学附属中学河南分校(宇华教育集团)2017-2018学年八年级
化学下学期期末考试试题
相对原子质量: H-1 C-12 O-16 S-32 Fe-56
选择题(本题包括12个小题,每题2分,共24分)
1、生活中有太多的变化,下列“变”中涉及化学变化的是【】
A.树根“变”根雕 B.葡萄“变”美酒
C.玉石“变”印章 D.玩具机器人“变”形
2、下列实验操作正确的是【】
D
A B C
3、河南名吃胡辣汤营养美味,下列用到的食材中富含蛋白质的是【】A.小麦粉 B.大葱 C.牛肉 D.红薯粉条
4、下列物质分类正确的是【】
A.金刚石、石墨、石灰石——氧化物 B. 食盐水、空气、石油——混合物C. 生铁、焊锡、金——合金 D. 棉花、蚕丝、聚乙烯——合成材料
5、“群众利益无小事,食品安全是大事”。
下列做法不会导致食品对人体健康有害的是【】
A.用干冰保藏易变质的食品 B. 用硫磺熏制白木耳、粉丝等食品
C. 用甲醛浸泡易腐烂的食品
D. 用含亚硝酸钠的工业用盐腌制食品
6、赣南脐橙是江西著名土特产之一,肉质脆嫩、入口化渣,浓甜芳香,含有丰富的维生素C和维生素P(化学式为C27H30O16),可以增加体内高密度脂蛋白(HDL)的含量,从而降低患心脏病的可能性。
下列有关说法正确的是【】
A.维生素P中三种元素的质量比为27:30:16
B.维生素P的相对分子质量为610g
C.维生素P是由27个碳原子、30个氢原子和16个氧原子构成
D.维生素P完全燃烧生成二氧化碳和水
7、下列两种物质混合后,能发生化学反应且溶液质量增加的是【】
A.氢氧化钠溶液和稀盐酸 B.铜和硝酸银溶液
C.氧化铜固体和稀盐酸D.碳酸钠溶液和氢氧化钙溶
液
8、如图是A、B、C三种物质的溶解度曲线。
下列说法错误的是
【】
A.t1℃时,A、B、C三种物质中溶解度最大的是B物质
B.t1℃时,A、C物质饱和溶液中溶质的质量分数为25%
C.t2℃时,C物质的饱和溶液能用降温的方法转化为不饱和溶液
D.当A中含有少量B时,可用降温结晶的方法提纯A
Ca2242
过量的Na2CO3溶液;④蒸发结晶;⑤加适量盐酸。
下列操作顺序正确的是【】
A.③①②⑤④ B.①⑤③②④ C.①③⑤④② D.①③②⑤④
11、已知:有元素化合价升降的反应属于氧化还原反应。
下列反应中,
属于氧化还原反应的是【】
A.①③ B.②⑤ C.①④ D.④⑤
12、下列图象能正确反映其对应关系的是【】
A.高温煅烧一定质量的石灰石
B.用等质量、等浓度的双氧水分别制取氧气
C.向一定体积的稀盐酸中逐滴加入氢氧化钠溶液
D.某温度下,向一定量饱和硝酸钾溶液中加入硝酸钾晶体
填空题(本题包括6个小题,每空2分,共32分)
13、请从熟石灰、烧碱、硝酸钾、小苏打、纯碱中选择适当物质的化学式填空:(1)可以作为复合肥使用的是;
(2)炉具清洁剂中含有的一种物质是。
14、请从物质的组成、构成角度解释下列问题:
(1)金刚石和石墨物理性质差异很大;
(2)稀盐酸和稀硫酸均能使紫色石蕊溶液变红。
15、请将下列有关实验的问题填写完整。
(1)用溶质质量分数为6%的氯化钠溶液来配制150g溶质质量分数为2%的氯化钠溶液,则需要6%的氯化钠溶液的质量为 g。
(2)测定稀硫酸的pH时,先用水将pH试纸润湿会使结果(填“偏大”、“偏小”或“不变”)。
如右图所示:
(1)向甲装置的a中加水会看到气球胀大,一段时间内气球
大小没有变化,此现象说明装置气密性良好,请分析气球胀大的原因;
(2)若乙装置锥形瓶中的固体为NaOH,分液漏斗中的液体为水,则使气球胀大的主要原因是;
(3)若乙装置中固体与液体反应生成O2使气球胀大,该反应的化学方程式
简答题(本题包括4个小题,共24分)
19、(6分)2018年8月12日,天津港某危险品仓库发生火灾,消
防战士在用水灭火时引发了二次剧烈燃烧,导致爆炸。
据悉该仓库内有钾等危险品,已知钾与水剧烈反应生成氢气和氢氧化钾。
(1)请分析消防战士在用水灭火时引发了二次剧烈燃烧的原因。
(2)请再列举两种可燃性气体(除氢气) 。
(3)请写出一个和钾与水反应类型不同且有氢气生成的化学方程式。
20、(6分)向一定质量AgNO3、Cu(NO3)2和Al(NO3)3的混合溶液中加
入Zn,溶液质量与加入Zn的质量关系如图所示。
a点溶液中含有的金属离子有哪些?(写离子符号)
(2)b~c(不包括b点)段反应的化学方程式。
(3)d点固体中含有物质(用化学符号表示)?
21、(6分)化学与生活、生产息息相关,请用化学方程式表示所蕴含的
化学原理。
(1)给火锅加热常用固体酒精作燃料;
(2)神舟七号”飞船的太空舱里,航天员出舱行走所穿航天服中的CO2可用LiOH来吸收,已知LiOH与NaOH具有相似的化学性质,写出有关反应的化学方程式;
(3)用硫酸除铁锈的化学反应原理。
22、(6分)有一包白色粉末可能含有硫酸钡、碳酸钾和氢氧化钡中的一种或几种,取一定量该粉末加入到盛有足量水的烧杯中,搅拌、静置,观察到烧杯中有白色不溶物。
(1)小明同学认为,白色粉末中一定含有硫酸钡;小意同学认为小明的结论不准确,请用化学方程式表示其原因。
(2)针对上述两位同学的观点,小燕同学进一步设计如下实验方案进行探究:向烧杯中的溶液中加入几滴酚酞试液,若溶液变红,就可证明其中含有氢氧化钡。
你是否同意,为什么?(3)小鹏同学认为,只需取少量白色沉淀,加入过量的稀硝酸,当观察到什么现象?就足以说明白色粉末中只含有碳酸钾和氢氧化钡。
综合应用题(共20分)
23、(1)实验室
可选用下图所示装置制取气体。
①若选择A、F组合一套装置制取氧气,请写出有关反应的化学方程式。
②若用上图装置和药品制取的二氧化碳中混有杂质,原因是,
如果要得到较为纯净、干燥的二氧化碳,则所选用装置的导管口的连接顺序
为:(填导管口字母)。
(2)某钢铁厂高炉炼铁的主要原料是焦炭、赤铁矿石(主要含Fe2O3)、空气等,主要反应过程如下:
剩余物质的质量为109.7g,求含杂质的铁中铁的质量分数。
宇华教育集团2017-2018(下)期末
初二化学答案
选择题(每空2分,共24分)
13、(1) KNO 3 (2)NaOH
14、(1)碳原子排列方式不同; (2)溶液中均含有H +。
15、(1)50 (2)偏大
(3)饱和的NaHCO 3溶液; Ca(OH)2溶液或Ba(OH)2溶液。
16、(1)加入的水占据了锥形瓶内的空间,使锥形瓶中压强增大,气球膨胀;
(2)氢氧化钠固体溶于水放热,锥形瓶内空气受热膨胀,使气球胀大;
(3)2H 2O 2 =2H 2O + O 2↑ 17、 1.4 4C 2H 2+9O 2 =6CO 2+4H 2O+2CO
18、(1)CaCO 3 (2)CaO + H 2O =Ca(OH) 2
(3)Na 2CO 3+ Ca(OH)2 =CaCO 3↓+ 2NaOH 或Na 2CO 3+ Ba(OH)2 =BaCO 3↓+ 2NaOH
简答题(共24分)
19、(6分)(1)钾与水反应生成氢气,氢气遇火燃烧 (2)CO 和CH 4
(3)2H 2O =2H 2↑+ O 2↑
20、(6分)(1)Ag + Cu 2+ Zn 2+ Al 3+ (2)Zn+Cu (NO 3)2=Zn (NO 3)2+ Cu
(3)Zn Cu Ag
21、(6分)(1)C 2H 5OH+3O 2=== 2CO 2+3H 2O (2) CO 2+2LiOH = Li 2CO 3+ H 2O
(3)Fe 2O 3+3H 2SO 4=Fe 2(SO 4)3+3H 2O
22、(6分)(1)K 2CO 3+ Ba(OH)2 =BaCO 3↓+2KOH
(2)不同意。
碳酸钾和氢氧化钡的溶液都呈碱性。
(3)有气泡冒出,沉淀完全消失。
综合应用题(共20分)
23、(1)(6分) (2)(8分) ① CO 2 ② CO 2+ C =2CO ③ Fe 2O 3+3CO=2Fe+3CO 2 ④含碳量不同
(3)(6分)84%
通电
点燃 MnO 2 高温
高温 点燃。