2017年广东中考考试大纲(数学)
2017年广东中考考试大纲(数学)
2017年广东中考考试大纲2017年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为数学学科学业考试”是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平•考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担。
(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
四、考试要求(一)以《标准》中的课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围。
(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分。
2017年广东省中考数学试卷(含答案解析版)
2017年广东省东莞市中考数学试卷(含详解)
2017年广东省东莞市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是( )A .B .5C .﹣D .﹣5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×10103.已知∠A=70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°4.如果2是方程x 2﹣3x +k=0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .806.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆7.如图,在同一平面直角坐标系中,直线y=k 1x (k 1≠0)与双曲线y=(k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为()A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)8.下列运算正确的是( )A .a +2a=3a 2B .a 3•a 2=a 5C .(a 4)2=a 6D .a 4+a 2=a 49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是列结论:①S△ABF()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F 的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千人数克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留p)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【考点】LE :正方形的性质.【分析】由△AFD ≌△AFB ,即可推出S △ABF =S △ADF ,故①正确,由BE=EC=BC=AD ,AD ∥EC ,推出===,可得S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD 是正方形, ∴AD ∥CB ,AD=BC=AB ,∠FAD=∠FAB ,在△AFD 和△AFB 中,,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE=EC=BC=AD ,AD ∥EC ,∴===,∴S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,故选C .二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F 的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.东莞市虎门铧师培训中心有限公司咨询电话0769-8598 8066三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD ≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF 的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P 点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE ⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF ⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.东莞市虎门铧师培训中心有限公司咨询电话0769-8598 8066(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值。
(完整版)2017年广东省中考数学试题与参考答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
《2017年广东省普通高中学业水平考试大纲(语文、 数学、英语)》
《2017年广东省普通高中学业水平考试大纲(语文、数学、英语)》附件12017年广东省普通高中学业水平考试语文科考试大纲I.考试性质广东省普通高中学业水平考试是衡量普通高中学生是否达到高中毕业要求的水平测试。
考试成绩可作为普通高中学生毕业、高中同等学力认定和高职院校分类提前招生录取的依据。
II.命题指导思想命题以中华人民共和国教育部2003年颁布的《普通高中语文课程标准(实验)》和本大纲为依据。
试题体现普通高中新课程的理念,反映新课程标准的整体要求,适用于使用经过全国中小学教材审定委员会初审通过的各版本普通高中课程标准实验教科书的考生。
试题考查考生基本的语文素养,注重基础知识与基本能力的考查,注重语言的基本应用,符合水平性考试的规律和要求。
III.考核目标与要求高中语文学业水平考试要求考查考生识记、理解、分析综合、鉴赏评价和表达应用五种能力,这五种能力表现为五个层级。
A.识记:指识别和记忆,是最基本的能力层级。
B.理解:指领会并能做简单的解释,是在识记基础上高一级的能力层级。
C.分析综合:指分解剖析和归纳整理,是在识记和理解的基础上进一步提高了的能力层级。
D.鉴赏评价:指对阅读材料的鉴别、赏析和评说,是以识记、理解和分析综合为基础,在阅读方面发展了的能力层级。
— 1 —E.表达应用:指对语文知识和能力的运用,是以识记、理解和分析综合为基础,在表达方面发展了的能力层级。
对A、B、C、D、E五个能力层级均可有难易不同的考查。
IV.考试范围与要求依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中语文课程标准(实验)》,按照高中语文课程标准规定的必修课程中阅读与鉴赏、表达与交流两个目标的“语文1”至“语文5”五个模块,确定考试内容。
1. 积累与应用识记现代汉语普通话常用字的字音识记并正确书写现代常用规范汉字理解标点符号的用法并正确使用理解常用词语的含义并正确使用辨析和修改病句(病句类型:语序不当、搭配不当、成分残缺或赘余、结构混乱、表意不明、不合逻辑)理解和运用常见修辞手法(常见的修辞手法:比喻、比拟、借代、夸张、对偶、排比、反复、设问、反问)理解常见句式,根据表达需要选用和变换句式根据不同的语境和语体,语言表达简明、连贯、得体、准确、鲜明、生动识记和理解基本的文学、文化常识默写要求背诵的古诗文2.阅读与鉴赏(1)阅读浅易的古代诗文理解常见文言实词在文中的含义— 2 —理解常见文言虚词在文中的意义和用法(常见文言虚词:而、何、乎、乃、其、且、若、所、为、焉、也、以、因、于、与、则、者、之)理解与现代汉语不同的句式和用法(不同的句式和用法:判断句、被动句、宾语前置、成分省略和词类活用)理解并翻译文中的句子筛选文中的信息,归纳内容要点,概括中心意思分析、概括文章的思想内容和作者的观点鉴赏作品的形象、语言和表达技巧(2)阅读论述类、实用类、文学类文本理解重要概念和重要句子在文中的意思筛选和整合重要信息,归纳内容要点把握观点与材料之间的联系,理解文章的逻辑,分析文章结构分析、概括和评价文本的思想内容和作者的观点鉴赏作品的形象、语言和表达技巧3.写作(1)按题目要求进行写作,文章观点明确,思想健康,感情真实,内容充实,结构完整,语言通顺,书写规范。
2017年广东中考考试大纲(数学 )
2017年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担。
(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围。
(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分。
(完整版)2017年广东省中考数学试题与参考答案
2017年广东省初中毕业生学业考试数学说明:1。
全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.5。
考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1. 5的相反数是( )A。
15 B.5 C.-15D.-52。
“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元。
将4 000 000 000用科学记数法表示为( )A.0。
4×910 B.0.4×1010 C。
4×910 D。
4×10103.已知70A∠=︒,则A∠的补角为( )A.110︒B.70︒ C。
30︒ D.20︒4.如果2是方程230x x k-+=的一个根,则常数k的值为( )A。
1 B。
2 C。
—1 D。
-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A 。
95B 。
90 C.85 D 。
80 6。
下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形C 。
2017初中数学中考考纲自整版
( 4)借助数轴理解相反数 的意义, 掌握求有理数的相 反数的方法。
( 5)借助数轴理解绝对值 的意义, 掌握求有理数的绝 对值的方法,知道 a 的含 义(这里 a 表示有理数) 。
在有理数有关概念教学过程,要适时、适当的渗透数学思想。如:有理数两种分类标准的 对比、相反数概念、绝对值概念、有理数大小比较法则等内容教学中,体现分类思想;借 助数轴的教学体会数形结合思想。在有理数分类、有理数与数轴关系中,渗透集合与对应 思想。 ①通过实例(如:在一条直线的两次运动;净胜球计算等) ( 6)掌握有理数的加法运 算。 探究,了解加法法则的兼容性、合理性; ②通过典型加法运算例子概括加法法则的要点; ③能应用加法法则正确、迅速地进行有理数加法运算。 ①通过对具体实例的归纳,理解有理数的减法法则,初步了 解化归与转化思想; ②能用文字语言、符号语言准确地表述法则; ③能应用有理数加、减法则和加法运算律正确、迅速地进行 有理数加、减法的混合运算。 ①通过类比、归纳研究有理数的乘法,了解乘法法则的兼容 性、合理性; ②通过典型乘法运算例子概括乘法法则的要点; ③能应用乘法法则正确、迅速地进行有理数乘法运算。 ①通过求一个非 0 数的倒数,理解倒数的概念; ②通过对具体实例的归纳,理解有理数的除法法则,进一步 了解化归与转化思想; ③能应用有理数乘、除法则和乘法运算律正确、迅速地进行 有理数除法运算及乘、除法的混合运算。 ①通过从特殊到一般的抽象过程,引导学生理解乘方、幂、 底数、指数的意义; ②了解乘法和乘方,乘方和幂之间的关系;
1
实质性联系,关注内容主线之间的关联以及同一个内容主线中重要知识点之间的关 联。注重知识背后的数学思想、方法的贯通,注重形、数之间的结合,引导学生进行 学习内容逻辑线索的梳理,强化在数学实践活动中综合运用数学知识的能力。对重要 的数学概念、定理以及思想方法要体现循序渐进、螺旋上升的原则,从整体性上形成 解决问题的策略。 (四)关注学习过程 问题驱动、指引、贯穿了学生的数学学习过程。序列问题有助于引导学生了解知 识的来龙去脉,经历知识的发生发展的过程,从而形成对概念、原理等的深刻理解, 对过程中蕴涵的数学思想的体会与感悟,有助于发展学生的问题意识、探索精神。教 师进行教学设计时,应根据教学目标、教学内容、教学重点及难点,把主要学习内容 转换成一个个有序的、层层递进的教学问题。问题应设置在学生思维的最近发展区。 同时还应设置适当的发散性问题,培养学生的发散思维和创新能力。实际教学要激发 学生兴趣,调动学生积极性,注重启发式,引导学生独立思考、主动探索、合作交流, 正确处理好“预设”与“生成”的关系、合情推理与演绎推理的关系,培养学生良好 的数学学习习惯,指导学生掌握恰当的数学学习方法。 (五)融合信息技术 信息技术的发展对数学教育的价值、 目标、 内容以及教学方式产生了很大的影响, 改变了人的交流方式和学习方式。要充分考虑信息技术对数学学习内容和方式的影 响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问 题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索 性的数学活动中去。信息技术是手段,要服务于数学的课程目标。信息技术应用于数 学课堂,使数学交流更适时、便捷,数学探究更直观、形象。要利用信息技术丰富学 生的学习方式、促进数学理解,提高学习效率,教学中恰时恰点地应用信息技术,积 极发挥信息技术在建构数学概念、发现数学结论、突破学习难点、改进教学方式、培 养数学表达、传播数学技术等方面的作用。 (六)建立多元评价 学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习 和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的 结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活 动中所表现出来的情感与态度,帮助学生认识自我、建立信心。切实关注基础知识和 基本技能的评价、数学思考和问题解决的评价、情感态度的评价,注重对学生数学学
2017年广东省中考数学试卷(带完整解析)
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.2017年7月3日。
广东省深圳市2017年中考数学真题试卷(含答案)
2017年广东省深圳市中考数学试卷一、选择题1.-2的绝对值是( )A .-2B .2C .−12D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以得到 l 1//l 2 ?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180∘第5题图 第8题图6.不等式组 {3−2x <5x −2<1 的解集为( ) A .x >−1B .x <3C .x <−1或 x >3D .−1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出 x 双,列出方程( )A .10%x =330B .(1−10%)x =330C .(1−10%)2x =330D .(1+10%)x =3308.如图,已知线段 AB ,分别以 A 、B 为圆心,大于 12AB 为半径作弧,连接弧的交点得到直线 l ,在直线 l 上取一点 C ,使得 ∠CAB =25∘ ,延长 AC 至 M ,求 ∠BCM 的度数为( ) A .40∘B .50∘C .60∘D .70∘9.下列哪一个是假命题()A.五边形外角和为360∘B.切线垂直于经过切点的半径C.(3,−2)关于y轴的对称点为(−3,2)D.抛物线y=x2−4x+2017对称轴为直线x=2 10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()mA.20√3B.30C.30√3D.40第11题图第12题图12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE.下列结论:①AQ⊥DP;②OA2=OE·OP;③SΔAOD=S四边形OECF;④当BP=1时,tan∠OAE=1316.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3−4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=−1,那么(1+i)·(1−i)=.16.如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P 在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.计算|√2−2|−2cos45∘+(−1)−2+√8.18.先化简,再求值:(2xx−2+xx+2)÷xx2−4,其中x=−1.19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y=kx+b与反比例函数y=mx(x>0)交于A(2,4)、B(a,1),与x轴,y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=mx(x>0)的表达式;(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD上任意一点,AH= 2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE·HF的值.23.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y 轴于点C:(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使SΔABC=23SΔABD,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45∘,与抛物线交于另一点E,求BE的长.答案解析部分1.【答案】B【解析】【解答】解:依题可得:|-2|=2.故答案为B.【分析】根据正数和0的绝对值是它们本身,负数的绝对值是它的相反数.2.【答案】A【解析】【解答】解:主视图是指从前往后看所得到的平面图形.由此可得出正确答案.故答案为A.【分析】由主视图的定义即可选出正确答案.3.【答案】C【解析】【解答】解:8200000=8.2×106.故答案为C.【分析】科学记数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案.4.【答案】D【解析】【解答】解:A为中心对称图形,B为轴对称图形,C为中心对称图形,D是轴对称图形又是中心对称图形.故答案为D.【分析】轴对称图形:是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴;中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形;根据它们的定义即可得出答案.5.【答案】C【解析】【解答】解:A. ∵∠1=∠2.∴l1//l2.B.∵∠2=∠3.∴l1//l2.C.∠3=∠5并不能得到l1//l2.D.∵∠3+∠4=180∠.∴l1//l2.故答案选C.【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;从而得出答案.6.【答案】D【解析】【解答】解:解第一个不等式得:x>-1.解第二个不等式得:x<3.∴原不等式组的解集为:-1<x<3.故答案为D.【分析】解两个不等式,根据“大小小大取中间”,从而得出答案.7.【答案】D【解析】【解答】解:依题可得:x(1+10%)=330.故答案为D.【分析】根据题意即可列出方程.8.【答案】B【解析】【解答】解:依题可得:l是AB的垂直平分线,∴CA=CB,∵∠CAB=25°,∴∠CAB=∠CBA=25°∴∠BCM=25°+25°=50°.故答案为B.【分析】依题可得l是AB的垂直平分线,再由垂直平分线上的点到两端点的距离相等,从而得到∠CAB 为等腰三角形,在根据三角形的外角即可得出答案.9.【答案】C【解析】【解答】解:A.多边形的外角和为360°,故本选项正确.B.切线垂直于过切点的半径,故本选项正确.C.(3,-2)关于y的对称点为(-3,-2),故本选项错误.D.抛物线y=x2-4x+2017对称轴为直线x=2.故本选项正确.故答案为C.【分析】根据多边形的外角和定理,切线的性质,点的坐标特征,以及抛物线的顶点坐标公式即可得出答案.10.【答案】B【解析】【解答】解:中位数:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数);结合题意可知答案为B.【分析】根据中位数的定义即可得出答案.11.【答案】B【解析】【解答】解:在Rt∠DEC中,∵CD=20,DE=10.∴ ∠DCE=30°,∠CDE=60°.∴ ∠CDF=30°.又∵∠BDF=30°.∠BCA=60°.∴ ∠BCD=30°.∠BDC=60°.在Rt∠BCD中,∴ tan60°=BC DC.∴ BC=DCtan60°=20√3.在Rt∠BAC中,∴ sin60°=BA BC.∴ BA=BCsin60°=20√3×√32=30(m).故AB的高度为30m.【分析】依题可得CD=20,DE=10.∠BDF=30°.∠BCA=60°.在Rt∠BCD中和Rt∠BAC中,利用锐角三角函数即可求出CB,BA12.【答案】C【解析】【解答】解:①∵正方形ABCD 的边长是3,BP=CQ.∴∠DAP∠∠ABQ.∴∠P=∠Q.∴∠P+∠QAB=∠Q+∠QAB=90°.∴AQ∠DP.故①正确.②在Rt∠DAP中,AO∠DP.∴∠AOD∠∠POA∴AOPO=ODOA.∴OA2=PO.OD.∵OD≠OE.故②错误.③∵正方形ABCD 的边长是3,BP=CQ.∴∠QCF∠∠PBE.∴CF=BE.∵BC=DC.∴DF=CE.∴∠ADF∠∠DEC.∴S∠ADF-S∠DOF=S∠DEC-S∠DOF.∴S ΔAOD =S 四边形OECF. 故③正确.④∵BP=1时,AP=4. ∴∠AOP∠∠DAP. ∴PB EB =PA DA =43.BE=34 ∴QE=134∴∠QOP∠∠PAD.∴QO PA =OE AD =QE PD =1345. 解得QO=135,OE=3920,AO=5-QO=125∴tanOAE=OE OA =1316. 故④正确. 故答案为C.【分析】①由正方形 ABCD 的边长是3, BP=CQ 易证∠DAP∠∠ABQ ,可得∠P=∠Q ,∠P+∠QAB=∠Q+∠QAB=90°;AQ∠DP.故①正确.②在Rt∠DAP 中,AO∠DP 可得∠AOD∠∠POA ;根据相似三角形的性质可得OA 2=PO.OD.OD≠OE;故②错误.③由正方形 ABCD 的边长是3, BP=CQ 易证∠QCF∠∠PBE ;∠ADF∠∠DEC ;所以S ∠ADF -S ∠DOF =S ∠DEC -S ∠DOF ;即S ΔAOD =S 四边形OECF.故③正确.④由题可证∠AOP∠∠DAP ,求出BE=34,QE=134,从而得到∠QOP∠∠PAD ,利用相似三角形的性质易得QO=135,OE=3920,AO=5-QO=125;所以tanOAE=OE OA =1316;故④正确.13.【答案】a (a+2)(a-2)【解析】【解答】解:原式=a (a+2)(a-2).故答案为a (a+2)(a-2).【分析】根据因式分解的提公因式法和公式法中的平方差公式即可得出答案.14.【答案】23【解析】【解答】解:依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,所以P=23.故答案为23.【分析】依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,从而得出答案.15.【答案】2【解析】【解答】解:原式=1-i 2.∵i 2=-1.∴原式=1-(-1).=2. 故答案为2.【分析】根据平方差公式即可得出式子,再把i 2=-1代入即可求出答案.16.【答案】3【解析】【解答】解:如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,∵∠ABC=∠MPN=90°. ∴∠PEB+∠PFB=180°. 又∵∠PEB+∠PEQ=180°. ∴∠PFB=∠PEQ. ∴∠QPE∠∠RPF. ∵PE=2PF. ∴PQ=2PR=2BQ. ∴∠AQP∠∠ABC.∴AQ :QP :AP=AB :BC :AC=3:4:5. 设PQ=4x ,∴AQ=3x ,AP=5x ,PR=BQ=2x. ∴AB=AQ+BQ=5x=3.∴x=35.∴AP=5x=3. 故答案为3.【分析】如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,由题易得∠PFB=∠PEQ ;可得∠QPE∠∠RPF ;∠AQP∠∠ABC ;根据相似三角形的性质与已知条件即可求出AP.17.【答案】解:原式=2-√2-2×√22+1+2√2.=3.【解析】【分析】根据二次根式,负指数幂,绝对值,特殊角的三角函数值等性质计算即可得出答案.18.【答案】解:原式=2x (x+2)+x (x−2)(x−2)(x+2)×(x−2)(x+2)x =2x 2+4x+x 2−2x x =3x 2+2x x=3x+2.∵x=-1.∴原式=3×(-1)+2 =-1.【解析】【分析】根据分式的加减乘除运算法则即可化简该分式,将x 的值代入即可得出答案.19.【答案】(1)120;0.25;0.2(2)解:补全的条形统计图如下:(3)500【解析】【解答】解:(1)18÷0.15=120(人)x=30÷120=0.25.m=120×0.4=48.y=1-0,25-0.4-0.15=0.2.n=120×0.2=24(3)2000×0.25=500(人)【分析】(1)根据频数÷频率=总数;频率=频数÷总数;频数=总数×频率即可补全统计表.(2)由(1)中的数据即可补全条形统计图.(3)根据2000乘以共享单车的频率即可求出人数.20.【答案】(1)解:设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.化简得:x 2-28x+180=0.解得:x 1=10(舍去),x 2=18.答:长为18厘米,宽为10厘米.(2)解:设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.化简得:y 2-28y+200=0.∵∠=b 2-4ac=282-4×200=-16<0.∴原方程无解.∴不能围成面积为200平方厘米的矩形.【解析】【分析】(1)设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.求解即可得出答案.(2)设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.由根的判别式可知此方程无解;故不能围成面积为200平方厘米的矩形21.【答案】(1)解:将A (2,4)代入y=m x .∴ m=2×4=8.∴ 反比例函数解析式为y=8x.∴将B (a ,1)代入上式得a=8.∴B (8,1).将A (2,4),B (8,1)代入y=kx+b 得:{2k +b =48k +b =1. ∴{k =−12b =5∴一次函数解析式为:y=-12x+5. (2)证明:由(1)知一次函数解析式为y=-12x+5.∴C (10,0),D (0,5). 如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F.∴E (0,4),F (8,0).∴AE=2,DE=1,BF=1,CF=2∴在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得:AD=√AE 2+DE 2=√5,BC=√CF 2+BF 2=√5.∴AD=BC.【解析】【分析】(1)将A (2,4)代入y=m x 求出m 得到反比例函数解析式;再将B (a ,1)代入得a ,将A (2,4),B (8,1)代入y=kx+b 得一个二元一次方程组求解即可得一次函数解析式.(2)由(1)可得C (10,0),D (0,5);如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F ;从而得到E (0,4),F (8,0);AE=2,DE=1,BF=1,CF=2在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得AD=BC.22.【答案】(1)解:连接OC ,在Rt∠COH 中,∵CH=4,OH=r-2,OC=r.∴ (r-2)2+42=r 2.∴ r=5(2)解:∵弦CD 与直径AB 垂直,∴ 弧AD=弧AC=12弧CD. ∴ ∠AOC=12∠COD. ∴∠CMD=12∠COD. ∴ ∠CMD=∠AOC.∴sin∠CMD=sin∠AOC.在Rt∠COH 中,∴sin∠AOC=CH OC =45. ∴sin∠CMD=45. (3)解:连接AM ,∴∠AMB=90°.在Rt∠AMB 中,∴∠MAB+∠ABM=90°.在Rt∠EHB 中,∴∠E+∠ABM=90°.∴∠MAB=∠E.∵弧BM=弧BM ,∴∠MNB=∠MAB=∠E.∵∠EHM=∠NHF.∴∠EHM∠∠NHF∴HE HN =HM HF. ∴HE.HF=HM.HN.∵AB 与MN 交于点H ,∴HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16.∴HE.HF=16.【解析】【分析】(1)连接OC ,在Rt∠COH 中,根据勾股定理即可r.(2)根据垂径定理即可得出弧AD=弧AC=12弧CD ;再根据同弧所对的圆周角等于圆心角的一半;得出 ∠CMD=∠AOC ;在Rt∠COH 中,根据锐角三角函数定义即可得出答案.(3)连接AM ,则∠AMB=90°.在Rt∠AMB 中和Rt∠EHB 中,根据同角的余角相等即可∠MAB=∠E ;再由三角形相似的判定和性质即可得HE.HF=HM.HN.又由AB 与MN 交于点H ,得出HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16;从而求出HE.HF=16.23.【答案】(1)解:依题可得:{a −b +2=016a +4b +2=0解得:{a =−12b =32∴y=-12x 2+32x+2. (2)解:依题可得:AB=5,OC=2,∴S ∠ABC =12AB×OC=12×2×5=5. ∵S ∠ABC =23S ∠ABD. ∴S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0). ∵S ∠ABD =12AB|y D |=152.| 12×5×|-12m 2+32m+2|=152. ∴m=1或m=2或m=-2(舍去)或m=5∴D 1(1,3),D 2(2,3),D 3(5,-3).(3)解:过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H.∵∠CBF=45°,∠BCF=90°.∴CF=CB.∵∠BCF=90°,∠FHC=90°.∴∠HCF+∠BCO=90°,∠HCF+∠HFC=90°∴∠HFC=∠OCB.∵{∠CHF =∠COB ∠HFC =∠OCB FC =CB∴∠CHF∠∠BOC (AAS ).∴HF=OC=2,HC=BO=4,∴F (2,6).设直线BE 解析式为y=kx+b.∴{2k +b =64k +b =0解得{k =−3b =12∴直线BE 解析式为:y=-3x+12. ∴{y =−12x 2+32x +2y =−3x +12解得:x 1=5,x 2=4(舍去)∴E (5,-3).BE=√(5−4)2+(−3−0)2=√10.【解析】【分析】(1)用待定系数法求二次函数解析式.(2)依题可得:AB=5,OC=2,求出S ∠ABC =12AB×OC=12×2×5=5;根据S ∠ABC =23S ∠ABD ;求出S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0).根据三角形的面积公式得到一个关于m 的方程,求解即可. (3)过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H ;根据同角的余角相等得到∠HFC=∠OCB ;再根据条件得到∠CHF∠∠BOC (AAS );利用其性质可求出HF=OC=2,HC=BO=4,从而得到F (2,6);用待定系数法求直线BE 解析式;再把抛物线解析式和直线BE 解析式联立得到方程组求E 点坐标,再根据勾股定理求出BE 长.。
广东省2017年中考数学真题试题(含解析)
广东省2017年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是( )A .15B .5C .﹣15D .﹣5 【答案】D .【解析】试题分析:根据相反数的定义有:5的相反数是﹣5.故选D .考点:相反数.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【答案】C .【解析】试题分析:4000000000=4×109.故选C .考点:科学记数法—表示较大的数.3.已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【答案】A .考点:余角和补角.4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【答案】B .【解析】试题分析:∵2是一元二次方程230x x k -+=的一个根,∴22﹣3×2+k =0,解得,k =2.故选B .考点:一元二次方程的解.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【答案】B .【解析】试题分析:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B .考点:众数.6.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆【答案】D .考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线1y k x =(1k ≠0)与双曲线2k y x=(2k ≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)【答案】A .【解析】试题分析:∵点A 与B 关于原点对称,∴B 点的坐标为(﹣1,﹣2).故选A .考点:反比例函数与一次函数的交点问题.8.下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.【解析】试题分析:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC=(180°-∠D)÷2=65°,故选C.考点:圆内接四边形的性质.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【答案】C.考点:正方形的性质.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a a +2= .【答案】a (a +1).【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.12.一个n 边形的内角和是720°,则n = .【答案】6.【解析】试题分析:设所求正n 边形边数为n ,则(n ﹣2)•180°=720°,解得n =6.考点:多边形内角与外角.13.已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b 0.(填“>”,“<”或“=”)【答案】>.【解析】试题分析:∵a 在原点左边,b 在原点右边,∴a <0<b ,∵a 离开原点的距离比b 离开原点的距离小,∴|a |<|b |,∴a +b >0.故答案为:>.考点:实数大小比较;实数与数轴.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 . 【答案】25. 【解析】试题分析:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25,故答案为:25. 考点:概率公式.15.已知4a +3b =1,则整式8a +6b ﹣3的值为 .【答案】﹣1.考点:代数式求值;整体思想.16.如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 .【解析】试题分析:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH考点:翻折变换(折叠问题);矩形的性质;综合题.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:()101713π-⎛⎫---+ ⎪⎝⎭. 【答案】9.考点:实数的运算;零指数幂;负整数指数幂.18.先化简,再求值:()211422x x x ⎛⎫+⋅-⎪-+⎝⎭,其中x【答案】2x ,【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x =考点:分式的化简求值.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【答案】男生志愿者有12人,女生志愿者有16人.【解析】试题分析:设男生志愿者有x 人,女生志愿者有y 人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:302068050401240x y x y +=⎧⎨+=⎩,解得:1216x y =⎧⎨=⎩. 答:男生志愿者有12人,女生志愿者有16人.考点:二元一次方程组的应用.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【答案】(1)作图见见解析;(2)100°.试题解析:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.考点:作图—基本作图;线段垂直平分线的性质.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【答案】(1)证明见解析;(2)150°.试题解析:(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,∵AB=AF,∠BAD=∠FAD,AD=AD,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.考点:菱形的性质.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m = (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【答案】(1)①52;②144;(2)720.试题解析:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有125280200++×1000=720(人). 考点:扇形统计图;用样本估计总体;频数(率)分布表.五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线b ax x y ++-=2交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线b ax x y ++-=2的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【答案】(1)243y x x =-+-;(2)P 的坐标为(32,34);(3)552.(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =032+=23, ∵点P 在抛物线243y x x =-+-上,∴y P =233()4322-+⨯-=34,∴点P 的坐标为(32,34);(3)∵PM ∥OC ,∴∠OCB =∠MPB ,PM =34,MB =32,∴PB =,∴sin ∠MPB =55254323==PB BM ,∴sin ∠OCB =552. 考点:抛物线与x 轴的交点;待定系数法求二次函数解析式;解直角三角形.24.如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.考点:相似三角形的判定与性质;垂径定理;切线的性质;弧长的计算.25.如图,在平面直角坐标系中,O为原点,四边形AB CO是矩形,点A,C的坐标分别是A(0,2)和C(0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =3; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【答案】(1)(2);(2)AD 的值为2或(3)①证明见解析;②23y x =-+x =3时,y(3)①由(2)可知,B 、D 、E 、C 四点共圆,推出∠DBC =∠DCE =30°,由此即可解决问题;②作DH ⊥AB 于H .想办法用x 表示BD 、DE 的长,构建二次函数即可解决问题;试题解析:(1)∵四边形AOCB 是矩形,∴BC =OA =2,OC =AB =BCO =∠BAO =90°,∴B (2).故答案为:(2).(2)存在.理由如下:连接BE ,取BE 的中点K ,连接DK 、KC .∵∠BDE =∠BCE =90°,∴KD =KB =KE =KC ,∴B 、D 、E 、C 四点共圆,∴∠DBC =∠DCE ,∠EDC =∠EBC ,∵tan ∠ACO =AO OC ACO =30°,∠ACB =60° ①如图1中,△DEC 是等腰三角形,观察图象可知,只有ED =EC ,∴∠DBC =∠DCE =∠EDC =∠EBC =30°,∴∠DBC =∠BCD =60°,∴△DBC 是等边三角形,∴DC =BC =2,在Rt △AOC 中,∵∠ACO =30°,OA =2,∴AC =2AO =4,∴AD =AC ﹣CD =4﹣2=2,∴当AD =2时,△DEC 是等腰三角形.②如图2中,∵△DCE 是等腰三角形,易知CD =CE ,∠DBC =∠DEC =∠CDE =15°,∴∠ABD =∠ADB =75°,∴AB =AD =综上所述,满足条件的AD 的值为2或(3)①由(2)可知,B 、D 、E 、C 四点共圆,∴∠DBC =∠DCE =30°,∴tan ∠DBE =DE DB ,∴DE DB ②如图2中,作DH ⊥AB 于H .考点:相似形综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题.。
2017年广东省中考数学试卷及答案
页脚内容- 1 -2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )页脚内容- 2 -A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( ) A.1 B.2 C.-1 D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A.95 B.90 C.85 D.806.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )题7图页脚内容- 3 -A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x4)22x x⎛⎫+÷-⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年广东省中考数学试卷(精编word版)
2017年广东省中考数学试卷(精编word版)D(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•广东)5的相反数是()A.B.5 C.﹣D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2017•广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•广东)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A【点评】此题考查了余角与补角,熟练掌握补角的性质是解本题的关键.4.(3分)(2017•广东)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.(3分)(2017•广东)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.(3分)(2017•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.【点评】本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.7.(3分)(2017•广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B 的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.8.(3分)(2017•广东)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.9.(3分)(2017•广东)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)(2017•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF =2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF =S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•广东)分解因式:a2+a= a(a+1).【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.12.(4分)(2017•广东)一个n边形的内角和是720°,则n= 6 .【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.(4分)(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b >0.(填“>”,“<”或“=”)【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.【点评】本题考查了实数与数轴,有理数的加法法则,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键.14.(4分)(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(4分)(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)(2017•广东)计算:|﹣7|﹣(1﹣π)0+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂的性质、绝对值等考点的运算.18.(6分)(2017•广东)先化简,再求值:(+)•(x2﹣4),其中x=.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.(6分)(2017•广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)(2017•广东)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.21.(7分)(2017•广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A 在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定,平行线的性质等知识,证明出AD是线段BF的垂直平分线是解题的关键.22.(7分)(2017•广东)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m= 52 (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)(2017•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x 轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,==,∴点P横坐标xP∵点P在抛物线y=﹣x2+4x﹣3上,∴y=﹣3=,P∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键.24.(9分)(2017•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.(9分)(2017•广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBE=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBE=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBE=∠DCO=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题.。
广东中考考试大纲(数学)教程文件
2017年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担。
(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围。
(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分。
2017年初中数学考试大纲
数学一、课程理念、教育教学原那么(一)彰显育人价值初中数学课程应全面贯彻党的教育方针,落实《国家中长期教育改革和进展计划纲要(2020—2020年)》和教育部《关于全面深化课程改革落实立德树人全然任务的意见》的有关要求;以《义务教育数学课程标准(2020版)》为依据,依照德育为先、能力为重、面向全部、个性进展的总要求,正确处置好面向全部学生与关注学生个体不同的关系,以学生进展为本,使得:人人都能获得良好的数学教育,不同的人在数学上取得不同的进展;遵循学生身心进展规律,结合数学学科特点,有机融入社会主义核心价值观教育和中华优秀传统文化教育,成心识地引导学生了解数学与人类进展的彼此作用,体会数学的科学价值、文化价值和应用价值,体会数学关于人类文明进展的奉献,培育学生的理性精神和科学精神,形成正确的世界观、人一辈子观和价值观,充分彰显“数学育人”的价值。
(二)进展核心素养初中数学教学要以进展学生数学核心素养为导向,帮忙学生学会用数学目光观看世界,用数学思维分析世界,用数学语言表达世界。
要创设有利于学生数学核心素养进展的教学情境,引导学生把握数学本质,感悟数学思想。
要依照数学学科的特点,进展运算能力、推理能力、空间观念、数据分析观念和模型思想,注重进展学生的应用意识和创新意识,关注数学概念的明白得和说明,关注数学规那么的选择和运用,关注数学问题的发觉与解决,关注知识技术、数学试探、问题解决、情感态度等目标的整体实现,使学生学会用数学目光观看世界,用数学思维分析世界,用数学语言表达世界。
通过初中数学学习,学生应能取得适应社会生活和进一步进展所必需的数学基础知识、大体技术、大体思想、大体活动体会;能体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行试探,增强发觉和提出问题的能力、分析和解决问题的能力;了解数学的价值,提高学习数学的爱好,增强学好数学的信心,养成良好的学习适应,具有初步的创新意识和科学态度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担。
(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围。
(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分。
五、考试内容第一部分数与代数1.数与式(1)有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).④理解有理数的运算律,并能运用运算律简化运算.⑤能运用有理数的运算解决简单的问题.(2)实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.②了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.③了解无理数和实数的概念,知道实数与数轴上的点一一对应.能求实数的相反数与绝对值.④能用有理数估计一个无理数的大致范围.⑤了解近似数;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.⑥了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算.能掌握形如:,的化简与运算(分母有理化).(3)代数式①能借助现实情境了解代数式,进一步理解用字母表示数的意义.②能分析简单问题的数量关系,并用代数式表示.③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.(4)整式与分式①了解整数指数幂的意义和基本性质,会用科学计数法表示数(包括在计算器上表示).②了解整式的概念,掌握合并同类项和去括号法则,会进行简单的整式加法和减法运算;能进行简单的整式乘法(其中的多项式相乘仅指一次式之间以及一次式与二次式相乘).③会推导乘法公式:(a+b)(a-b)=a2-b2,(a±b)2 =a2 ±2ab+b2,了解公式的几何背景,并能利用公式进行简单的计算.④会用提取公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).⑤了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.2.方程与不等式(1)方程与方程组①能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.②经历估计方程解的过程.③掌握等式的基本性质.④会解一元一次方程、可化为一元一次方程的分式方程(方程中的分式不超过两个).⑤掌握代入消元法和加减消元法,能解二元一次方程组.⑥理解配方法,会用配方法、公式法、因式分解法解数字系数的一元二次方程.⑦会用一元二次方程根的判别式判别方程是否有实数根和两个根之间是否相等.⑧能根据具体问题的实际意义,检验方程的解是否合理.(2)不等式与不等式组①结合具体问题,了解不等式的意义,探索不等式的基本性质.②会解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集,③能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.3.函数(1)函数①通过简单实例中的数量关系,了解常量、变量的意义.②结合实例,了解函数的概念和三种表示方法,能举出函数的实例.③能结合图象对简单实际问题中的函数关系进行分析.④能确定简单实际问题中函数自变量的取值范围,并会求出函数值.⑤能用适当的函数表示法刻画简单实际问题中变量之间的关系.⑥结合对函数关系的分析,能对变量的变化情况进行初步讨论.(2) 一次函数①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.②会利用待定系数法确定一次函数的表达式.③能画出一次函数的图象,根据一次函数的图象和表达式y = kx + b(k≠0)探索并理解k>0或k<0时,图象的变化情况.④理解正比例函数.⑤体会一次函数与二元一次方程的关系.⑥能用一次函数解决简单实际问题.(3)反比例函数①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.②能画出反比例函数的图象,根据图象和表达式y =(k≠0)探索并理解k>0或k<0时,图象的变化情况.③能用反比例函数解决某些实际问题.(4)二次函数①通过对实际问题情境的分析,体会二次函数的意义.②会用描点法画出二次函数的图象,能通过图象了解二次函数的性质.③会用配方法将数字系数的二次函数的表达式化为y = a(x - h)2 + k(a≠0)的形式,并能由此得到二次函数图象的顶点坐标、开口方向,画出图象的对称轴,并能解决简单实际问题.④会利用二次函数的图象求一元二次方程的近似解.第二部分空间与图形1.图形的认识(1)点、线、面、角①通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等.②会比较线段的长短,理解线段的和、差以及线段中点的意义.③掌握基本事实:两点确定一条直线.④掌握基本事实:两点之间线段最短.⑤理解两点间距离的意义,能度量两点间距离.⑥理解角的概念,能比较角的大小.⑦认识度、分、秒,会对度、分、秒进行简单换算,并会计算角的和、差.(2)相交线与平行线①理解对顶角、余角、补角的概念,探索并掌握对顶角相等,同角(等角)的余角相等,同角(等角)的补角相等的性质.②理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线.③理解点到直线距离的意义,能度量点到直线的距离.④掌握过一点有且仅有一条直线与已知直线垂直.⑤识别同位角、内错角、同旁内角;掌握平行线概念:掌握两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.⑥掌握过直线外一点有且只有一条直线与这条直线平行.⑦掌握两条平行直线被第三条直线所截,同位角相等.⑧能用三角尺和直尺过已知直线外一点画这条直线的平行线.⑨探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补).⑩了解平行于同一条直线的两条直线平行.(3)三角形①理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性.②探索并证明三角形内角和定理,掌握该定理的推论:三角形的外角等于与它不相邻的两个内角的和.证明三角形的任意两边之和大于第三边.③理解全等三角形的概念,能识别全等三角形中的对应边、对应角.④掌握两边及其夹角分别相等的两个三角形全等、两角及其夹边分别相等的两个三角形全等、三边分别相等的两个三角形全等等基本事实,并能证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.⑤探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边的距离相等的点在角的平分线上.⑥理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等;反之,到线段两端的距离相等的点在线段的垂直平分线上.⑦理解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等,底边上的高线、中线及顶角平分线重合,探索并掌握等腰三角形的判定定理:有两个底角相等的三角形是等腰三角形.探索等边三角形的性质定理:等边三角形的各角都等于60°.探索等边三角形的判定定理:三个角都相等的三角形(或仅有一个角是60°的等腰三角形)是等边三角形.⑧了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半,掌握有两个角互余的三角形是直角三角形.⑨探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题:探索并掌握判定直角三角形全等的“斜边、直角边”定理.⑩了解三角形重心的概念.(4)四边形①了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式.②理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.③探索并证明平行四边形的有关性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.④了解两条平行线之间距离的意义,能度量两条平行线之间的距离.⑤探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.正方形具有矩形和菱形的一切性质.⑥探索并证明三角形中位线定理.(5)圆①理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念:探索并了解点与圆的位置关系.②探索圆周角与圆心角及其所对的弧的关系,了解并证明圆周角及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.③知道三角形的内心和外心.④了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线.⑤会计算圆的弧长、扇形的面积.(6)尺规作图①能用尺规完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线.②会利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边和底边上的高作等腰三角形;已知一直角边和斜边作直角三角形.③会利用基本作图完成:过不在同一直线上的三点作圆;会作三角形的外接圆、内切圆,作圆的内接正方形和正六边形.④在尺规作图中,了解尺规作图的道理,保留作图痕迹,不要求写作法.(7)定义、命题、定理①通过具体实例,了解定义、命题、定理、推论的意义.②结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.③知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程中可以有不同的表达形式,会综合法证明的格式.④了解反例的作用,知道利用反例可以判断一个命题是错误的.⑤通过实例体会反证法的含义.2.图形与变换(1)图形的轴对称①通过具体实例认识轴对称,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分.②能画出简单平面图形关于给定对称轴的对称图形,③了解轴对称图形的概念:探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质④认识并欣赏自然界和现实生活中的轴对称图形.(2)图形的旋转①通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等,②了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分,③探索线段、平行四边形、正多边形、圆的中心对称性质.④认识并欣赏自然界和现实生活中的中心对称图形.(3)图形的平移①通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得到的图形中,两组对应点的连线平行(或在同一条直线上)且相等.②认识并欣赏平移在自然界和现实生活中的应用.(4)图形的相似①了解比例的性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割.②通过具体实例认识图形的相似,了解相似多边形和相似比.③掌握两条直线被一组平行线所截,所得的对应线段成比例.④了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.⑤了解两个三角形相似的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似.⑥了解图形的位似,知道利用位似将一个图形放大或缩小.⑦会用图形的相似解决一些简单的实际问题.⑧利用相似的直角三角形,探索并认识锐角三角函数(sin A,cos A,tan A),知道30°、45°、60°角的三角函数值.⑨会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.⑩能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题.(5)图形的投影①通过丰富的实例,了解中心投影和平行投影的概念.②会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,会判断简单物体的三视图,能根据三视图描述简单的几何体.③了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.④通过实例,了解上述视图与展开图在现实生活中的应用.3.图形与坐标(1)坐标与图形位置①结合实例进一步体会有序数对可以表示物体的位置.②理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.③在实际问题中,能建立适当的直角坐标系,描述物体的位置.④对给定的正方形,会选择适当的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形.⑤在平面上,能用方位角和距离刻画两个物体的相对位置.(2)坐标与图形运动①在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.②在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.③在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.④在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的.第三部分统计与概率1.抽样与数据分析(1)经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据.(2)体会抽样的必要性,通过实例了解简单随机抽样.(3)会制作扇形统计图,能用条形统计图、折线统计图、扇形统计图直观、有效地描述数据.(4)理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述.(5)体会刻画数据离散程度的意义,会计算简单数据的方差.(6)通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息.(7)体会样本与总体的关系,知道可以通过样本平均数、样本方差推断总体平均数和总体方差.(8)能解释统计结果,根据结果做出简单的判断和预测,并能进行交流.(9)通过表格等感受随机现象的变化趋势.2.事件的概率(1)能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.(2)知道大量的重复试验,可以用频率来估计概率.六、考试方式和试卷结构(一)考试方式采用闭卷、笔答形式.(二)试卷结构1.由地级市组织命题的试卷,其结构由组织单位自行确定.2.广东省教育考试院命制的试卷,结构如下:(1)考试时间为100分钟.全卷满分120分.(2)试卷结构:选择题10道,共30分;填空题6道,共24分;解答题(一)3道,共18分;解答题(二)3道,共21分;解答题(三)3道,共27分.五类合计25道题.选择题为四选一型的单项选择题;填空题只要求直接填写结果.解答题(一)(二)包括:计算题[在下列四种形式中任选:数值计算、代数式运算、解方程(组)、解不等式(组);计算综合题[在下列四种形式中任选:方程(不等式)计算综合题、函数综合题、几何计算综合题、统计概率计算综合题;证明题(在下列两种形式中任选:几何证明、简单代数证明);简单应用题[包括实际应用和非实际应用.在下列三种形式中任选:方程(组)应用题、不等式应用题、解三角形应用题、函数应用题;作图题仅限尺规作图.解答题(三)包括:“代数综合题”“几何综合题”和“代数与几何综合题”,各1道.解答题都应根据题目的要求,写出文字说明、演算步骤或推证过程.(3)试卷分为试题和答题卡,分开印刷,试题不留答题位置,答案必须填涂或写在答题卡上.答题方式由各地级市确定并公布.。