智能算法之蚁群算法

合集下载

蚁群算法

蚁群算法

蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。

该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。

蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。

蚁群算法是群智能理论研究领域的一种主要算法。

1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。

蚁群算法原理及其应用

蚁群算法原理及其应用

蚁群算法原理及其应用1.介绍蚁群算法蚁群算法是基于群体智能的一种优化算法,它是由蚂蚁觅食行为得到的灵感而设计的。

它通过模拟蚂蚁觅食时的信息素传递、挥发和追随机制,以寻找最优解,在优化搜索问题方面表现出了很高的效率和准确率。

蚁群算法的核心思想是通过模拟蚂蚁觅食时的联合行为,来寻找最优解。

在蚂蚁觅食的过程中,蚂蚁们会释放信息素,并且在寻找食物的过程中会不断地追随信息素浓度最高的路径。

最终,所有蚂蚁都会找到最短路径,这是通过信息素的积累实现的。

同样的,蚁群算法也是通过信息素的积累来找到最优解。

2.蚁群算法工作原理蚁群算法是基于蚂蚁觅食行为的优化算法,其主要的工作原理是通过模拟蚂蚁的联合行为寻找最优解。

其过程可以分为蚂蚁编号、路径选择、信息素更新三个阶段。

蚂蚁编号:首先,将每只蚂蚁进行编号,这个编号的目的是为了标识蚂蚁,以便于后面对信息素的更新和路径选择进行控制。

路径选择:在路径选择过程中,每只蚂蚁都会根据自己当前的位置,以及路径上已有的信息素浓度等因素,选择一条路径进行行走。

在这个过程中,蚂蚁们会保留走过的路径,并且释放信息素。

信息素更新:在信息素更新过程中,所有路径上的信息素浓度都会发生变化,其中信息素的浓度会受到蚂蚁在路径上的行走距离、信息素挥发率、以及其他因素的影响。

所有蚂蚁行走结束后,信息素更新过程便开始了。

3.蚁群算法的应用领域蚁群算法在解决优化问题方面具有很大的应用潜力,其能够用于很多领域。

以下是蚁群算法在各个领域的应用举例:(1)路径规划领域蚁群算法可以应用在路径规划领域中,用于求解最短路径和最优路径问题。

在实际应用中,蚁群算法在公共交通网络、航空路线规划、车辆路径优化等方面都表现出了很好的效果。

(2)组合优化领域蚁群算法在组合优化领域中得到了广泛的应用,可以用于解决如旅行商问题、装载问题、集合划分问题等复杂的组合优化问题。

(3)机器学习领域蚁群算法在机器学习领域的应用,包括聚类、分类、特征选择等方面。

蚁群算法理论、应用及其与其它算法的混合

蚁群算法理论、应用及其与其它算法的混合
蚁群算法理论、应用及其与其 它算法的混合
基本内容
蚁群算法是一种基于自然界中蚂蚁觅食行为的启发式优化算法,被广泛应用 于解决各种优化问题。该算法具有鲁棒性、并行性和自适应性等优点,但同时也 存在一些局限性,如易陷入局部最优解等问题。本次演示将详细介绍蚁群算法的 基本理论、应用场景以及与其它算法的混合使用。
蚁群算法的实现包括两个关键步骤:构造解和更新信息素。在构造解的过程 中,每只蚂蚁根据自己的概率选择下一个节点,这个概率与当前节点和候选节点 的信息素以及距离有关。在更新信息素的过程中,蚂蚁会在构造解的过程中更新 路径上的信息素,以便后续的蚂蚁能够更好地找到最优解。
蚁群算法在许多领域都得到了广泛的应用。在机器学习领域,蚁群算法被用 来提高模型的性能和效果。例如,在推荐系统中,蚁群算法被用来优化用户和物 品之间的匹配,从而提高推荐准确率;在图像处理中,蚁群算法被用来进行特征 选择和图像分割,从而提高图像处理的效果。此外,蚁群算法在数据挖掘、运筹 学等领域也有着广泛的应用。
结论本次演示介绍了蚁群优化算法的理论研究及其应用。通过分析蚁群优化 算法的组成、行为和优化原理,以及其在不同领域的应用案例,本次演示展示了 蚁群优化算法在求解组合优化、路径规划、社会优化和生物信息学等领域问题的 优势和潜力。本次演示展望了蚁群优化算法未来的发展方向和可能挑战,强调了 其理论研究和应用价值。
总之,蚁群算法是一种具有广泛应用价值的优化算法,它通过模拟蚂蚁的觅 食行为来实现问题的优化。未来可以通过进一步研究蚁群算法的原理和应用,以 及克服其不足之处,来提高蚁群算法的性能和扩展其应用领域。
基本内容
理论基础蚁群优化算法由蚁群系统、行为和优化原理三个核心要素组成。蚁 群系统指的是一群相互协作的蚂蚁共同构成的社会组织;行为则是指蚂蚁在寻找 食物过程中表现出的行为模式;优化原理主要是指蚂蚁通过信息素引导和其他蚂 蚁的协同作用,以最短路径找到食物来源。

蚁群算法详细讲解

蚁群算法详细讲解

21
1.2 蚁群优化算法概念
1.2.1 蚁群算法原理 1.2.2 简化的蚂蚁寻食过程 1.2.3 自然蚁群与人工蚁群算法 1.2.4 蚁群算法与TSP问题 1.2.5 初始的蚁群优化算法—基于图的 蚁群系统(GBAS) 1.2.6 一般蚁群算法的框架
22
1.2.1 蚁群算法原理
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿 生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称 之为外激素(pheromone)的物质进行信息传递,而且蚂蚁在运动过 程中能够感知这种物质,并以此指导自己的运动方向,因此由大量 蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象:某一路径 上走过的蚂蚁越多,则后来者选择该路径的概率就越大。 为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具 体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间 的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特 殊的信息素。当它们碰到一个还没有走过的路口时.就随机地挑选 一条路径前行。与此同时释放出与路径长度有关的信息素。路径越 长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时 候.选择激素浓度较高路径概率就会相对较大。这样形成一个正反 馈。最优路径上的激索浓度越来越大.而其它的路径上激素浓度却 会随着时间的流逝而消减。最终整个蚁群会找出最优路径。
23
1.2.2 简化的蚂蚁寻食过程 1/3
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线ABD 或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位行走 一步,本图为经过9个时间单位时的情形:走ABD的蚂蚁到达终点, 而走ACD的蚂蚁刚好走到C点,为一半路程。
17
1.1.5 蚁群优化算法应用现状 2/5

蚁群算法简述

蚁群算法简述

2.蚁群算法的特征
下面是对蚁群算法的进行过程中采用的规则进行的一些说明. 范围
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径一般 是3,那么它能观察到的范围就是33个方格世界,并且能移动的距离也在这 个范围之内. 环境
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有 信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找 到窝的蚂蚁洒下的窝的信息素.每个蚂蚁都仅仅能感知它范围内的环境信 息.环境以一定的速率让信息素消失. 觅食规则
2.蚁群算法的特征
基本蚁群算法流程图详细
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各 自会随机的选择一条路径. 2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这 些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁 开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路 径上信息素的多少选择路线selection,更倾向于选择信息 素多的路径走当然也有随机性. 3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信 息素不同程度的挥发掉了evaporation,而刚刚经过了蚂蚁 的路线信息素增强reinforcement.然后又出动一批蚂蚁,重 复第2个步骤. 每个状态到下一个状态的变化称为一次迭代,在迭代多次 过后,就会有某一条路径上的信息素明显多于其它路径,这 通常就是一条最优路径.
人工蚁群算法
基于以上蚁群寻找食物时的最优路径选择问题,可 以构造人工蚁群,来解决最优化问题,如TSP问题.
人工蚁群中把具有简单功能的工作单元看作蚂蚁. 二者的相似之处在于都是优先选择信息素浓度大的路 径.较短路径的信息素浓度高,所以能够最终被所有蚂 蚁选择,也就是最终的优化结果.
两者的区别在于人工蚁群有一定的记忆能力,能够 记忆已经访问过的节点.同时,人工蚁群再选择下一条 路径的时候是按一定算法规律有意识地寻找最短路径, 而不是盲目的.例如在TSP问题中,可以预先知道当前 城市到下一个目的地的距离.

蚁群算法的基本原理

蚁群算法的基本原理

2.1 蚁群算法的基本原理蚁群优化算法是摹拟蚂蚁觅食的原理,设计出的一种群集智能算法。

蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向挪移,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。

某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。

蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成为了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。

蚁穴食物源AB 15cm(a) 蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为:(1)蚂蚁的记忆行为。

一只蚂蚁搜索过的路径在下次搜索时就再也不被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行摹拟。

(2)蚂蚁利用信息素进行相互通信。

蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。

(3)蚂蚁的集群活动。

通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就彻底不同。

当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。

3.3.1蚂蚁系统蚂蚁系统是最早的蚁群算法。

其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,mL 是由最近邻启示式方法构造的路径长度。

蚁群算法ppt课件

蚁群算法ppt课件
10
2 简化旳蚂蚁寻食过程
假设蚂蚁每经过一处所留下旳信息素为一种单位,则经过36个时间单位 后,全部开始一起出发旳蚂蚁都经过不同途径从D点取得了食物,此时ABD 旳路线来回了2趟,每一处旳信息素为4个单位,而 ACD旳路线来回了一趟, 每一处旳信息素为2个单位,其比值为2:1。
寻找食物旳过程继续进行,则按信息素旳指导,蚁群在ABD路线上增派一 只蚂蚁(共2只),而ACD路线上依然为一只蚂蚁。再经过36个时间单位后, 两条线路上旳信息素单位积累为12和4,比值为3:1。
8
2 简化旳蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线 ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位 行走一步,本图为经过9个时间单位时旳情形:走ABD旳蚂蚁到 达终点,而走ACD旳蚂蚁刚好走到C点,为二分之一旅程。
9
2 简化旳蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时旳情形:走ABD旳蚂 蚁到达终点后得到食物又返回了起点A,而走ACD旳蚂蚁刚好走 到D点。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上依然为一只蚂蚁。再经过36个时间单位后,两条线路上旳信息素 单位积累为24和6,比值为4:1。
若继续进行,则按信息素旳指导,最终全部旳蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是前面所提到旳正反馈效应。
11
3 自然蚁群与人工蚁群算法
15
5 初始旳蚁群优化算法—基于图旳蚁群 系统(GBAS)
初始旳蚁群算法是基于图旳蚁群算法,graph-based
ant system,简称为GBAS,是由Gutjahr W J在2023年
旳Future Generation Computing Systems提出旳.

蚁群算法及案例分析

蚁群算法及案例分析
问过的节点;另外,人工蚁
群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
for ii=2:N
R_best(NC,:)=Tabu(pos(1),:);
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
L_ave(NC)=mean(L);
hold on
NC=NC+1;
end
%第五步:更新信息素
Delta_Tau=zeros(n,n);
是通过在其所经过的路径上留下一定信息的方法进行间接的
信息传递。
蚁群算法计算步骤
开始
初始化
迭代次数
Nc=Nc+1
蚂蚁k=1
蚂蚁k=k+1
按照状态转移概率公式选择
下一个元素
修改禁忌表
N
K>=蚂蚁总数m?
Y
按照公式进行
信息量更新
结束
输出程序计
算结果
Y
满足结束条件?
N
TSP算例分析
旅行商问题(TSP)
4、最优路径上的信息素浓度越来越
大.
5、最终蚁群找到最优寻食路径。
蚁群算法原理
自然界中,蚁群的这种寻找路径的过程表现为一种正反馈的过程,与人工蚁群的寻
优算法极为一致。如我们把只具备了简单功能的工作单元视为”蚂蚁”,那么上述寻找

人工智能07蚁群算法及其应用

人工智能07蚁群算法及其应用

蚁群算法数学表达式
转移概率公式
蚁群算法中,蚂蚁根据转移概率公式选 择下一个访问的节点。转移概率通常由 信息素浓度和启发式信息共同决定,以 实现局部搜索与全局搜索的平衡。
VS
信息素更新规则
信息素是蚁群算法中的关键参数,用于引 导蚂蚁的搜索方向。信息素更新规则包括 局部更新和全局更新两种方式,分别用于 加强当前路径上的信息素浓度和更新全局 最优路径上的信息素浓度。
• 启发式信息权重:启发式信息权重用于平衡转移概率中的信息素浓度和启发式信息。较大的启发式信息权重会 使算法更加倾向于选择局部最优解,而较小的启发式信息权重则会使算法更加注重全局搜索。
• 最大迭代次数:最大迭代次数是控制算法停止条件的重要参数。当达到最大迭代次数时,算法将停止搜索并输 出当前最优解。需要根据问题规模和复杂度合理设置最大迭代次数,以保证算法能够在有限时间内找到满意的 解。
算法优化
针对旅行商问题的特点,可以对蚁群算法进行改进,如引入局部搜索策 略、调整信息素更新规则等,以进一步提高算法的求解性能。
机器人路径规划问题应用探讨
问题描述
机器人路径规划问题要求机器人在有障碍物的环境中,从起点安全、快速地到达目标点。
蚁群算法应用
蚁群算法可以应用于机器人路径规划问题中,通过模拟蚂蚁的觅食行为来寻找一条从起点 到目标点的最优路径。实例分析表明,蚁群算法在机器人路径规划问题中具有较好的应用 效果。
05 蚁群算法在数据挖掘中应 用
聚类分析问题解决方法展示
基于蚁群算法的聚类方法
通过模拟蚂蚁觅食行为,将数据集划分为多个簇,使得同一簇内数据相似度高,不同簇间数据相似度 低。
聚类结果评估与优化
采用轮廓系数、DB指数等评估指标对聚类结果进行评价,并通过调整算法参数或引入其他优化策略来 提高聚类效果。

蚁群算法原理

蚁群算法原理

蚁群算法原理一、什么是蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种仿生智能算法,它模拟蚂蚁搜索食物的行为,从而解决多种优化问题。

该算法旨在建立蚂蚁在搜索空间中的路径,并在这些路径上传播信息,从而使蚂蚁在搜索空间中最终能够找到最优解的路径。

二、蚁群算法的原理1、蚁群算法的基本原理蚁群算法建立在模拟生物天性的基础上,它的基本原理如下:蚂蚁在搜索过程中会搜索出一系列可能的路径,当它们回到搜索起点时,会把它们走过的路线信息传给其它蚂蚁,然后其它蚂蚁据此搜索出其它可能的路线,此过程一直持续,所有蚂蚁在搜索空间中随机探索,把自己走过的路线都留下越多的信息,这样就把多条路线的信息逐渐累积,最终能够找到最优解的路径,从而解决优化问题。

2、蚁群算法的过程(1)协作首先,许多蚂蚁在搜索空间中进行协作,它们在这个空间中进行随机搜索,并尝试找到最优解的路径。

(2)共嗅搜索过程中,蚂蚁会随机尝试搜索各种可能的路径,并在路径上沿途留下一些信息,这些信息就是蚂蚁在搜索过程中搜集到的数据,以这些数据为基础,一方面蚂蚁能够自动判断路径上的优劣,另一方面其它蚂蚁也可以共享这些信息,从而改进和优化搜索效率。

(3)路径搜索蚂蚁在搜索过程中会随机尝试搜索所有可能的路径,它们也会把自己走过的最好的路径留下,这个路径就是最后需要搜索的最优路径,当蚂蚁搜索完毕时,就能够把这条最优路径传给其它蚂蚁,从而解决优化问题。

三、蚁群算法的优势1、收敛性好蚁群算法拥有良好的收敛性,它可以较快地找到最优解。

2、实现简单蚁群算法实现简单,只需要定义蚂蚁在寻找最优路径时的行为模型即可,无需定义较多的参数,因此能够大大减少计算量。

3、鲁棒性高蚁群算法的鲁棒性很高,它可以有效地避免局部最优路径,从而更容易达到全局最优路径。

四、蚁群算法的应用1、旅行商问题蚁群算法可以用来解决旅行商问题,即给定一组城市,求解访问相关城市的最优路径。

蚁群算法

蚁群算法

蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。

它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。

针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

目录1基本信息1.1 概念1.2 原理1.3 问题2详细说明2.1 范围2.2 环境2.3 觅食规则2.4 移动规则2.5 避障规则2.6 信息素规则3相关研究3.1 引申3.2 蚁群算法的实现3.3 解读搜索引擎算法“蚁群算法”1.基本信息1.1概念各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。

当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。

有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。

最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

1.2原理设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。

这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

蚁群算法

蚁群算法

蚁群优化算法的JA V A实现收藏蚁群算法简介蚁群算法是群智能算法的一种,所谓的群智能是一种由无智能或简单智能的个体通过任何形式的聚集协同而表现出智能行为,它为在没有集中控制且不提供全局模型的前提下寻找复杂的分布式问题求解方案提供了基础,比如常见的蚂蚁觅食,大雁南飞等行为。

蚁群算法是模拟自然界中蚂蚁觅食的一种随机搜索算法,由Dorigo等人于1991年在第一届欧洲人工生命会议上提出[1] 。

蚁群算法的生物原理通过观察发现,蚁群在觅食的时候,总能找到一条从蚁巢到食物之间的一条最短的路径。

这个现象引起了生物学家的注意,根据研究,原来是蚂蚁在行进的过程中,会分泌一种化学物质——信息素,而蚂蚁在行进时,总是倾向于选择信息素浓度比较高的路线。

这样,在蚁巢和食物之间假如有多条路径,初始的时候,每条路径上都会有蚂蚁爬过,但是随着时间的推迟,单位时间内最短的那条路上爬过的蚂蚁数量会比较多,释放的信息素就相对来说比较多,那么以后蚂蚁选择的时候会大部分都选择信息素比较多的路径,从而会把最短路径找出来。

蚁群算法正是模拟这种蚁群觅食的原理,构造人工蚂蚁,用来求解许多组合优化问题。

有关蚁群算法的详细信息,可参考[2]——[5]。

蚁群算法的JA V A实现我个人认为利用JA V A编写一些计算密集型的算法不是一个好的选择。

本身一些算法是要要求高效率的,但是我感觉JA V A语言的性能不够,所以编写算法最好用c,其次也可以用c++。

当然,这仅是一家之言,欢迎拍砖。

此处使用JA V A的原因是为了演示算法的框架,给出一种思路,如果需要c++的参考,可以参考,如果需要c的代码,可以上http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html, 这个可以看作是ACO的官方网站了,里面的内容比较多。

算法说明算法以求解TSP问题为例,用来演示ACO的框架。

算法设定了两个类,一个是ACO,用来处理文件信息的读入,信息素的更新,路径的计算等;另一个是ant,即蚂蚁的信息。

23个基本测试函数 蚁群算法

23个基本测试函数 蚁群算法

23个基本测试函数蚁群算法蚁群算法是一种模拟蚂蚁行为的启发式算法,它通过模拟蚁群寻找食物的行为,来解决各种优化问题。

蚁群算法的核心思想是通过信息交流和反馈机制来寻找问题的最优解。

本文将介绍蚁群算法的基本原理,并以23个基本测试函数为例,展示蚁群算法在解决优化问题中的应用。

1. 算法简介蚁群算法最早由意大利学者Dorigo在1992年提出,其灵感来自于观察蚂蚁在寻找食物时的行为。

蚁群算法将问题抽象成一个图论模型,其中蚂蚁代表解空间中的候选解,信息素则代表蚂蚁之间的信息交流。

蚂蚁根据信息素的浓度和距离选择路径,并在路径上释放信息素,从而影响其他蚂蚁的选择。

通过多次迭代,蚂蚁群体逐渐收敛于最优解。

2. 蚁群算法的基本步骤蚁群算法主要包括初始化、路径选择、信息素更新和收敛判断等步骤。

2.1 初始化在蚁群算法中,需要初始化蚂蚁的位置和信息素的浓度。

蚂蚁的初始位置可以随机选择或者根据问题的特点进行设置。

信息素的初始浓度通常设置为一个较小的常数。

2.2 路径选择在路径选择阶段,蚂蚁根据信息素的浓度和距离选择路径。

通常情况下,信息素浓度较高的路径会有更多的蚂蚁选择,但也存在一定的随机性,以保证算法能够全局搜索。

2.3 信息素更新在信息素更新阶段,蚂蚁根据问题的优化目标更新路径上的信息素。

通常情况下,蚂蚁在路径上释放的信息素与路径的优化程度成正比。

信息素的更新规则可以根据具体问题进行设计。

2.4 收敛判断在每轮迭代之后,需要判断算法是否收敛。

通常情况下,可以通过设定一个停止准则来判断算法是否继续迭代。

常用的停止准则包括迭代次数、目标函数值的变化幅度等。

3. 蚁群算法在优化问题中的应用蚁群算法在解决各种优化问题中具有广泛的应用。

下面以23个基本测试函数为例,展示蚁群算法在不同问题中的应用。

3.1 球面函数球面函数是一个简单的优化问题,目标是找到一个全局最小值。

蚁群算法通过信息素的交流和反馈机制,可以在搜索空间中快速找到最优解。

人工智能:蚁群算法及其应用

人工智能:蚁群算法及其应用

●20世纪90年代初,意大利科学家Marco Dorigo 等受蚂蚁觅食行为的启发,提出蚁群算法(Ant Colony Optimization ,ACO)。

●一种应用于组合优化问题的启发式搜索算法。

●在解决离散组合优化方面具有良好的性能。

产生背景基本思想●信息素跟踪:按照一定的概率沿着信息素较强的路径觅食。

●信息素遗留:会在走过的路上会释放信息素,使得在一定的范围内的其他蚂蚁能够觉察到并由此影响它们的行为。

(1)环境:有障碍物、有其他蚂蚁、有信息素。

(2)觅食规则:范围内寻找是否有食物,否则看是否有信息素,每只蚂蚁都会以小概率犯错。

(3)移动规则:都朝信息素最多的方向移动,无信息素则继续朝原方向移动,且有随机的小的扰动,有记忆性。

(4)避障规则:移动的方向如有障碍物挡住,蚂蚁会随机选择另一个方向。

(5)信息素规则:越靠近食物播撒的信息素越多,越离开食物播撒的信息素越少。

6.7.1基本蚁群算法模型6.7.2蚁群算法的参数选择6.7.3蚁群算法的应用6.7.1 基本蚁群算法模型蚁群优化算法的第一个应用是著名的旅行商问题。

旅行商问题阐明蚁群系统模型旅行商问题(Traveling Salesman Problem ,TSP ):在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。

蚂蚁搜索食物的过程:通过个体之间的信息交流与相互协作最终找到从蚁穴到食物源的最短路径。

蚁群系统的模型6.7.1 基本蚁群算法模型m 是蚁群中蚂蚁的数量表示元素(城市) 和元素(城市) 之间的距离表示能见度,称为启发信息函数,等于距离的倒数,即表示t 时刻位于城市x 的蚂蚁的个数,表示t 时刻在xy 连线上残留的信息素,初始时刻,各条路径上的信息素相等即蚂蚁k 在运动过程中,根据各条路径上的信息素决定转移方向。

(,1,...,)xy d x y n =)(t xy ηxyxy d t 1)(=η()x b t ∑==nx x t b m 1)()(t xy τ)()0(const C xy =τ表示在t 时刻蚂蚁k 选择从元素(城市) x 转移到元素(城市) y 的概率,也称为随机比例规则。

毕业论文 蚁群算法

毕业论文 蚁群算法

毕业论文蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种模拟蚂蚁寻找食物的行为而发展而来的一种计算智能算法。

该方法利用蚂蚁在寻找食物过程中留下的信息素来指导其他蚂蚁选择路径,从而达到最优路径的目的。

本文将介绍蚁群算法的基本原理、应用领域以及算法的优缺点。

一、算法原理1.1信息素在蚁群算法中,信息素是指蚂蚁在寻找食物时分泌的一种化学物质,它会留在路径上,用于指导其他蚂蚁选择路径。

当一条路径上的信息素浓度足够高时,其他蚂蚁会更倾向于选择这条路径。

1.2蚁群算法过程(1)初始化:随机放置一些蚂蚁并随机设置它们的起点和终点。

(2)蚂蚁选择路径:每个蚂蚁根据当前位置的信息素浓度,选择下一步要走的路径。

选择路径的规则可以根据具体问题来设计。

(3)信息素更新:当蚂蚁完成任务后,会在其经过的路径上留下一定量的信息素。

信息素的更新可以通过公式:$ T_{ij}=(1-ρ) ·T_{ij}+∑\\frac{\\Delta T_{ij}^{k}}{L_{k}} $ 来完成,其中 $ T_{ij} $ 表示在第 $i$ 个节点到第 $j$ 个节点之间路径的信息素,$ L_{k} $ 表示第 $k$ 只蚂蚁走过的路径长度,$ \\Delta T_{ij}^{k} $ 表示第 $k$ 只蚂蚁在第 $i$ 个节点到第$j$ 个节点之间路径上留下的信息素。

(4)重复执行步骤(2)和(3),直到满足算法终止条件。

二、应用领域由于蚁群算法具有寻优能力和适应性强等优点,因此在多个应用领域得到了广泛的应用:2.1路线规划将蚁群算法应用到路线规划中,可以帮助人们更快捷、更准确地规划出最优路径。

例如,在地图搜索、货车路径规划、船只导航等领域都有广泛的应用。

2.2优化问题蚁群算法能够在多种优化问题中得到应用,例如在图像处理、模式识别、网络优化中,通过不断地调节参数,可以找出最佳的结果。

2.3组合优化问题在组合优化问题中,由于问题的规模较大,常规优化算法很容易陷入局部最优解中无法跳出。

蚁群算法求解函数最小值

蚁群算法求解函数最小值

蚁群算法求解函数最小值蚁群算法是一种群体智能算法,它模拟蚂蚁在寻找食物时留下信息、跟随信息和更新信息的行为。

其主要思想是让一群智能体(蚂蚁)在问题空间中随机游走,通过留下信息来指导其他蚂蚁的搜索,最终找到问题的最优解。

本文将介绍如何使用蚁群算法求解函数最小值问题。

1. 问题描述我们要求解函数f(x)的最小值,其中x是一个d维向量,f(x) = ∑(x_i^2),i=1,2,...,d。

因为所有维度上的值都是正的,所以函数的最小值为0。

但在搜索过程中,优化器需要在向量空间中寻找最小值。

2. 蚁群算法基本思想3. 蚁群算法具体实现1)初始化初始化迭代次数、蚁群大小、信息素浓度以及每只蚂蚁的位置和速度。

对于每个蚂蚁的初始位置和速度,可以使用随机值来生成。

同时,需要记录当前所有蚂蚁中最优的位置和最优的适应度值。

2)信息素选取蚂蚁在搜索过程中留下信息,用于指导其他蚂蚁的行动。

信息素的选择需要权衡两个因素,即蚂蚁个体的局部搜索策略和群体策略。

在局部策略方面,蚂蚁会在已经访问的路径上留下信息素,吸引其他蚂蚁走向已经访问过的区域。

在群体策略方面,信息素可以加速全局搜索,吸引更多的蚂蚁在全局范围内搜索。

3)更新信息素蚂蚁在搜索过程中留下信息,导致当前路径上信息素的浓度增加。

信息素的浓度会随着时间的推移而逐渐降低。

信息素的更新根据当前路径的质量,决定增加或者减少信息素的浓度。

4)更新速度和位置根据留下的信息素和当前位置,更新蚂蚁的速度和位置。

5)计算适应度根据当前位置计算适应度。

这里的适应度即函数的值。

6)更新最优值如果当前的适应度比已记录的最优适应度更优,则更新记录的最优适应度值和位置。

7)终止条件循环运行以上步骤,直到达到指定的迭代次数或满足特定的终止条件。

4. 代码实现示例以Python语言为例,下面给出了求解函数最小值的蚁群算法实现示例:```pythonimport numpy as npclass Ant(object):def __init__(self, dim, max_pos, min_pos):self.dim = dimself.max_pos = max_posself.min_pos = min_posself.pos = np.random.uniform(min_pos, max_pos, size=dim)self.velocity = np.random.uniform(min_pos, max_pos, size=dim)self.pbest = self.posself.pbest_fitness = float('inf')self.fitness = float('inf')def evaluate(self, f):self.fitness = f(self.pos)if self.fitness < self.pbest_fitness:self.pbest = self.posself.pbest_fitness = self.fitnessdef update_velocity(self, other_ant_pos, w, c1, c2, max_velocity):r1 = np.random.rand(self.dim)r2 = np.random.rand(self.dim)self.velocity = w * self.velocity + c1 * r1 * (self.pbest - self.pos) + c2 * r2 * (other_ant_pos - self.pos)self.velocity = np.clip(self.velocity, -max_velocity, max_velocity)def update_pos(self):self.pos = self.pos + self.velocityself.pos = np.clip(self.pos, self.min_pos, self.max_pos)class ACO(object):def __init__(self, f, dim=2, max_iter=100, n_ant=10, max_velocity=1, w=0.5, c1=1, c2=1, max_pos=10, min_pos=-10):self.f = fself.dim = dimself.max_iter = max_iterself.n_ant = n_antself.max_velocity = max_velocityself.w = wself.c1 = c1self.c2 = c2self.max_pos = max_posself.min_pos = min_posself.global_best_fitness = float('inf')self.global_best_pos = np.zeros(dim)self.ants = [Ant(dim, max_pos, min_pos) for i in range(n_ant)]self.init_random_ant()def init_random_ant(self):for ant in self.ants:ant.evaluate(self.f)if ant.fitness < self.global_best_fitness:self.global_best_fitness = ant.fitnessself.global_best_pos = ant.posdef search(self):for i in range(self.max_iter):for ant in self.ants:for other_ant in self.ants:if ant != other_ant:ant.update_velocity(other_ant.pos, self.w, self.c1, self.c2, self.max_velocity)ant.update_pos()ant.evaluate(self.f)if ant.fitness < self.global_best_fitness:self.global_best_fitness = ant.fitnessself.global_best_pos = ant.posdef run(self):self.search()print("best fitness: {:.6f}, best position:{}".format(self.global_best_fitness, self.global_best_pos))def f(x):return np.sum(x**2)aco = ACO(f)aco.run()```在这个实现中,我们用Ant表示每个蚂蚁,包含了位置、速度、适应度等信息。

蚁群算法参数

蚁群算法参数

蚁群算法参数
蚁群算法是一种基于模拟蚂蚁在寻找食物过程中的行为模式,用于优化搜索问题的算法。

蚁群算法的性能和效果受到许多参数的影响,以下是常见的蚁群算法参数解释:
1. 蚂蚁数量:蚂蚁数量是指在算法中使用的蚂蚁数量。

通常情况下,蚂蚁数量越多,算法的搜索范围越广,但同时也会增加算法的计算复杂度。

2. 行走距离:行走距离是指蚂蚁在每次移动时所走的距离。

行走距离过短会使得算法的搜索效率变低,而过长则会导致蚂蚁重复探索已搜索过的区域。

3. 信息素挥发因子:信息素挥发因子是指搜索路径上信息素的挥发速度。

较高的信息素挥发因子会使得蚂蚁更快地忘记之前探索过的路径,而较低的信息素挥发因子则会使得蚂蚁更容易受到过去路径的影响。

4. 信息素更新强度:信息素更新强度是指蚂蚁在搜索到新的更优路径时,将其所经过的路径上的信息素更新的强度。

较高的信息素更新强度会使得蚂蚁更快地收敛到全局最优解,但也会造成算法的过早收敛问题。

5. 启发函数:启发函数是指蚂蚁在选择下一步行动时,根据当前位置和信息素浓度计算出的期望值。

启发函数的好坏直接影响算法的搜索效率。

总之,蚁群算法的参数设置直接影响算法的效率和搜索结果。

在实际应用中,需要根据具体问题进行参数的调整,以达到最优的搜索效果。

蚁群算法原理介绍

蚁群算法原理介绍

缺点分析
01
易陷入局部最优解
在某些情况下,蚁群算法可能会 陷入局部最优解,导致无法找到
全局最优解。
03
计算量大
蚁群算法需要大量的计算资源, 对于大规模问题可能会变得低效

02
参数设置困难
蚁群算法的参数选择对结果影响 较大,参数设置不当可能导致算
法性能下降。
04
适用性问题
蚁群算法适用于连续、离散、静 态或动态优化问题,但对于某些 特定问题可能不是最优选择。
06 蚁群算法的应用实例
TSP问题求解
总结词
蚁群算法在TSP问题求解中表现出色,能够 找到接近最优解的路径。
详细描述
TSP问题是一个经典的组合优化问题,旨在 寻找一条旅行路线,使得一组城市被访问且 仅被访问一次,最后返回到起始城市,且总 旅行距离最短。蚁群算法通过模拟蚂蚁觅食 行为,利用信息素传递机制,在解空间中搜 索最优解。通过不断迭代更新,蚁群算法能 够找到接近最优解的路径。
蚁群算法原理介绍
目 录
• 蚁群算法概述 • 蚁群算法的基本原理 • 蚁群算法的实现过程 • 蚁群算法的优化策略 • 蚁群算法的优缺点分析 • 蚁群算法的应用实例
01 蚁群算法概述
定义与特点
定义
蚁群算法是一种模拟自然界中蚂 蚁觅食行为的优化算法,通过模 拟蚂蚁的信息素传递过程来寻找 最优解。
特点
环境中的一些特征也会被蚂蚁利用, 如地形的高低、障碍物的分布等,这 些特征会影响蚂蚁的移动路径和信息 素挥发。
03 蚁群算法的实现过程初始阶段参数设定在蚁群算法的初始化阶段,需要设定一些基本参数,如蚂蚁数量、信息素挥发 速度、信息素初始值等。这些参数对算法的性能和结果有着重要影响。

ch2智能理论--蚁群算法PPT课件02

ch2智能理论--蚁群算法PPT课件02

72个时间单位后,两条线路上的信息素单位积累为12和4, 比值为3:1。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共 3只),ACD路线上仍然是一只蚂蚁。
再36个时间单位后,两条线路上的信息素单位积累为24和6 ,比值为4:1。
若继续进行,按信息素指导,最终所有蚂蚁会放弃ACD路 线,都选择ABD路线,这就是正反馈效应。
这种改进型算法能以更快的速度获得更好的解。但是若选择的精英过多,则算法会 由于较早收敛于局部次优解,而导致搜索的过早停滞。
寻找路径时,在路径上释放出一种特殊的信息素。
碰到没有走过的路口,随机挑选一条路径,并释放出与路 径长度有关的信息素。
路径越长,释放的激素浓度越低。
后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高 路径概率相对较大。
1
1
6
1 24
0 1 12
1 24 0
1 24 16
1 24 1 6 1 24
0
0 1 12 1 12 1 12
0
1 1
12 12
0 1 12
1 12 0
1
12
1 12
1 1 2 1 1 2 1 1 2
0
k
1k1ijk1w k 1 i,j是 w 上 的 一 条 弧
148 148 0 524
196 196 0 1148
148 524 148
0
196 1148 196
0
信息素的更新有2种方式:
• 挥发——所有路径上信息素以一定比率减少 • 增强——给评价值“好”(有蚂蚁走过)的边增加信息素
STEP 0 对n个城市的TSP问题,N 1 ,2 ,...,n A i,ji,j N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
简化的蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选
择路线ABD或ACD。假设初始时每条分配路线一只蚂蚁,
每个时间单位行走一步,本图为经过9个时间单位时
的情形:走ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好
走到C点,为一半路程。
8
简化的蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时的情形: 走ABD的蚂蚁到达终点后得到食物又返回了起点A, 而走ACD的蚂蚁刚好走到D点。
14
蚁群算法的计算流程
开始
[ ij (t )] [ij ]
k p (t) ij
ja
l l owe
[
d
ij
(t
)
]
[i
j
]
0
if j allowed otherw is e
初始化
Nc Nc +1
轨迹更新: ij (t n) ij (t) ij (t,t n) Visibility: ij = 1/dij 表示轨迹的相对重要性
9
简化的蚂蚁寻食过程
假设蚂蚁每经过一处所留下的信息素为一个单位,则经过36 个时间单位后,所有开始一起出发的蚂蚁都经过不同路径从D点 取得了食物,此时ABD的路线往返了2趟,每一处的信息素为4个 单位,而 ACD的路线往返了一趟,每一处的信息素为2个单位, 其比值为2:1。
寻找食物的过程继续进行,则按信息素的指导,蚁群在ABD 路线上增派一只蚂蚁(共2只),而ACD路线上仍然为一只蚂蚁。 再经过36个时间单位后,两条线路上的信息素单位积累为12和4, 比值为3:1。
A C
3
A C
4
C
A
5
蚁群算法原理
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的 一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路 径上留下一种称之为外激素(pheromone)的物质进行信息 传递,而且蚂蚁在运动过程中能够感知这种物质,并以此 指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行 为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁 越多,则后来者选择该路径的概率就越大。
蚁群算法陈华 20Fra bibliotek0-9算法背景
1992年,意大利学者M.Dorigo在他的博士论文中引 入蚁群算法,其灵感来源于蚂蚁在寻找食物过程中发现路 径的行为。通过对这种行为的模拟,提出来一种新型的模 拟进化算法—— 蚁群算法。目前,蚁群算法已经是群智 能理论研究领域的一种主要算法。
Macro Dorigo
13
蚁群算法与TSP问题
蚂蚁向下一个目标的运动是通过一个随 机原则来实现的,也就是运用当前所在节点 存储的信息,计算出下一步可达节点的概率, 并按此概率实现一步移动,逐此往复,越来 越接近最优解。
蚂蚁在寻找过程中,或者找到一个解后, 会评估该解或解的一部分的优化程度,并把 评价信息保存在相关连接的信息素中。
6
蚁群算法原理
为了说明蚁群算法的原理,先简要介绍一下蚂蚁 搜寻食物的具体过程。在蚁群寻找食物时,它们总能 找到一条从食物到巢穴之间的最优路径。这是因为蚂 蚁在寻找路径时会在路径上释放出一种特殊的信息素。 当它们碰到一个还没有走过的路口时,就随机地挑选 一条路径前行,与此同时释放出与路径长度有关的信 息素。路径越长,释放的激索浓度越低,当后来的蚂 蚁再次碰到这个路口的时候,选择激素浓度较高路径 概率就会相对较大,这样形成一个正反馈。最优路径 上的激索浓度越来越大,而其它的路径上激素浓度却 会随着时间的流逝而消减,最终整个蚁群会找出最优 路径。
11
蚁群算法与TSP问题
TSP问题表示为一个N个城市的有向图G=(N,A),
其中 N {1,2,...,n} A {(i, j) | i, j N}
城市之间距离 目标函数为
(d ij ) nn
n
f (w)
d , il 1il
l 1
其中 w (i1 , i2 , , in 为) 城市1,2,…n的一个排列, in1 。i1
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共 3只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后, 两条线路上的信息素单位积累为24和6,比值为4:1。
若继续进行,则按信息素的指导,最终所有的蚂蚁会放弃 ACD路线,而都选择ABD路线。这也就是前面所提到的正反馈效 应。
10
自然蚁群与人工蚁群算法
基于以上蚁群寻找食物时的最优路径选择问题,可以构造 人工蚁群,来解决最优化问题,如TSP问题。
人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的 相似之处在于都是优先选择信息素浓度大的路径。较短路径的 信息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的 优化结果。
两者的区别在于人工蚁群有一定的记忆能力,能够记忆已 经访问过的节点。同时,人工蚁群再选择下一条路径的时候是 按一定算法规律有意识地寻找最短路径,而不是盲目的。例如 在TSP问题中,可以预先知道当前城市到下一个目的地的距离。
1.将解空间的每一个分量分成许多小区间,这样整个解 空间被分成许多小多面体,将每个多面体看为一个节点, 然后用人工蚂蚁在这些节点之间行走最后找到最优解。
对每只蚂蚁按概率移到下一顶点 更新每个蚂蚁的个体禁忌表 信息量更新
表示能见度的相对重要性
达到最大循环次数
轨迹的持久性
ij 表示第K只蚂蚁在本次循环中留在路径ij上的输信出最息短路量径及其长度
结束
计算结果
10城市TSP问题
20城市TSP问题
计算结果
30城市TSP问题
48城市TSP问题
连续蚁群算法
12
蚁群算法与TSP问题
TSP问题的人工蚁群算法中,假设m只蚂蚁 在图的相邻节点间移动,从而协作异步地得到 问题的解。每只蚂蚁的一步转移概率由图中的 每条边上的两类参数决定:1.信息素值,也称 信息素痕迹。2.可见度,即先验值。
信息素的更新方式有2种,一是挥发,也 就是所有路径上的信息素以一定的比率进行减 少,模拟自然蚁群的信息素随时间挥发的过程; 二是增强,给评价值“好”(有蚂蚁走过)的边 增加信息素。
从上面可以看出,蚁群算法比较显著的特点是: 整个算法过程更适用于离散对象问题。在算法求解 组合优化问题过程中,路径是离散和有限的路径, 蚂蚁的每一步选择都是在离散值中进行的。这一特 点使得将蚁群算法直接应用于一般常规的连续对象 优化问题存在一定的困难。
应用蚁群算法求解连续对象优化问题,目前的处理方 法大致为:
相关文档
最新文档