计算智能第5章 蚁群优化算法
【优秀作业】蚁群优化算法
【优秀作业】蚁群优化算法蚁群优化算法一.概述生物学家发现,自然界中的蚁群觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。
蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。
信息素浓度的大小表征到食物源路径的远近,信息素浓度越高,表示对应的路径距离越短。
通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。
最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即最短距离。
值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
20世纪90年代初,意大利学者M.Dorigo等人提出了模拟自然界蚂蚁群体觅食行为的蚁群算法。
其基本思想是:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径上的蚂蚁个数也越来越多。
最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
二.蚁群算法解决TSP问题1. 算法原理M.Dorigo等人最早将蚁群算法用于解决旅行商问题(Traveling Salesman Problem,TSP),并取得了较好的实验结果。
设整个蚂蚁群体中蚂蚁的数量为,城市的数量为,城市与城市之间的距离为,时刻城市与城市连接路径上的信息素浓度为。
初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设。
蚂蚁根据各个城市间连接路径上的信息素浓度决定下一个访问城市,设表示时刻蚂蚁从城市转移到城市的转移概率,其公式为:其中:为启发函数,表示蚂蚁从城市转移到城市的期望程度;为蚂蚁待访问城市的集合,开始时,中有个元素,即包括除了蚂蚁出发城市的所有其它城市,随着时间的推进,中的元素不断减少,直至为空,即表示所有的城市均访问完毕;为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。
蚁群优化算法
段旭良@四川农业大学 5025968@
蚁群算法特点
路径BHD 的长度是路径 的长度是路径BCD的2倍 路径 的 倍 当B点的蚂蚁到达 点后,路径BCD上的外激素是 点的蚂蚁到达D点后,路径 上的外激素是 点的蚂蚁到达 点后 BHD上的 倍。 上的2倍 上的 时刻t 有 只蚂蚁从 到达D。 只蚂蚁从E到达 时刻 =1有30只蚂蚁从 到达 。 因为路径DC上的外激素量是 上的 上的2倍 因为路径 上的外激素量是DH上的 倍,根据蚂 上的外激素量是 蚁选路特点,将会有20只蚂蚁选择 只蚂蚁选择DC,而只有10 蚁选路特点,将会有 只蚂蚁选择 ,而只有 只蚂蚁选择DH。 只蚂蚁选择 。 以此类推, 以此类推,当t = 2 ,3 ,4. . . 时,将会有更多的蚂蚁选 择路径BCD。 择路径 。 经过较长时间运动后, 经过较长时间运动后,蚁群最终会沿着最优路径 ABCDE运动。 运动。 运动
其中 allowed k = {0,1, L n − 1} − tabu k 表示蚂蚁k当前能选择的城市集合 当前能选择的城市集合, 为禁忌表, 表示蚂蚁 当前能选择的城市集合,tabu k 为禁忌表, 它记录蚂蚁k已路过的城市 已路过的城市。 它记录蚂蚁 已路过的城市。
ηij是启发信息。在TSP 问题中 是启发信息。
段旭良@四川农业大学 5025968@
蚁群算法特点
在真实蚁群中, 在真实蚁群中,外激素的数量会随时间的流逝而蒸 发掉一部分,为说明方便,此处假设: 发掉一部分,为说明方便,此处假设:
①所有蚂蚁运动的速度相等; 所有蚂蚁运动的速度相等; ②外激素蒸发量与时间成正比例,即路径上外激素的 外激素蒸发量与时间成正比例, 剩余量与路径的长度成反比; 剩余量与路径的长度成反比; ③蚂蚁选路的概率与所选路上外激素的浓度成正比。 蚂蚁选路的概率与所选路上外激素的浓度成正比。
蚁群优化算法应用研究概述
蚁群优化算法应用研究概述随着科学技术的飞速发展,蚁群优化算法已经成为一种非常流行的应用在多个领域的优化技术。
蚁群优化算法是一种基于自然蚁群行为规律的优化算法,它使用一群虚拟的蚂蚁,根据蚁群的潜伏规律,通过不断的学习来实现全局和局部最优解的搜索。
蚁群优化算法通过借鉴蚂蚁的社会群体搜索行为,进行计算机模拟的多目标优化问题,以求得可行的最优解。
它具有计算简单、收敛快等显著优点,已经被广泛应用于多个领域,如虚拟路网网络拓扑优化、避免碰撞飞行路径规划、卫星轨道规划、天线设计、电路布线优化、机器人移动路径优化等。
蚁群优化算法是一种基于模拟自然蚁群搜索行为的优化技术,它主要包括以下步骤:首先,在空间中放置一群虚拟的蚂蚁,每只蚂蚁都有自己的位置和方向;其次,设计信息素挥发率、路径启发因子和路径旅行因子等其他参数;第三,每只蚂蚁在改变自己的位置和方向时,根据环境信息参数激活蚂蚁的社会行为模型;最后,为了使得搜索准确无误,采用最优解的递减更新算法,调整蚁群的参数,以达到最优化的目的。
蚁群优化算法在科学研究中已经被广泛应用,它能高效地解决复杂的多目标优化问题,如受限的检验任务优化、飞行路径规划、电路布置、汇聚优化等等。
在虚拟路网网络拓扑优化中,蚁群优化算法能有效解决网络节点数量和最短路径距离优化问题,有效抑制网络拓扑中回路及环路产生;在天线设计中,蚁群可以用来优化天线参数,如形状、尺寸及极化方向,以优化天线的发射和接收性能;在机器人移动路径优化中,蚂蚁群可以用来模拟机器人移动的路径,从而实现机器人移动路径的优化。
此外,蚁群优化算法还有很多其他的应用领域,它能帮助人们快速而有效地解决复杂的优化问题,在工业认证、人工智能、机器视觉、搜索引擎、智能控制、模式识别、生物信息处理、多媒体信息处理等领域有着广泛的应用。
研究者们也在不断改进蚁群优化算法,以更好的利用蚁群智能,解决复杂的优化问题。
总之,蚁群优化算法是一种广泛应用的多目标优化技术。
蚁群优化算法课件
05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强
蚁群优化算法
– 每次循环之后给予最优解以额外的信息素量 – 这样的解被称为全局最优解(global-best solution) – 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
16 16
带精英策略的蚂蚁系统
➢信息素根据下式进行更新
其中
ij (t 1) ij (t) ij i*j
实现过程
33 33
实现过程
34 34
实现过程
35 35
中国旅行商问题
ACATSP(C,100,10,1,5,0.1,100) 1.5602e+04
36 36
遗传算法和蚁群算法在 求解TSP问题上的对比分析
37 37
开始
细菌觅食机理
i=i+1
趋向性操作
设细菌种群大小为S,一个细菌所处的位 置表示一个问题的候选解,细菌i的信息 用D维向量表示为
➢较强的鲁棒性 ·➢分布式计算
➢易于与其他方法结合
需要较长的搜索时间 容易出现停滞现
15 15
带精英策略的蚂蚁系统
➢带精英策略的蚂蚁系统(Ant System with elitist strategy,
ASelite)是最早的改进蚂蚁系统。
➢遗传算法中的精英策略
– 传统的遗传算法可能会导致最适应个体的遗传信息丢失 – 精英策略的思想是保留住一代中的最适应个体
ij (t n) ij (t) ij
m
ij
k ij
(2)
k 1
其中,ρ为小于1的常数,表示信息的持久性。
Q
k ij
Lk
ij lk
(3)
0 otherwise
其中,Q为常数;Lk 表示第k只蚂蚁在本次迭代中走过 的路径长度。
蚁群优化算法69893
Pijk(i,
j)
(i,u)(i,u)
uJki
,
jJk i
0,
其他
其中,J i 表示从城市i可以直接到达的且又不在蚂蚁访问过的城市序列
R
k
k
中的城市集合。
i,
j 是一个启发式信息,通常由i, j=1/d 直接计算。 ij
i , j 表示边 i , j 上的信息量
-
2.3 蚂蚁系统理论
四
蚁群优化算法相关应用
-
问题简述:
2.1 TSP问题
已知有 n
个城市的集合
Cc,c,L,c
n
12
n
,任意两个城市之间均有路
径连接,dij i,j1,2,L,n表示城市与之间的距离。旅行商问题就是需要 寻找这样的一中周游方案:周游路线从某个城市出发,经过每个城市
一次且仅一次,最终回到出发城市,使得周游的路线总长度最短。
-
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。
2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。
3.实验最终结果:所有的蚂蚁 都会选择同一分支。
自身催化(正反馈)过程
-
双桥实验
1.1 基本原理
1.起初两条分支上不存在信息 素,蚂蚁随机选择一条路径。
2.将ACO纳入了基于模型的搜索框架中。
趋势
1.利用ACO算法去解决更为复杂的优化问题,例如:
动态问题、随机问题、多目标问题。 2、ACO算法的高效并行执行。 3.更理论化的理解和刻画ACO算法在求解问题时的行为。 4.与其他算法结合(粒子群算法)。
蚁群优化算法应用研究概述
蚁群优化算法应用研究概述
蚁群优化算法是一种仿生智能算法,其灵感来源于蚂蚁寻找食物的集
体行为。
该算法具有自适应、自组织、分布式等特点,适用于解决复杂优
化问题。
蚁群优化算法已经在许多领域得到广泛应用,如:
1.工程设计:蚁群优化算法可以用于机器人路径规划、液压系统优化、建筑结构优化等。
2.电力系统:蚁群优化算法可以用于电网运行优化、电力市场运营优
化等。
3.交通运输:蚁群优化算法可以用于交通信号控制、路径规划、车辆
调度等。
4.金融领域:蚁群优化算法可以用于股票价格预测、信用风险评估等。
5.医学领域:蚁群优化算法可以用于分子结构预测、药物设计等。
总之,蚁群优化算法具有很高的应用价值,在科学研究和工程实践中
有着广泛的应用前景。
蚁群优化算法及其应用研究
蚁群优化算法及其应用研究随着计算机技术的不断发展,各种优化算法层出不穷,其中蚁群优化算法作为一种新兴的智能优化算法,已经引起了广泛的关注和研究。
本文主要介绍蚁群优化算法的基本原理、算法流程及其在实际问题中的应用。
一、蚁群优化算法的基本原理蚁群优化算法是一种仿生智能算法,其基本原理是模拟蚂蚁在寻找食物时的行为。
在蚂蚁寻找食物的过程中,蚂蚁会释放一种叫做信息素的物质,用来标记通路的好坏程度。
其他蚂蚁在寻找食物时,会根据信息素的浓度选择走过的路径,从而最终找到食物。
蚁群优化算法的基本思想就是将蚂蚁寻找食物的行为应用到优化问题中。
在算法中,每个解就相当于蚂蚁寻找食物的路径,信息素就相当于解的质量。
当蚂蚁在搜索过程中找到更好的解时,就会释放更多的信息素,从而吸引其他蚂蚁继续探索这个解。
通过不断地迭代,最终找到全局最优解。
二、蚁群优化算法的算法流程蚁群优化算法的算法流程主要包括以下几个步骤:1.初始化信息素和解的质量在算法开始之前,需要对信息素和解的质量进行初始化。
一般情况下,信息素的初始值为一个比较小的正数,解的质量可以通过一个评价函数进行计算。
2.蚂蚁的移动在每一轮迭代中,每个蚂蚁会根据当前信息素的分布和启发式函数选择下一步要走的方向。
启发式函数一般是根据当前解的质量和距离计算的。
3.信息素的更新当每个蚂蚁完成一次搜索后,需要更新信息素的浓度。
一般情况下,信息素的更新公式为:τi,j = (1-ρ)τi,j + Δτi,j其中τi,j表示从城市i到城市j的信息素浓度,ρ表示信息素的挥发因子,Δτi,j表示当前蚂蚁留下的信息素。
4.全局信息素的更新在每一轮迭代中,需要对全局信息素进行更新。
一般情况下,全局信息素的更新公式为:τi,j = (1-α)τi,j + αΔτi,j其中α表示全局信息素的影响因子,Δτi,j表示当前蚂蚁留下的信息素。
5.终止条件的判断当达到预设的迭代次数或者满足一定的停止条件时,算法停止。
蚁群算法ppt课件
2 简化旳蚂蚁寻食过程
假设蚂蚁每经过一处所留下旳信息素为一种单位,则经过36个时间单位 后,全部开始一起出发旳蚂蚁都经过不同途径从D点取得了食物,此时ABD 旳路线来回了2趟,每一处旳信息素为4个单位,而 ACD旳路线来回了一趟, 每一处旳信息素为2个单位,其比值为2:1。
寻找食物旳过程继续进行,则按信息素旳指导,蚁群在ABD路线上增派一 只蚂蚁(共2只),而ACD路线上依然为一只蚂蚁。再经过36个时间单位后, 两条线路上旳信息素单位积累为12和4,比值为3:1。
8
2 简化旳蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线 ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位 行走一步,本图为经过9个时间单位时旳情形:走ABD旳蚂蚁到 达终点,而走ACD旳蚂蚁刚好走到C点,为二分之一旅程。
9
2 简化旳蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时旳情形:走ABD旳蚂 蚁到达终点后得到食物又返回了起点A,而走ACD旳蚂蚁刚好走 到D点。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上依然为一只蚂蚁。再经过36个时间单位后,两条线路上旳信息素 单位积累为24和6,比值为4:1。
若继续进行,则按信息素旳指导,最终全部旳蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是前面所提到旳正反馈效应。
11
3 自然蚁群与人工蚁群算法
15
5 初始旳蚁群优化算法—基于图旳蚁群 系统(GBAS)
初始旳蚁群算法是基于图旳蚁群算法,graph-based
ant system,简称为GBAS,是由Gutjahr W J在2023年
旳Future Generation Computing Systems提出旳.
蚁群算法公式
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
蚁群优化算法及其应用研究
蚁群优化算法及其应用研究
蚁群优化算法(Ant Colony Optimization,简称ACO)是一种新兴的基于密度信息的群智能优化技术,是一种由多只蚂蚁理性行为协同搜索最优解的复杂优化算法。
该算法在处理多种组合优化问题时具有不错的实用价值,例如旅行商问题、仓库搬运问题、背包问题以及路径覆盖问题等。
蚁群优化算法的原理是根据蚂蚁以递增的概率在各解的集合中搜索,并把解的可能性尽可能地重新分布在蚂蚁搜索的道路中,借以达到找出最优解的效果。
这种重新分布的过程是依据蚂蚁之间的认知,逐渐地形成一个信息流,来用来帮助每只蚂蚁按照可行的最优路径继续搜索;当蚁群迭代到收敛时,系统便放出少量蚂蚁,用以把形成的信息流引导到最佳的全局极值。
ACO是一种强大的机器学习技术,并在广泛的工程领域有过良好的实现,包括:计算机视觉、机器人规划、认知计算、网络优化、交通模拟、复杂生态系统模拟、计算机辅助设计、工作流程优化、数据挖掘和机器人轨迹规划等。
在这些方面,ACO算法应用范围十分广泛,其优势体现在算法复杂度低;有效控制最优解搜索的扩散和收敛;足够的并发执行性能,以及支持任意异构的设备系统;以及更高的稳定性和可靠性,提高了解决复杂问题的能力。
蚁群优化算法技术介绍
目录
• 蚁群优化算法概述 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现过程 • 蚁群优化算法的改进与优化 • 蚁群优化算法的案例分析
01 蚁群优化算法概述
定义与原理
定义
蚁群优化算法是一种模拟自然界 中蚂蚁觅食行为的仿生优化算法 。
原理
通过模拟蚂蚁的信息素传递过程 ,利用正反馈机制寻找最优解。
算法特点
分布式计算
蚁群算法中的蚂蚁可以并行地搜索解空间,提高了算法的搜索效 率。
鲁棒性
对初始解和参数选择不敏感,能在多变的搜索空间中寻找到最优 解。
易于实现
算法实现简单,可扩展性强,适用于解决复杂优化问题。
应用领域
路径规划
任务调度
用于解决车辆路径规划、 物流配送等问题。
应用于多核处理器任务 调度、云计算资源分配
蚂蚁的移动规则
随机选择
蚂蚁在移动时,会根据当前位置和目标位置之间的路径上信息素浓度随机选择 下一个移动的节点。
避免重复
为了避免重复访问同一个节点,蚂蚁会根据一定的概率选择新的节点,这个概 率与路径上的信息素浓度成正比。
蚂蚁之间的协作机制
共享信息
蚂蚁通过释放和感知信息素来共享彼此的路径信息和状态,从而在群体中形成一 种协作效应。
网络路由问题求解
总结词
蚁群优化算法在网络路由问题求解中具有较好的应用 效果,能够优化网络路由和提高网络性能。
详细描述
网络路由问题是一个重要的网络通信问题,旨在根据 网络拓扑结构和通信需求,选择最优的路由路径和转 发策略,以实现数据包的可靠传输和网络性能的提升 。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传 递机制来指导搜索过程,能够有效地解决网络路由问 题,优化网络路由和提高网络性能。
第五章蚁群算法
23
2013-7-16
1.2 计算复杂性的概念 ₪ 利用复杂性分析对组合优化问题归类。 ₪ 定义多项式问题 给定一个组合优化问题,若存在一个多项式算法, 称该问题为多项式时间可解问题,或简称多项式 问题(或P问题). 所有多项式问题的集合记为P. ₪ 例:线性规划是否为多项式问题?
24
2013-7-16
xij 0,1 , i, j 1, 2, , n, i j. 其中
d ij :城市i与城市j之间的距离 , s :集合s中元素的个数, 走城市i和城市j之间的路径, 1, xij 0,不走城市i和城市j之间的路径. 对称距离TSP : d ij d ji , i, j 非对称距离TSP : d ij d ji , i, j
18
2013-7-16
1.2 计算复杂性的概念
₪ 算法计算量的度量: 加、减、乘、除、比较的总运算次数与实例的计算机计 算时的二进制输入数据的大小关系。 ₪ 正整数x的二进制位数是:(整数到二进制的转换)
记x的输入规模(编码长度)为l ( x),则 l ( x) log 2 (| x | 1) 2 其中2是考虑了1个符号位和1个数据分隔位。
1.2 计算复杂性的概念
城市 数 24 25 26 27 28 29 30 31
计算 时间
1 sec
24 10 4.3 4.9 sec min hour day
136.5 day
10.8 year
325 year
随城市增多,计算时间增加很快。 到31个城市时,要计算325年。
描述算法的好坏——计算复杂性——讨论计算时间与问题规 模之间的关系。以目前二进制计算机中的存储和计算为基础, 以理论的形式系统描述,是评估算法性能的基础。
蚁群优化算法课件
在基于聚类分析的蚁群优化算法中,算 法首先利用聚类分析技术将问题空间划 分为多个子空间,然后将蚂蚁分配到不
同的子空间中进行搜索。
这种算法通过聚类分析技术将问题空间 划分为多个子空间,可以减少蚂蚁搜索
范围,提高算法的寻优效率。
基于粒子群的蚁群优化算法
基于粒子群的蚁群优化算法是 一种将粒子群优化算法与蚁群 优化算法相结合的改进算法。
THANKS
感谢观看
蚁群优化算法课件
目录
• 蚁群优化算法简介 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现细节 • 蚁群优化算法的改进版本 • 蚁群优化算法的实验与分析 • 么是蚁群优化算法
蚁群优化算法是一种启发式优化算法,通过模拟 01 自然界中蚂蚁寻找食物的行为来求解优化问题。
在基于粒子群的蚁群优化算法 中,每只蚂蚁被视为一个粒子 ,每个粒子都有一个位置和一 个速度。
该算法通过粒子的位置和速度 来描述蚂蚁的状态,并利用粒 子群优化算法的优点来指导蚂 蚁的搜索行为。
05
蚁群优化算法的实验与分析
在TSP问题上的应用
总结词
高效、稳定
详细描述
蚁群优化算法在TSP问题上具有高效、稳定的性能表现。通过模拟蚂蚁觅食行为 ,该算法能够在较短的时间内寻找到一条最短路径,并且具有较好的鲁棒性。
果的质量。
02
蚁群优化算法的基本原理
蚂蚁的行为特征
01 蚂蚁具有记忆能力
蚂蚁能够记住之前走过的路径和相关的信息,如 食物的来源、路径的长度等。
02 蚂蚁具有协作能力
在寻找食物的过程中,蚂蚁之间会相互协作,通 过信息素的传递来共享信息。
03 蚂蚁具有适应性
蚂蚁能够根据环境的变化来调整自己的行为和策 略,以适应不同的环境条件。
群体智能优化算法-蚁群优化算法
第五章蚁群优化算法5.1介绍蚁群优化(ACO)是群体智能的一部分,它模仿蚂蚁的合作行为来解决复杂的组合优化问题。
它的概念是由Marco Dorigo[1]和他的同事提出的,当他们观察到这些生物在寻找食物时所采用的相互交流和自我组织的合作方式时,他们感到很惊讶。
他们提出了执行这些策略的想法,为不同领域的复杂优化问题提供了解决方案,并获得了广泛的欢迎[1, 2]。
蚁群算法是一组被称为人工蚂蚁的软件代理,它们为特定的优化问题寻找好的解决方案。
蚁群算法是通过将问题映射成一个加权图来实现的,在加权图中,蚂蚁沿着边缘移动,寻找最佳路径。
蚁群研究(实际上是真正的蚂蚁)始于1959年,当时皮埃尔•保罗•格拉斯(Pierre Paul Grasse)发明了“协同”理论,解释了白蚁的筑巢行为。
之后于1983年Deneubourg和他的同事们[3]对蚂蚁的集体行为进行了研究。
1988年,Mayson和Manderick发表了一篇关于蚂蚁的自组织行为的文章。
最终在1989年,Goss, Aron, Deneubour, and Pasteelson在其研究工作(阿根廷蚂蚁的集体行为)中提出了蚁群算法的基本思想[4],同年,Ebling 及其同事提出了一食物定位模型。
1992年,Marco Dorigo(Dorigo, 1992)在其博士论文中提出了蚂蚁系统(Ant System)[1]。
一些研究人员将这些算法扩展到各个研究领域的应用中,Appleby和英国电信主管发表了第一个在电信网络中的应用,后来Schoonderwoerd 和他的同事在1997年对其进行了改进。
在2002年,它被应用于贝叶斯网络中的调度问题。
蚁群算法的设计是基于蚂蚁搜索巢穴和食物位置之间短路径的能力,这可能会因蚂蚁的种类而有所不同。
近年来,研究人员对蚁群算法的应用结果进行了研究,结果表明,所使用的大多数人工蚂蚁并不能提供最好的解决方案,而精英蚁群通过重复的交换技术提供了最好的解决方案。
第5章 蚁群优化算法
2.1.3
蚁群优化算法研究背景
13
1/3
群智能理论研究领域有两种主要的算法:蚁 群算法(Ant Colony Optimization, ACO) 和微粒群算法(Particle Swarm Optimization, PSO)。 前者是对蚂蚁群落食物采集过程的模拟,已成功 应用于许多离散优化问题。 微粒群算法也是起源于对简单社会系统的模拟, 最初是模拟鸟群觅食的过程,但后来发现它是 一种很好的优化工具。
5
LC=2LB
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路 线ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个 时间单位行走一步,本图为经过9个时间单位时的情形:走 ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好走到C点,为一 半路程。
6
LC=2LB
本图为从开始算起,经过18个时间单位时的情形:走 ABD的蚂蚁到达终点后得到食物又返回了起点A,而走 ACD的蚂蚁刚好走到D点。
10
1.1.1 蚁群优化算法起源
11
20世纪50年代中期创立了仿生学,人们从生物进化的机理中 受到启发。提出了许多用以解决复杂优化问题的新方法,如进 化规划、进化策略、遗传算法等,这些算法成功地解决了一些 实际问题。 20世纪90年代意大利学者M.Dorigo,V.Maniezzo, A.Colorni等从生物进化的机制中受到启发,通过模拟自然界 蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法—— 蚁 群算法,是群智能理论研究领域的一种主要算法。 用该方法求解TSP问题、分配问题、job-shop调度问题,取得了 较好的试验结果.虽然研究时间不长,但是现在的研究显示出, 蚁群算法在求解复杂优化问题(特别是离散优化问题)方面有 一定优势,表明它是一种有发展前景的算法.
第5章 蚁群优化算法
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。 和是两个预先设置的参数,用来控制启发式信息与信息素 浓度作用的权重关系。当=0时,算法演变成传统的随机贪 心算法,最邻近城市被选中的概率最大。当=0时,蚂蚁完 全只根据信息素浓度确定路径,算法将快速收敛,这样构建 出的最优路径往往与实际目标有着较大的差异,算法的性能 比较糟糕。
3
蚂蚁觅食实验——不等长双桥实验
Conclusions:最终有80%-100%的蚂蚁选择较短的桥。
4
简化的蚂蚁寻食过程
5
简化的蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择 路线ABD或ACD。假设初始时每条路线分配一只蚂蚁, 每个时间单位行走一步,本图为经过9个时间单位时的情 形:走ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好走到 C点,为一半路程。
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
10
5.1.1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
觅食空间 蚁群 蚁巢到食物的一条路径 找到的最短路径 信息素 蚂蚁间的通信
问题的搜索空间
对 应 关 系
搜索空间的一组有效解 一个有效解 问题的最优解 信息素浓度变量 启发式搜索
蚁群优化算法
一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。
蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。
二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。
蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。
(2)信息素浓度的限制。
为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。
通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。
蚁群优化算法
信息素
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
自身催化(正反馈)过程
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。 2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。 3.实验最终结果:所有的蚂蚁 都会选择同一分支。
2
蚂蚁数目过少时,算法的探索能力变差,容易出现早熟现象。特别是当问题的规模很大时,算法的全局寻优能力会十分糟糕
3
在用蚂蚁系统、精华蚂蚁系统、基于排列的蚂蚁系统和最大最小蚂蚁系统求解TSP时,m取值等于城市数目时有较好性能。
蚂蚁数目
2.3 蚂蚁系统理论
参数设置
1
信息素挥发因子较大,信息素挥发速率大,从未被蚂蚁选择过的边上信息素急剧减少到接近0,降低算法的全局探索能力。
2
信息素会不断的蒸发。
3
路径探索也是必需的,否则容易陷入局部最优。
1.1基本理论
蚁群觅食现象
蚁群优化算法
蚁群
搜索空间的一组有效解(种群规模m)
觅食空间
问题的搜索空间(问题的规模、解的维数n)
信息素
信息素浓度变量
蚁巢到食物的一条路径
一个有效解
找到的最短路
问题的最优解
蚁群觅食现象和蚁群优化算法的基本定义对照表
3.3 最大最小蚂蚁系统
最大最小蚂蚁系统
提出背景:
1.对于大规模的TSP,由于搜索蚂蚁的个数有限,而初始化时蚂蚁的 分布是随机的,这会不会造成蚂蚁只搜索了所有路径中的小部分就 以为找到了最好的路径,而真正优秀的路径并没有被探索到呢? 2.当所有蚂蚁都重复构建着同一条路径的时候,意味着算法已经进入 了停滞状态,有没有办法利用算法停滞后的迭代过程进一步搜索以 保证找到更接近真实目标的解呢?
现代优化算法-蚁群算法
蚁群优化算法—改进
蚁群算法的各种改进: 1)MAX-MIN ANT SYSTEM (MMAS)算法
2)自适应蚁群优化算法
3)自适应调整信息素的蚁群算法
4)自适应调整 (残留信息的保留部分)的蚁群算法 5)带杂交算子的蚁群算法 6)在解决TSP问题——分段算法Section_MMMAS 7)在解决TSP问题——相遇算法MMMAS
— ij t 。
2)由城市 i 转移到城市 j 的启发信息,该启发信息是由要
解决的问题给出的——
ij ,在TSP问题中一般取
ij
1,
d ij
其中, d ij 表示城市 i,j 间的距离, ij 在这里可以称为先
验知识。
蚁群优化算法—算法流程
选择机制, 那么,t 时刻位于城市 i 的蚂蚁 k 选择城市 j 为目标城市的概率是:
这个解满足以上四个约束 条件。
蚁群优化算法—算法提出
NP问题:至今为止,还没有一个有能求得最优解的多项式时间算法 的组合优化问题称为NP问题。
TSP问题就是一个著名的NP问题。在如何解决这个问题方面已 经有了大量的研究。这其中包括遗传算法,退火算法,动态规 划等等。
蚁群优化算法—算法提出
TSP问题与蚁群寻径行为比较:
个城市推销商品,每个两个城市 i 和 j 之间的距离为 dij ,如何选择 一条道路使得商人每个城市走一遍后回到起点且所走路径最短。
蚁群优化算法—算法提出
一般旅行商问题TSP,数学模型描述:
min dij xij i j
n
s.t. xij 1, i 1, 2 ,, n j1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 算法流程
ACO基本要素
路径构建
每只蚂蚁都随机选择 一个城市作为其出发 城市,并维护一个路 径记忆向量,用来存 放该蚂蚁依次经过的 城市。蚂蚁在构建路 径的每一步中,按照 一个随机比例规则选 择下一个要到达的城 市。
信息素更新
当所有蚂蚁构建完路 径后,算法将会对所 有的路径进行全局信 息素的更新。注意, 我们所描述的是AS 的ant-cycle版本,更 新是在全部蚂蚁均完 成了路径的构造后才 进行的,信息素的浓 度变化与蚂蚁在这一 轮中构建的路径长度 相关。
(i, j ) (1 r ) (i, j ) k (i, j ) eb (i, j ),
(Ck )1 , if (i, j ) R k (Cb )1, if (i, j )在路径Tb 上 k (i, j ) , b (i, j ) 0, otherwise otherwise 0,
5.2 算法流程
解:
步骤3:信息素更新。
Company Logo
计算每只蚂蚁构建的路径长度:C1=3+4+2+1=10, C2=4+2+1+3=10,C3=2+1+5+4=12。更新每条边上的 信息素:
k AB (1 r ) AB AB 0.5 0.3 (1/10 1/10) 0.35 3 k 1 3
4、5:好强的信息素浓度, 跟上跟上
3:(得意„„) 我这么快就到了, 产生多点信息素, 兄弟们不跟我跟谁?
食物
6:我自己走,说不定能探索 出一条更短的路径呢, 到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是 两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权 重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径, 算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。
5.3.3 最大最小蚂蚁系统
最大最小蚂蚁系统(MAX-MIN Ant System, MMAS)在基本AS算法的基础上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的 蚂蚁),或者至今最优蚂蚁释放信息素。(迭代最优 更新规则和至今最优更新规则在MMAS中会被交替使 用。)
第5章 蚁群优化算法
Contents
1 2
基本原理
算法流程 改进版本 相关应用 参数设置
3
4
5
5.1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
自然界蚂蚁群体在寻找食物的过程中,通过一种被 称为信息素(Pheromone)的物质实现相互的 间接通信,从而能够合作发现从蚁穴到食物源的最 短路径。 通过对这种群体智能行为的抽象建模,研究者提出 了蚁群优化算法(Ant Colony Optimization, ACO),为最优化问题、尤其是组合优化问题的 求解提供了一强有力的手段。
权值(w−k)对不同路径的信息素浓度差异起到了一个放大的作用, ASrank能更有力度地指导蚂蚁搜索。
1 k 1 k
w 1
5.3.3 最大最小蚂蚁系统
最大最小蚂蚁系统(MAX-MIN Ant System, MMAS)在基本AS算法的基础上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的 蚂蚁),或者至今最优蚂蚁释放信息素。 (2)信息素量大小的取值范围被限制在一个区间内。 (3)信息素初始值为信息素取值区间的上限,并伴随一个 较小的信息素蒸发速率。 (4)每当系统进入停滞状态,问题空间内所有边上的信息 素量都会被重新初始化。
用轮盘赌法则选择下城市。假设产生的随机数 q=random(0,1)=0.67,则蚂蚁1将会选择城市D。 用同样的方法为蚂蚁2和3选择下一访问城市,假设 蚂蚁2选择城市C,蚂蚁3选择城市C。
5.2 算法流程
解:
步骤2.4:实际上此时路径已经构造完毕,蚂蚁1构建 的路径为(ABDCA)。蚂蚁2构建的路径为(BDCAB)。 蚂蚁3构建的路径为(DACBD)。
5.1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
觅食空间 蚁群 蚁巢到食物的一条路径 找到的最短路径 信息素 蚂蚁间的通信
问题的搜索空间
对 应 关系
搜索空间的一组有效解 一个有效解 问题的最优解 信息素浓度变量 启发式搜索
5.1 基本原理
2:天哪,我一定是走错路了, 好远,得产生少点信息素
1:走哪条路比较好呢? 嗯,先自己瞧瞧, 再感受下兄弟们的气息
Company Logo
5.2 算法流程
解:
步骤2.2:为每只蚂蚁选择下城市。我们仅 以蚂蚁1为例,当前城市i=A,可访问城市集 合J1(i) ={B, C, D}。计算蚂蚁1选择B,C,D作 为下一访问城市的概率:
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
(i, j ) (1 r ) (i, j ) (w k ) k (i, j ) wb (i, j ),
(Ck ) , if (i, j ) R (Cb )1, if (i, j )在路径Tb 上 k (i, j ) , b (i, j ) otherwise otherwise 0, 0,
蚂蚁系统(Ant System,AS)是最基本的ACO算法, 是以TSP作为应用实例提出的。
5.2 算法流程
路径构建—— 伪随机比例选择规则(random proportional)
(i, j ) (i, j ) , if j J k (i) pk (i, j ) (i, u ) (i, u ) uJ k (i ) 0, otherwise
k AC (1 r ) AC AC 0.5 0.3 (1/12) 0.16 k 1
„„ 如此,根据公式(5.2)依次计算出问题空间内所有边更 新后的信息素量。
5.2 算法流程
解:
步骤4: 如果满足结束条件,则输出全局最优结果并结束 程序,否则,转向步骤2.1继续执行。
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 W dij 3 5 4 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
5.3 改进版本
蚂 蚁 系 统
精 华 蚂 蚁 系 统
基 于 排 列 的 蚂 蚁 系 统
最 大 最 小 蚂 蚁 系 统
蚁 群 系 统
连 续 正 交 蚁 群 系 统
……
5.3.1 精华蚂蚁系统
精华蚂蚁系统(Elitist Ant System,EAS)是对基础 AS的第一次改进,它在原AS信息素更新原则的基础上增加 了一个对至今最优路径的强化手段。
引入这种额外的信息素强化手段有助于更好地引导蚂蚁搜索的偏向, 使算法更快收敛。
k 1 m
5.3.2 基于排列的蚂蚁系统
基于排列的蚂蚁系统(rank-based Ant System,ASrank)在AS 的基础上给蚂蚁要释放的信息素大小加上一个权值,进一步加大各边信 息素量的差异,以指导搜索。在每一轮所有蚂蚁构建完路径后,它们将 按照所得路径的长短进行排名,只有生成了至今最优路径的蚂蚁和排名 在前(w-1)的蚂蚁才被允许释放信息素,蚂蚁在边(i, j)上释放的信息素 的权值由蚂蚁的排名决定。
5.2 算法流程
解: 步骤2.3:当前蚂蚁1所在城市i=B,路径记忆向量
R1=(AB),可访问城市集合J1(i) ={C, D}。计算蚂蚁1选 择C,D作为下一城市的概率:
C : BC BC 0.31 (1/ 5) 2 0.012 B D : BD BD 0.31 (1/ 4) 2 0.019 p(C ) 0.012 /(0.012 0.019) 0.39 p( D) 0.019 /(0.012 0.019) 0.61
对于每只蚂蚁k,路径记忆向量Rk按照访问顺序记录了所有k已经经 过的城市序号。设蚂蚁k当前所在城市为i,则其选择城市j作为下一 个访问对象的概率如上式。Jk(i)表示从城市i可以直接到达的、且又 不在蚂蚁访问过的城市序列Rk中的城市集合。(i, j)是一个启发式信 息,通常由 (i, j)=1/dij直接计算。(i, j)表示边(i, j)上的信息素量。