高考数学解析几何实用运算技巧
高中数学学习中的解析几何解题技巧
高中数学学习中的解析几何解题技巧解析几何是数学中的一个重要分支,也是高中数学中的一项重要内容。
在学习解析几何时,很多学生常常会遇到解题困难的情况。
本文将介绍一些高中数学学习中解析几何解题的技巧,帮助学生更好地应对解析几何题目。
一、利用图形性质确定方程解析几何问题常常涉及到图形的方程,而方程又是解题的基础。
在解析几何问题中,我们可以通过观察图形的性质,来确定方程的形式。
例如,当求解过点A和B的直线方程时,我们可以根据直线的斜率来确定方程的形式。
如果我们已知直线经过点A(-3,5)和B(2,4),我们可以利用两点间的斜率公式来求解直线的斜率,即\[k = \frac{{y_2-y_1}}{{x_2-x_1}} = \frac{{4-5}}{{2-(-3)}} = -\frac{1}{5}\]然后可以通过直线的斜率和已知点的坐标,使用点斜式或者斜截式公式得到直线的方程。
二、利用向量运算简化计算在解析几何中,向量是一项重要的工具。
通过向量的加减和数乘等运算,可以简化计算过程。
例如,当求解两条直线的夹角时,我们可以利用向量的点积公式来求解。
设两条直线的方程分别为\[ax+by+c=0\]和\[px+qy+r=0\],则两条直线的夹角\(\theta\)满足:\[\cos{\theta}=\frac{{|ap+bq|}}{{\sqrt{{a^2+b^2}}\sqrt{{p^2+q^2}}}}\]通过向量的点积公式,我们可以利用方程的系数来求解直线的夹角,而无需对方程进行直接求解。
三、利用平移旋转变换简化题目解析几何中的平移、旋转等变换是解题过程中常常用到的工具。
通过适当的变换,可以将复杂的题目转化为简单的形式,便于求解。
例如,我们在求解直线与圆的位置关系时,可以通过平移变换将圆心移到坐标原点,从而简化题目。
设直线的方程为\(ax+by+c=0\),圆的方程为\((x-h)^2+(y-k)^2=r^2\),我们可以通过平移变换将圆的方程转化为\((x-a)^2+(y-b)^2=r^2\),其中\(a\)和\(b\)为圆心的坐标。
高考数学解析几何高分秘籍
高考数学解析几何高分秘籍在高考数学中,解析几何一直是让众多考生头疼的难题之一。
它不仅需要扎实的数学基础知识,还要求具备较强的计算能力、逻辑推理能力和空间想象能力。
那么,如何在高考数学中拿下解析几何的高分呢?下面就为大家分享一些实用的秘籍。
一、扎实掌握基础知识要想在解析几何中取得高分,首先要对相关的基础知识有深入的理解和掌握。
这包括直线、圆、椭圆、双曲线、抛物线的标准方程、性质、参数方程等。
对于直线,要熟练掌握其点斜式、斜截式、两点式、一般式等方程形式,以及直线的斜率、倾斜角、平行与垂直的判定等知识。
圆的标准方程和一般方程要能熟练转换,并且要清楚圆心坐标和半径的求解方法。
椭圆、双曲线、抛物线的定义、标准方程、离心率、焦点坐标等是重点中的重点。
例如,椭圆的定义是平面内到两个定点的距离之和等于常数(大于两定点间的距离)的点的轨迹;双曲线则是平面内到两个定点的距离之差的绝对值等于常数(小于两定点间的距离)的点的轨迹。
只有把这些基础知识牢记于心,才能在解题时迅速准确地运用。
二、注重图形结合解析几何的题目往往都与图形密切相关,因此要养成图形结合的解题习惯。
在解题过程中,先根据题目条件画出图形,这样可以直观地看出问题的关键所在,有助于寻找解题思路。
例如,对于直线与圆的位置关系问题,可以通过画出图形,观察圆心到直线的距离与圆半径的大小关系来判断。
对于椭圆、双曲线和抛物线的问题,画出图形可以帮助我们更好地理解曲线的形状和性质,从而更有效地进行计算和推理。
同时,在图形中标记出已知条件和所求问题,能够让我们更加清晰地把握解题的方向。
三、熟练运用公式和定理解析几何中有很多重要的公式和定理,如两点间距离公式、点到直线距离公式、弦长公式等,要熟练掌握并能灵活运用。
两点间距离公式:$d =\sqrt{(x_2 x_1)^2 +(y_2 y_1)^2}$点到直线距离公式:$d =\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$弦长公式:对于直线$y = kx + b$与曲线$f(x,y) = 0$相交于两点$A(x_1,y_1)$,$B(x_2,y_2)$,弦长$|AB| =\sqrt{1 + k^2}\cdot\sqrt{(x_1 + x_2)^2 4x_1x_2}$在解题时,准确运用这些公式可以大大提高解题的效率和准确性。
(完整版)解析几何大题的解题技巧
目录解析几何大题的解题技巧(只包括椭圆和抛物线) (1)一、设点或直线 (1)二、转化条件 (1)(1)求弦长 (2)(2)求面积 (2)(3)分式取值判断 (2)(4)点差法的使用 (4)四、能力要求 (6)五、补充知识 (6)关于直线 (6)关于椭圆: (7)例题 (7)解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为等。
对于椭圆上的唯一的动点,还可以设为。
在抛物线上的点,也可以设为。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。
如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时才可以设直线的参数方程。
如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。
(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为或x=my+n联立起来更方便。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
下面列出了一些转化工具所能转化的条件。
向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。
解析几何解答题技巧
解析几何解答题技巧
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
在解析几何的解答题中,需要注意以下几点技巧:
1. 建立坐标系:根据题目的具体情况,选择适当的坐标系,如直角坐标系、极坐标系或参数方程。
坐标系的建立有助于将几何问题转化为代数问题,便于进一步求解。
2. 设点坐标:根据题目要求,设出未知点的坐标。
设点坐标时需要注意,所设的坐标应尽量满足题目的条件,便于求解。
3. 列出方程:根据题目的已知条件和设定的坐标,列出所需的方程。
列方程时需要注意,方程应尽可能简单,便于求解。
4. 解方程:根据所列的方程,解出未知数的值。
解方程时需要注意,解方程的方法应尽可能简单,便于计算。
5. 验证答案:解出答案后,需要进行验证,确保答案符合题目的条件和已知条件。
验证答案时需要注意,答案应尽可能准确,避免出现误差。
6. 总结答案:最后需要对答案进行总结,写出完整的答案。
总结答案时需要注意,答案应尽可能清晰,便于阅读和理解。
总之,在解析几何的解答题中,需要注意建立坐标系、设点坐标、列出方程、解方程、验证答案和总结答案等技巧。
同时还需要注意计算准确、思路清晰、表达简洁等要求。
高考数学中的空间几何解析技巧
高考数学中的空间几何解析技巧高考数学的空间几何部分是让许多考生头疼的,因为它需要考生有很强的几何直观、坐标系分析能力和逻辑推理能力。
但如果我们掌握了一些空间几何解析技巧,就可以更加轻松地应对空间几何题目。
本文将介绍几种实用的空间几何解析技巧,希望对广大考生有所帮助。
一、向量法求点线关系在空间几何中,向量法常常是解题的常用方法。
例如,在求一个点是否在一条直线上或一个平面上时,我们可以通过向量的加、减、数量积等运算来判断点所在的直线或平面方程。
具体而言,如果一个点P(x0,y0,z0),在一条直线L上,那么向量OP与直线L上的任意向量的数量积为零。
如果一个点P(x0,y0,z0),在一个平面上,那么该点到该平面的距离为零,即OP与该平面的法向量垂直。
例如,当我们需要判断点P(2,3,4)是否在直线L:x+1=y-2=z-3时,可以构造如下两个向量:OP=<2-(-1),3-2,4-3>=<3,1,1>OL=<1, -2, -3>如果P在L上,则向量OP与任意在L上的向量平行,即它们的数量积为0,则<3,1,1>·<1,-2,-3>=0通过计算可得,该点在直线上,因此将其代入直线方程可以得到:x+1=2+1y-2=3-2z-3=4-3即x=3,y=4,z=5。
如果需要判断点P(2,3,4)是否在平面π:3x-2y+z-1=0上面,我们可以求出该点到平面的距离,如果距离为0,则该点在平面上。
通过向量的知识,可知我们可以构造向量PA,使其端点为点A (1,1,0), 则PA=<2-1, 3-1, 4-0>=<1,2,4>平面π的法向量为<3,-2,1>,则点P到平面π的距离为向量PA 在法向量上的投影,即d=|<1,2,4>·<3,-2,1>|/|<3,-2,1>|=|1+(-4)+4|/√(9+4+1)=1因此点P在平面π上。
高考数学解析几何解题方法
高考数学解析几何解题方法
高考数学解析几何解题方法
1.将圆锥曲线几何性质与向量数量积、不等式等交汇是高考解析几何命题的一种新常态,问题解决过程中浸透数学的转化化归,函数与方程和数形结合等的数学思想方法。
2. 点差法是一种常用的形式化解题方法,这种方法对于解决有关斜率,中点等问题有较好的解题效能。
3、圆及其直线与圆的位置关系,轨迹等问题是全国I卷的常考点,点到直线的间隔、弦长公式,圆的几何性质,解三角形等知识点交汇交融,数形结合、分类讨论等数学思想方法有机浸透,解法常规,思路明晰。
4、直线与圆锥曲线的位置关系在虽然没有明确指出,但是在高考那么是常考不衰的考点,同时常常与不等式、最值等相交汇,题型常见,理解容易,思路明确,交汇点较多。
直线与圆锥曲线位置关系解法步骤直接明了,关键计算(解方程、求最值等)是否准确,标准是否到位,细节是否圆满。
5、抛物线的切线及其性质,存在性的问题都是高考的常考点,将求证目的∠OPM=∠OPN 转化为 k1+k2=0 是解题的关
键,表达转化化归思想的应用,同时利用设而不务实现整体化简是减少计算量的有效方法,应当纯熟掌握。
6、“定义型”的试题是高考的一个热点。
这种题目设问新颖,层次清楚,贯穿解析几何的核心内容,解题的思路和策略常规常见,通性通法,直线与圆锥曲线的位置关系的解法和根本在此呈现,正确快速的多字母化简计算是解析几何解题的一道坎。
高中数学解析几何解题技巧
高中数学解析几何解题技巧解析几何是高中数学中的一大难点,也是考试中的重点内容之一。
掌握解析几何的解题技巧,不仅可以提高解题效率,还能够在考试中获得更好的成绩。
本文将从直线、圆和曲线三个方面介绍解析几何的解题技巧,并通过具体题目的分析来说明每个考点。
一、直线的解析几何解题技巧直线是解析几何中最基础的图形,其解题技巧主要包括确定直线的方程和求直线的性质。
在确定直线的方程时,常用的方法有点斜式和两点式。
例如,已知直线过点A(1,2)且斜率为3,求直线的方程。
根据点斜式的公式y-y₁ = k(x-x₁),代入已知条件,可以得到直线的方程为y-2=3(x-1)。
在求直线的性质时,常用的方法有平行和垂直关系的判断。
例如,已知直线l₁的方程为y=2x+1,直线l₂与l₁平行且过点(2,3),求l₂的方程。
根据平行关系的性质可知,l₂的斜率与l₁的斜率相等,因此l₂的方程为y=2x+b。
代入过点(2,3)的条件,可以解得b=-1,所以l₂的方程为y=2x-1。
二、圆的解析几何解题技巧圆是解析几何中的另一个重要图形,其解题技巧主要包括确定圆的方程和求圆的性质。
在确定圆的方程时,常用的方法有标准式和一般式。
例如,已知圆心为(2,-3)且经过点(1,2),求圆的方程。
根据标准式的公式(x-a)²+(y-b)²=r²,代入已知条件,可以得到圆的方程为(x-2)²+(y+3)²=18。
在求圆的性质时,常用的方法有判断点与圆的位置关系和求切线的斜率。
例如,已知圆的方程为(x-2)²+(y+3)²=18,点P(4,-1)在圆上,求点P处切线的斜率。
根据点与圆的位置关系的性质可知,点P处切线的斜率等于圆的斜率,即-(x-2)/(y+3)。
代入点P的坐标,可以求得点P处切线的斜率为-2/4=-1/2。
三、曲线的解析几何解题技巧曲线是解析几何中的较为复杂的图形,其解题技巧主要包括确定曲线的方程和求曲线的性质。
解析几何求解技巧
解析几何求解技巧解析几何是高等数学的重要分支之一,它主要研究几何图形的性质和相关问题的解法。
解析几何的求解技巧是解决几何问题的关键,下面将介绍几种常用的解析几何求解技巧。
一、坐标法:坐标法是解析几何中最常见的求解技巧。
它利用坐标系和坐标代数的方法,通过确定几何图形上的点的坐标,将几何问题转化为代数方程的求解问题。
具体的求解步骤可以概括为:1. 建立坐标系。
根据题目所给条件,确定适当的坐标系,并选择合适的单位长度。
2. 确定几何图形上的点的坐标。
根据题目所给条件,推导出几何图形上点的坐标关系。
可以运用平面几何中的基本性质和定理,通过代数方法求解。
3. 转化为代数方程。
根据几何图形的性质和定理,将几何问题转化为代数方程的求解问题。
这一步骤需要灵活应用代数方程的解法技巧。
4. 求解代数方程。
根据所得的代数方程,运用代数解法将方程求解。
5. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
二、向量法:向量法是解析几何中另一种常用的求解技巧。
它运用向量的概念和运算,通过向量的相等、垂直、平行等性质,推导出几何图形和问题的解法。
具体的求解步骤可以概括为:1. 确定坐标系和向量的表示。
建立适当的坐标系,确定向量的表示方法。
常用的表示方法有坐标表示法、定点表示法和参数表示法等。
2. 利用向量的性质和运算推导条件。
根据题目所给条件,利用向量的性质和运算,推导出几何图形上的条件和关系。
3. 利用向量之间的关系求解。
根据所得的几何图形上的条件,利用向量的关系,运用向量的加减、数量积、向量积等运算进行求解。
4. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
三、分析法:分析法是解析几何中辅助性的求解技巧。
它通过对几何图形的分析,将几何问题转化为具有明确几何意义的问题,并通过几何性质和定理的应用,求解问题。
高考数学解析几何9种题型的解题技巧!
解析几何命题趋向:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题。
考点透视
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.。
高中数学解析几何优化计算6大技巧
解析几何优化计算6大技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.技巧一回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.【例题】如图,F 1,F 2是椭圆C 1:x 24y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是()A.2B.3C.32D.62【解析】由已知,得F 1(-3,0),F 2(3,0),设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知,1|+|AF 2|=4,2|-|AF 1|=2a ,1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62.【答案】D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是()A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由题意可得S△BCFS △ACF =|BC ||AC |=x B x A =|BF |-p 2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P=(x P +m )2+4mx P ,则=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22.答案:22技巧二设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.【例题】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为()A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1【解析】设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,+y 21b 2=1,+y 22b2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.【答案】D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为()A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ),分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka ,由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c,整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2)+y 21b2=1,+y 22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22.答案:22技巧三巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.【例题】设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |>3.【解析】法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).kx 0,+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k2,代入②,得(1+k2)·4a2(1+k2)2<a2,解得k2>3,所以|k|> 3.法三:设P(a cosθ,b sinθ)(0≤θ<2π),则线段OP的中点Qθ,b2sin|AP|=|OA|⇔A Q⊥OP⇔k A Q×k=-1.又A(-a,0),所以k A Q=b sinθ2a+a cosθ,即b sinθ-ak A Q cosθ=2ak A Q.从而可得|2ak A Q|≤b2+a2k2A Q<a1+k2A Q,解得|k A Q|<33,故|k|=1|k A Q|> 3.[关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量.[对点训练]设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,求r的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l的方程为x=ty+m,A(x1,y1),B(x2,y2),代入抛物线y2=4x并整理得y2-4ty-4m=0,则有Δ=16t2+16m>0,y1+y2=4t,y1y2=-4m,那么x1+x2=(ty1+m)+(ty2+m)=4t2+2m,可得线段AB的中点M(2t2+m,2t),而由题意可得直线AB与直线MC垂直,即k MC·k AB=-1,可得2t-02t2+m-5·1t=-1,整理得m=3-2t2(当t≠0时),把m=3-2t2代入Δ=16t2+16m>0,可得3-t2>0,即0<t2<3,又由于圆心到直线的距离等于半径,即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4.故r 的取值范围为(2,4).技巧四数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.【例题】已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.【解析】设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|,则△APF 的周长为|PA |+|PF |+|AF |=|PA |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a ,由于|AF |+2a 是定值,要使△APF 的周长最小,则|PA |+|PF 1|最小,即P ,A ,F 1共线,由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26,所以=12×6×66-12×6×26=12 6.【答案】126[关键点拨]要求△APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是()A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x-4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=()A .4 B.5C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.技巧五妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.【例题】如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.【解析】把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则-32a 而F (c,0),则FB -32a -c FC -c 又∠BFC =90°,故有FB ·FC -32a -c -c c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.【答案】63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练]设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为()A .90° B.60°C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.2-y 22=1,0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 2x 1x 2]=8-2x 203x 20-4+12-x 204-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°.技巧六巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.【例题】已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解析】(1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以-65,(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),k (x +2),y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0.则x A +x M =-16k 21+4k2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为-65,证明如下:因为k MP =y M x M +65=2-8k 21+4k 2+65=5k 4-4k 2,同理可得k PN =5k 4-4k2.所以直线MN 过x 轴上的一定点-65,[关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k2这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c2,b 2=3c 2,将点P c 2=1,故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1,代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0,则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|)=12r 0·4a =12×8×327=1227所以12t 2+14+3t2=1227,解得t 2=1,因为所求圆与直线l 相切,所以半径r =2t 2+1=2,所以所求圆的方程为(x -1)2+y 2=2.。
数学解析几何题解题技巧
数学解析几何题解题技巧解析几何作为高中数学重要的一部分,是数学中的一门重要学科。
解析几何题目通常涉及到点、线、面等几何元素,并结合数学分析的方法进行求解。
解析几何题解题技巧的掌握对于学生的考试成绩和数学水平有着重要的影响。
本文将介绍一些解析几何题解题的常见技巧和方法。
一、坐标表示法在解析几何中,常常使用坐标表示法来解决问题。
坐标表示法利用数轴上的点与数的对应关系,将几何问题转化为数学问题进行求解。
在解析几何题目中,常用的坐标表示法包括直角坐标系、极坐标系等。
直角坐标系是最常见的坐标表示法之一。
在直角坐标系中,我们用x和y两个坐标轴来表示二维平面上的点。
在解析几何题目中,可以通过设定坐标原点,确定x轴和y轴的正负方向,来表示点的位置。
利用直角坐标系,我们可以计算线的斜率、距离等问题,从而解决解析几何题目。
极坐标系是另一种常用的坐标表示法。
在极坐标系中,我们用极径和极角来表示平面上的点。
极径表示点到坐标原点的距离,极角表示点与极轴的夹角。
利用极坐标系,我们可以更方便地表示圆、曲线等等问题,从而解决解析几何题目。
二、方程表示法方程表示法是解析几何题目中另一个重要的解题方法。
通过建立方程,可以用代数的方法求解几何问题。
在解析几何题目中,常常利用点、线、曲线的方程来表示几何元素的性质和关系。
例如,对于一条直线,可以通过两点式、点斜式、一般式等不同形式的方程来表示。
在解析几何题目中,可以通过已知条件,建立直线的方程,并结合其他几何元素的方程,解得问题的答案。
对于一条曲线,通常可以通过解析几何的知识,建立其方程,并通过求解方程,得到曲线上的点坐标等问题。
在解析几何题目中,方程表示法是解决问题的重要手段之一。
三、向量表示法向量表示法是解析几何题目中另一个常用的技巧。
向量表示法利用向量的性质和运算,可以更方便地表示点、线、面等几何元素,从而解决解析几何问题。
在解析几何题目中,常常通过设立向量的起点和终点,来表示点或线段。
高考数学中解析几何的学习技巧
高考数学中解析几何的学习技巧随着高考的日益临近,在高中数学的学习中,解析几何是一个非常重要的科目。
学好解析几何的内容,不仅可以提高数学成绩,还有利于培养逻辑思维和分析问题的能力。
下面,就让我们一起探讨下高考数学中解析几何的学习技巧。
一、理清方向,注重透彻理解学好解析几何,首先需要明确的是向量和直线的概念。
初学者经常容易混淆向量的起点和终点,以及直线与线段的关系。
因此,我们应该先学习基本知识,理清代数坐标系的基本概念和性质,并在实践中多多思考实例,尤其是一些典型的例子。
在掌握基本概念后,我们可以进一步深入探究立体几何和解析几何的联系。
在解析几何中,我们可以通过向量空间,确定平面和直线的位置关系,解决一些复杂几何推理的问题。
但是,这需要我们注重透彻理解每一个概念和公式,严谨的推导才能让我们获得深入的认识。
二、强化习题,培养解题技巧解析几何的学习中,习题是非常重要的。
习题的积累可以帮助我们掌握各种题型和技巧,提高我们的应用能力。
我们可以学习一些典型的题目,并分析它们的解题方法、技巧和思路。
在掌握方法的基础上,我们可以逐步深入探究。
此外,在解析几何中,数学的知识和技巧非常重要。
我们还需要培养解题技巧,比如巧妙的数学变换和化简,判断和选择合适的公式和知识点等。
在解题的过程中,我们可以寻找和善用各种线索,充分展示自己的数学才能。
三、加强交流,开拓视野在学习解析几何的过程中,我们还可以通过加强交流,开拓视野。
与同学、老师、家长等交流,可以使我们更加深入地了解语言,系统认识相关概念和知识,分享我们的学习技巧和心得,寻找属于自己的学习方法。
此外,我们还可以通过网络端口、学习社区、读书等方式开拓视野,从各种角度了解解析几何知识,并积极学习各类新技术、新知识,不断丰富我们的专业知识和人文素质。
总之,在高考数学中,解析几何是重要考点之一,非常需要我们严格学习和掌握。
通过理清方向,强化习题,加强交流,我们可以更好地掌握解析几何的知识和技巧,提高我们的数学成绩,为今后的学习和生活打下更牢固的基础。
高考数学中的解析几何技巧
高考数学中的解析几何技巧高考数学是每个学生必须经历的一场考试,其中解析几何是数学中最重要的章节之一。
理解解析几何的技巧和方法可以帮助学生更好地掌握高考数学中的题目,同时也可以让学生更加深入地理解数学。
在这篇文章中,我们将探讨高考数学中的解析几何技巧。
一、了解解析几何的基本概念在学习解析几何之前,必须了解基本的概念,如坐标系,平面直角坐标系及它的相关公式和定理。
学生应该能够轻松地绘制并理解坐标轴,以及如何使用坐标系来描述点和图形。
同时,学生也应该了解直线和圆的一般方程,以及如何根据这些方程计算线段、直线、角度和距离。
掌握了这些基本概念后,学生可以更加有效地解决与解析几何相关的高考题目。
二、熟练掌握向量运算解析几何的关键是向量。
在解析几何中,向量用于表示从一个点到另一个点的方向和大小。
因此,学生必须掌握向量的基本定义、向量的加法和减法、向量的数量积和向量积等基本运算法则。
学生应该能够使用向量运算解决各种相关的数学问题,包括平面上的三角形和向量方程的求解等。
三、理解和应用直线和平面的相关性质解析几何的一个重要部分是理解和应用直线和平面的相关性质,学生应该熟悉直线和平面的相关概念,如角度、交点、平行、垂直等。
同时,学生也应该能够应用这些概念来解决与角度、距离、中点和相似形等相关的问题。
掌握这些性质可以帮助学生更好地理解和应用高考数学中的解析几何。
四、理解圆锥曲线的特性圆锥曲线是解析几何的一个重要方面,包括椭圆、双曲线和抛物线。
学生应该能够了解这些曲线的基本性质,如离心率、焦点和曲线的方程等。
同时,学生也应该能够将这些知识应用于解决高考数学中的相关问题,如走廊定理、焦点坐标和切线等。
五、熟练掌握常用的解析几何公式和定理掌握常用的解析几何公式和定理是解决高考数学中解析几何相关题目的关键。
学生应该能够熟练掌握相关公式和定理,如点到直线的距离公式、圆的标准方程、直线的一般方程和曲线的离心率等。
同时,学生也应该能够运用这些公式和定理解决高考数学中的相关问题。
高中数学解析几何解题技巧
高中数学解析几何解题技巧
高中数学解析几何解题技巧主要包括以下几个方面:
1. 理解基本概念:解析几何的基本概念是解题的基础,包括直线、平面、向量、点、线段等。
在解题过程中,要确保对这些基本概念的理解准确。
2. 熟悉性质定理:解析几何中有许多性质定理,例如平行线性质、垂直线性质、相似三角形性质等。
熟悉这些性质定理,可以帮助理解和解决解析几何题目。
3. 运用向量法解题:向量法是解析几何中常用的一种解题方法。
通过引入向量的概念,可以简化解析几何题目的计算过程,提高解题效率。
4. 利用几何变换:几何变换是解析几何中常用的一种方法,包括平移、旋转、镜像等。
通过利用几何变换,可以将原题转化为更简单的几何问题进行求解。
5. 善用相似性质:相似性质在解析几何中有着重要的应用。
通过发现和利用图形的相似性质,可以得到一些有用的信息,从而解决解析几何题目。
6. 注意特殊情况:解析几何题目中经常会涉及到一些特殊情况,例如对称性、平行四边形、等腰三角形等。
在解题过程中,要特别注意这些特殊情况,以充分利用它们带来的信息。
7. 多画图辅助:在解析几何题目中,通过画图可以更好地理解和分析题目。
因此,解析几何解题过程中,多画图进行辅助,有助于
提高解题的思路和准确性。
8. 注意技巧和方法:解析几何题目中有一些常用的技巧和方法,例如相似比例、平行线截比、垂直线截比等。
要熟悉这些技巧和方法,并在解题过程中加以运用。
最后,解析几何题目的解题技巧需要通过大量的练习和实践来逐渐掌握和提高。
不断总结经验,加强对解析几何知识的理解和掌握,才能在解析几何题目中游刃有余。
高考丨搞定解析几何,这些运算技巧超实用,建议收藏
高考丨搞定解析几何,这些运算技巧超实用,建议收藏我们都知道,数学在高考中是重点,也是难点。
而在数学当中,解析几何可谓是重中之重,让很多考生伤透了脑筋,特别是大题,很多同学都被复杂的图形给吓到了。
今天就总结几点关于几何题的解题思路以及答题要点与模版,希望能帮助广大考生,一定要用心看完哦。
一、空间感可以练出来我们初中几何都是平面图,而到了高中,就接触立体图形了,这是一次艰难的飞跃,很多初中几何学得好的同学都折在这了。
但凡事需要一个过程啊,没有空间感,咱们就建立空间感。
同学们可以自制一些空间几何模型,反复观察练习,这有益于建立空间观念,是个好办法。
也可选择对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。
二、基础知识要记牢要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。
这是因为几何的知识点前后联系紧密,前面内容是后面内容的基础,后面内容既巩固了前面的内容,又延伸了前面内容。
在解题中,要注意书写规范,①如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;②要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;③对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。
④要学会用图帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法。
三、积累解决问题的方法、提高分析的能力要注意积累解决问题的方法。
如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。
不断提高分析问题、解决问题的水平,加深对理论的认识水平,养成良好逻辑思维能力,几何题目便不在话下。
四、“转化”思想解立体几何的问题,要运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,什么是变量、两者之间存在的联系,这是非常关键的。
解析几何中计算方法与技巧
解析几何中计算方法与技巧高考中解析几何综合题要求具有较强的计算能力,常规的解题方法必须熟练掌握,在此基础上积累计算经验,掌握计算技巧,则解析几何定可得到高分。
一、巧用韦达定理简化运算1、过二次曲线C 上一点P (x 0,y 0)作直线l ,求l 与C 另一交点。
例1:求直线y=kx+22-k 与椭圆22x +y 2=1的交点坐标。
2、合二为一的整体运算例2:过点P (-1,2)作圆C :(x-1)2+y 2=1的两条切线,求两条切线的斜率和。
例3:过点P (x 0,-41)作抛物线y=x 2的两条切线,求证:切点弦过定点。
例4:抛物线y 2=2x 上动点P ,过点P 作⊙C :(x-1)2+y 2=1的切线PM ,PN 分别交y轴于M ,N 两点,求△PMN 面积的最小值。
例5:过抛物线x 2=2y 的焦点作斜率分别为k 1、k 2的两条直线l 1和l 2,若l 1交抛物线于A 、B 两点,l 2交抛物线于C 、D 两点。
以线段AB 为直径作圆C 1,以CD 为直 径作圆C 2。
若k 1+k 2=2,求两圆C 1与C 2的公共弦所在直线方程。
二、利用计算的对称性避免重复运算引例:过原点O 作抛物线y 2=2px 的两条互相垂直的弦OA 与OB ,求证:AB 直线过定点。
例1:设椭圆E :22x +y 2=1上一点A (1,22),过A 作两条关于平行y 轴的直线对称的两条直线AC ,AD 交椭圆E 于另两点C 和D 。
求证:CD 直线的方向确定。
例2:设曲线C 1:42x +y 2=1与曲线C 2:y=x 2-1。
C 2的顶点为M ,过原点O 的直线l 与C 2相交于A 、B 两点,直线MA 、MB 分别与C 1相交于D 、E 。
(1)证明:MD ⊥ME ;(2)若△MAB ,△MDE 的面积分别为S 1、S 2,问是否存在直线l 使得21S S =3217?例3:设椭圆42x +42y =1的左焦点F ,点A 、B 是椭圆上的两点,满足2 ,求A 、B 两点距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学解析几何实用运算技巧
数学解析几何运算技巧:分直线与圆,主要的技巧就是数形结合,就是一定要画图才
可以。
比如直线的问题,不管是垂直还是平行的这种,都有可能斜率不存在,所以你只要
画个图,多画几种情况就可以了。
直线与圆的问题,经常用的就是圆心到直线的距离,半
径和弦长的一半组成直角三角形,然后比如相切的问题,也是转化为直角三角形求解的呢,所以对于直线与圆的问题套路经常是这么处理,还有最大值最小值的问题,都是画图后做
对称,或者转化就会变成比较好解决的问题,所以不会的话就画图思考吧。
数学解析几何运算技巧:椭圆抛物线和双曲线了,这一块说起来就长了,因为圆锥曲
线的问题还是有很多的套路的,首先套路是:设直线方程考虑斜率哦,联立圆锥曲线方程,消元得到一个方程后,分类讨论二次系数为0的问题,如果为0,可以直接求解,如果不
为0,下一步就是判别式大于等于0,并且韦达定理表示出来,这是套路,基本上有个题
目你这么做就算不对的话也可以拿到几分了呢。
数学解析几何运算技巧一、以纲为纲,明晰考试要求
所谓“纲”,主要指《考试说明》和《教学大纲》。
简单地说,《考试说明》就是对
考什么、考多难、怎样考这三个问题的具体规定和解说。
《教学大纲》则是编写教科书和
进行教学的主要依据,也是检查和评定学生学业成绩、衡量教师教学质量的重要标准。
我
们可以结合上一年的高考数学评价报告,对《考试说明》进行横向和纵向的分析,发现命
题的变化规律。
数学解析几何运算技巧二、以本为本,把握通性通法
近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡
化特殊技巧”。
就是说高考最重视的是具有普遍意义的方法和相关的知识。
例如,将直线
方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根方式、韦达定理、两点间距离公式等可以编制出很多精彩的试题。
尽管复习时间紧张,但我们仍然要注意回
归课本。
回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和
梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进
行强化训练、复习才有实效。
数学解析几何运算技巧三、以“错”纠错,查漏补缺
这里说的“错”,是指把平时做作业中的错误收集起来。
高三复习,各类试题要做几
十套,甚至上百套。
如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写
上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。
在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。
查漏补缺的过程就是反思的过程。
数学解析几何运算技巧四、以考学考,提高应试技能
考试是一门学问,高考要想取得好成绩,不仅取决于扎实的基础知识、熟练的基本技
能和过硬的解题能力,而且取决于临场的发挥。
我们要把平常的考试看成是积累考试经验
的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的
运筹等诸方面不断调试,逐步适应。
高考数学解题方法——创立学科功能的方法
如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、
向量方法等。
在具体的解题中,具有统帅全局的作用。
高考数学解题方法——一般思维规律的方法
如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等。
在具
体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求。
高考数学解题方法——论证演算的方法
这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、
换元法、降次法、待定系数法、反证法、同一法、数学归纳法即递推法、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以
及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、
几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。
感谢您的阅读,祝您生活愉快。