ABAQUS精选本FEM扩展元例子的详细图解
扩展有限元的ABAQUS实现
扩展有限元的ABAQUS实现常规有限元方法(CEFM)和其他数值方法相比,具有一些无法比拟的优点,但仍存在一些缺陷。
比如在解决类似裂纹这样的强不连续问题,由于裂纹尖端处的应力奇异性,导致计算量巨大而且精度不高。
然而扩展有限元方法(extended finite element method,XFEM)的出现,和常规有限元方法相比具有显著的优势,使得我们可以在裂尖和应力、变形集中处划分高密度的网格,也可以方便的模拟裂纹的扩展,使计算量不那么巨大,保留了常规有限元法的所有优点。
因此,扩展有限元得到了快速发展和应用,而且在裂纹的扩展研究中要的意义。
本文开展对扩展有限元方法和裂纹问题的研究,并且基于限元ABAQUS平台,对扩展有限元方法针对裂纹扩展问题进行模拟实现。
关键词:扩展有限元方法,裂纹扩展,ABAQUS第一章绪论1.1 引言21世纪以来,计算机硬件和数值仿真的快速发展以及工业工程实践与科学研究中存在的大量运算需求,世界上涌现出一批大型科研运算及科学模拟软件,能够极大的简化运算问题以及计算机模拟实验,使我们能够更加方便地研究虚拟工程及相关科学问题。
有限元方法的出现为数值分析方法的研究带来了新的曙光,力学学科本来就是连接理工学科的桥梁,计算力学是目前力学发展的一个重要分支。
有限元软件则是我们到达工程科学领域彼岸的非常重要的工具和桥梁之一。
ABAQUS软件是世界上最强大的大型有限元计算分析软件之一,具有不同种类的单元类型、材料类型和不同的分析过程,拥有很好的计算功能和模拟性能。
ABAQUS软件不但可以进行一种部件和复杂物理场的分析,而且可以处理多系统的部件分析;不仅可以分析简单的线弹性问题,还可以处理复杂的非线性组合问题等,相比其它软件具有无可比拟的优势[1,2]。
固体力学中存在的两类不连续问题之一则是因为物体内部几何结构突变引起的强不连续问题,裂纹问题就是这类问题的代表。
由于几何界面处的位移不连续性和裂纹尖端的应力奇异性使得这类问题的处理变得比较复杂。
裂纹扩展的扩展有限元(xfem)模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
基于ABAQUS平台的扩展有限元法_方修君
Abstract:
A virtual node method for coupling the eXtended Finite Element Method (XFEM) with commercial
finite element software ABAQUS is presented. The relationship between the subdomain integration and the Heaviside function is formulated, and a subtriangle integration algorithm is improved. The brittle fracture process of a 3-point bending beam was simulated. The computational results demonstrate the capacity of the presented method to simulate the moving discontinuities. Crack path is not necessary to coincide with element boundaries in XFEM and re-meshing can be avoided. The coupling with commercial finite element software proposes an efficient way for solving practical complex problem using XFEM. Key words: partition of unity; extended finite element method; virtual node; fracture process; moving discontinuities 传统的有限元方法模拟混凝土开裂过程通常 基于两大类模型:分离裂纹模型 和弥散裂纹模 型[2]。对于模拟裂纹扩展过程的这类移动非连续问 题的模拟,使用分离裂纹模型需要对裂纹扩展路径 有良好地预测,否则需要不断调整有限元网格来适 应演化的非连续界面。弥散裂纹模型模拟移动非连 续问题不需要进行网格调整,但如何避免由于其近 似位移场中非连续位移模式的缺失而导致的应力
ABAQUS有限元分析方法
Mises stress, MPa
1800
1600 1 1400 1200 1000 800
ABAQUS有限元分析方法简介
一. 有限单元法的基本原理
有限单元法(The Finite Element Method)简称有限元 (FEM),它是利用电子计算机进行的一种数值分析方法。它在工 程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动 力学问题都可用它求得满意的数值结果。
有限元方法的基本思路是:化整为零,积零为整。即应用有限元
法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单 元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位 移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的 力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组, 从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。 由位移求出应变, 由应变求出应力.
ABAQUS是一个模块存贮计算的解题程序。方程是按块处 理的,输入数据分成许多模块,各种复杂的分析都可以通过不 同的模块的组合来处理,因此,它可以求解很大的有限元系统。
ABAQUS/CAE 模块: 用于分析对象的建模,特性及约束条件
的给定,网格的划分以及数据传输等。
1. ABAQUS/CAE前处理模块:
它不仅能解决结构力学问题,而且能够模拟热传导,辐射 和声音传播。它能解决一大批工程实际中所遇到的结构分析问 题,对固体,结构及结构-流体系统做静、动位移和应力进行 线性和非线性分析。
Abaqus各功能模块入门讲解PPT课件
特征修改、删除等,很少用到 线、面、体分割工具,辅助网格划分 基准点、线、面及坐标系等 拓扑修改等,辅助网格划分
网格控制 网格密度 网格划分
网格质量检查
.
L2.19
PARTITION CELL
Define Cutting Plane
定义切割平面的方法: ➢一点一法线 ➢三点 ➢一点一边(点要在边上,该边垂直于定义的切割平面)
SI m N kg s Pa J Kg/m3 m/s2
SI(mm) mm
US Unit in
N
1bf
T (103kg)
1bf s2/in
s
s
MPa mJ (10-3J)
t/mm3 mm/s2
psi in 1bf 1bf s2/in4
.
L2.3
分析流程九步走
1、几何建模 Part 2、划分网格 Mesh 3、特性设置 Property 4、建立装配体 Assembly 5、定义分析步 Step 6、相互作用 Interaction 7、载荷边界 Load 8、提交运算 Job 9、后处理 Visualization
ABAQUS仿真分析培训
.
L2.1
模型操作
Ctrl+Alt+鼠标左键 旋转模型
Ctrl+Alt+鼠标中键 平移模型
Ctrl+Alt+鼠标右键 缩放模型
.
L2.2
单位一致性
CAE软件其实是数值计算软件,没有单位的概念。
Length Force Mass Time Stress Energy Density Ace
Material管理器的功能完全可以在窗口左侧模型树的右键快捷菜单实现。
裂纹扩展的扩展有限元xfem模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
Abaqus操作方法 ppt课件
Abaqus操作方法 ppt课件
9
创建新Part之刚性地面2
➢如左图,画一个 100X100的正方形, 来模拟刚性地面。 ➢点击鼠标中键或 点击按钮 , 完成。
200
2021/3/26
Abaqus操作方法 ppt课件
10
Part管理器
Part管理器的功能完全可以在窗口左侧模型树的右键快捷菜单实现。
现以Planar为例说明如何Create Wire: 1、选择草绘平面 2、为草绘平面定向 3、草绘Wire
2021/3/26
Abaqus操作方法 ppt课件
14
Create Cut
Create Cut的方法依次为: Extrude、Revolve、Sweep、Loft和Circular hole。
Abaqus操作方法 ppt课件
6
创建Part
如同其他CAE软件,Abaqus的建模功能有限,只适合建立简单Part,如跌落分析中的地面等。
2021/3/26
Part模块专有
特征修改、删除等,很少用到 线、面、体分割工具,辅助网格划分 基准点、线、面及坐标系等
小面修复等,辅助网格划分
备注:如果按钮右下方有小黑三角,左键按住
2021/3/26
Abaqus操作方法 ppt课件
31
网格划分
Mesh Part,即整体划分网格 Mesh Region,即局部划分网格 Delete Part Mesh,即删除整体网格 Delete Region Mesh,即删除局部网 格
2021/3/26
Abaqus操作方法 ppt课件
32
选择已划好网格的Part
4、建立装配体 Assembly
2021/3/26
ABAQUS常用技巧归纳图文并茂
ABAQUS常用技巧归纳图文并茂ABAQUS常用技巧归纳一、背景介绍ABAQUS是一款广泛应用于工程领域的有限元分析软件,具备强大的功能和丰富的工具包,被工程师广泛使用。
然而,在使用ABAQUS的过程中,我们经常会遇到一些技巧和问题,本文将针对一些常见的ABAQUS技巧进行归纳总结,帮助读者更好地应用ABAQUS进行工程分析。
二、常用技巧1. 单元类型选择在使用ABAQUS进行有限元分析时,选择合适的单元类型是非常重要的。
根据具体的分析对象和问题类型,可以选择不同的单元类型,如线性单元、非线性单元或复合单元。
合理的单元选择可以提高计算效率和分析精度。
2. 网格划分优化合理的网格划分对计算结果的准确性和计算效率至关重要。
在ABAQUS中,提供了多个网格划分工具和算法,可以帮助用户进行网格优化。
例如,使用网格生成工具可以自动生成符合几何形状和尺寸要求的网格,使用网格划分工具可以调整网格的密度和精度。
3. 材料模型选择在ABAQUS中,提供了多种材料模型,用于描述材料的力学行为。
根据具体的分析对象和材料性质,可以选择合适的材料模型,如线性弹性模型、塑性模型或粘弹性模型。
合理的材料模型选择可以更好地模拟材料的本构行为。
4. 边界条件设置在有限元分析中,正确设置边界条件是保证结果准确性的关键。
在ABAQUS中,可以通过节点约束、荷载施加和接触定义等方式来设置边界条件。
应根据具体的分析问题和工况设置合理的边界条件,以确保计算结果的可靠性。
5. 后处理及结果分析ABAQUS提供了强大的后处理和结果分析功能,可以帮助用户深入理解计算结果。
通过后处理工具,可以对计算结果进行可视化分析、曲线绘制和云图展示等,帮助用户对结果进行全面的评估和解读。
6. 自定义脚本开发除了使用ABAQUS内置的工具和功能,用户还可以通过编写脚本来定制化分析过程。
ABAQUS支持Python脚本的开发和调用,用户可以利用脚本进行批处理、参数化分析和复杂算法实现等。
abaqus实例详细过程(铰链) 免费
铰链一、创建部件1、进入部件模块。
点击创建部件。
命名为Hinge-part,其他的选项选择如右下图所示。
点击“继续”,进入绘图区。
2、点击,在绘图区绘一个矩形。
再点击,将尺寸改为0.04*0.04。
单击鼠标中键。
3、在弹出的对话框中输入0.04作为拉伸深度。
点击”确定”。
4、点击创建拉伸实体,点击六面体的一个面,以及右侧的边。
进入到绘图区域。
5、如下图那样利用创建三条线段。
利用将两条横线都改为0.02mm长。
6、选择,做出半圆。
7、点击,以半圆的圆心为圆心,做圆。
8、点击为圆标注尺寸。
输入新尺寸0.01。
9、在弹出的对话框里输入拉伸深度为0.02,拉伸方向:翻转。
点击“确定”。
10、在模型树的部件里,选择圆孔部件。
右击,编辑。
将内孔直径改为0.012.。
确定。
创建润滑孔1、进入草图模块。
创建名为hole的草图。
如右图所示。
单击“继续”。
2、单击做一个直径为0.012的圆。
单击鼠标中键。
进入部件模块。
3、选择主菜单栏的工具→基准。
对话框选择格式如下图所示。
选择半圆形边。
参数设为0.25。
单击中键,点就建好了。
软件提示选择一个轴。
那么,我们就创建一个基准轴。
如上图右侧所示。
选择刚刚建好的那一点以及圆孔的中心,过这两点创建一个轴。
再在基准处点击如下图所示,选择刚刚建好的点和轴,那么面也就建好了。
4、点击,视图左下角的显示区显示,选择上一步中创建的基准面,再选一个边。
如图所示。
进入绘图区。
6、导入之前绘制的小润滑孔hole。
利用将孔移植所需位置。
单击中键。
选择正确的翻转方向。
对话框按右下图设置。
确定。
7、将部件的名称改成hinge-hole,并复制一个命名为hinge-solid。
将hinge-solid的模型树张开,删除其下的特征,即该部件不带孔。
8、创建第三个部件:刚体销。
点击创建部件按钮,命名为pin,解析刚体,旋转壳。
具体见下图所示。
单击“继续”,在出现的旋转轴右侧画一条垂直向下的直线。
用将该直线的长度改为0.06,与旋转轴的距离为0.012,点击确定,界面出现旋转之后的销。
Abaqus材料用户子程序UMAT基础知识及手册例子完整解释
1、为何需要使用用户材料子程序(User-Defined Material, UMAT )?很简单,当ABAQUS 没有提供我们需要的材料模型时。
所以,在决定自己定义一种新的材料模型之前,最好对ABAQUS 已经提供的模型心中有数,并且尽量使用现有的模型,因为这些模型已经经过详细的验证,并被广泛接受。
UMAT 子程序具有强大的功能,使用UMAT 子程序:(1)可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩充程序功能。
(2) 几乎可以用于力学行为分析的任何分析过程,几乎可以把用户材料属性赋予ABAQU S 中的任何单元。
(3) 必须在UMAT 中提供材料本构模型的雅可比(Jacobian )矩阵,即应力增量对应变增量的变化率。
(4) 可以和用户子程序“USDFLD ”联合使用,通过“USDFLD ”重新定义单元每一物质点上传递到UMAT 中场变量的数值。
2、需要哪些基础知识?先看一下ABAQUS 手册(ABAQUS Analysis User's Manual )里的一段话:Warning: The use of this option generally requires considerable expertise(一定的专业知识). The user is cautioned that the implementation (实现) of any realistic constitutive (基本) model requires extensive (广泛的) development and testing. Initial testing on a single eleme nt model with prescribed traction loading (指定拉伸载荷) is strongly recommended. 但这并不意味着非力学专业,或者力学基础知识不很丰富者就只能望洋兴叹,因为我们的任务不是开发一套完整的有限元软件,而只是提供一个描述材料力学性能的本构方程(Constitutive equation )而已。
FEM_有限元法
理描述了支配物理现象的物理学中的最小作用原 理(如力学中的最小势能原理、静电学中的汤姆 逊定理等)。因此,基于问题固有的物理特性而 予以离散化处理,列出计算公式,当可保证方法 的正确性、数值解的存在与稳定性等前提要素。
有限元法主要特点2
优异的解题能力。与其他数值方法相比较,有限
某飞机设计公司利用Abaqus子模型功能,对舱段的局部细 节进行分析,其中模型包括窗口、加强筋等细节。用户可以 利用总体分析的位移和应力结果作为局部结构的边界条件, 利用CAD模型构建子模型,对局部结构的网格重新划分,进
而得到结构的局部细节位移及应力分析结果。
子弹穿甲模拟分析:
下图左为子弹正打钢板480微秒后的的三维立体图片。
潜艇的水下爆炸模拟: Abaqus/Explicit具有强大的分析水下爆炸(UNDEX)的功能,下图 左为潜艇处于深海中的三维立体模型,下图右为Abaqus分析的 潜艇外壳受冲击后的应力等值线分布。
谢 谢!
有限元(FEM)
数值解法与数值模拟技术
高世军 李 涛 徐艺琛
概述
历史 1943 Courant 最早提出思想 50年代 用于飞机设计 1960 Clough在著作中首先提出名称 1964—1965年间数学家冯康独立地开创有限元方法并奠 定其数学基础 1965 Winslow首次应用于电气工程问题 1969 Silvester推广应用于时谐电磁场问题
元法在适应场域边界几何形状以及媒质物理性质 变异情况的复杂问题求解上,有突出的优点:不 受几何形状和媒质分布的复杂程度限制;不同媒 质分界面上的边界条件是自动满足的;不必单独 处理第二、三类边界条件;离散点配置比较随意, 通过控制有限单元剖分密度和单元插值函数的选 取,可以充分保证所需的数值计算精度。
Abaqus裂纹扩展分析
定义初始粘合裂纹面可能裂纹表面建模时采用采用主、从接触面来定义。
在接触形式中,除了有限滑动、面对面形式以外,其他所有接触形式均可使用。
预先定义的裂纹面在初始时应部分粘合,裂纹尖端因而可以被Abaqus/Standard显式识别。
初始粘合裂纹面不能采用自接触形式。
定义初始状态(initial condition)以识别裂纹初始绑定部分。
用户可以定义从接触面(slave surface)、主接触面(master surface)、以及用来识别从接触面初始部分粘结的节点。
从接触面上没有粘结的部分表现为正常接触面。
主接触面及从接触面均需要指明。
如果没有节点如上所述被定义,初始接触状态将被应用于整个接触对。
这种情况下,不能识别出裂纹尖端,因而粘结面不能分开。
如果节点如上所述被定义,初始解除状态将被应用于从接触面上已定义的节点处。
Abaqus/Standard将进行核对以确保所定义节点只包含从接触面上的节点。
*INITIAL CONDITIONS, TYPE=CONTACT激活裂纹扩展能力(crack propagation capacibility)裂纹扩展能力需要在STEP定义中被激活,以确保初始部分粘合的2个面有可能产生裂纹扩展。
用户需要指明会产生裂纹扩展的面。
*DEBOND, SLA VE=slave_surface_name,MASTER=master_surface_name多裂纹扩展裂纹可以在一个或多个裂纹尖端处产生扩展。
一个接触对可以在多个裂纹尖端处产生裂纹扩展。
然而,对于给定的接触对只能拥有一个裂纹扩展准则(crack propagation criterion)。
定义开裂振幅曲线(debonding amplitude curve)开裂产生后,通过从接触面节点及主接触面相应节点上大小相等方向相反的力产生面间牵引。
当采用临界应力准则、临界裂纹开口位移准则、裂纹长度-时间破坏准则时,用户可以定义粘结面上某点产生开始时,上述力以何种方式降至零。
Abaqus教程PPT课件
Part管理器
Part管理器的功能完全可以在窗口左侧模型树的右键快捷菜单实现。
➢创建新Part,功能同 ➢复制Part ➢重命名Part,便于管理 ➢删除Part ➢锁定及解锁Part,锁定后Part将不能被修改 ➢修正Part ➢退出
Introduction to ABAQUS/CAE
第16页/共257页
2、划分网格 Mesh
Introduction to ABAQUS/CAE
第17页/共257页
Mesh
Mesh模块专有
Partition分割,化复为简 拓扑修改,该省就省
特征修改、删除等,很少用到 线、面、体分割工具,辅助网格划分 基准点、线、面及坐标系等 拓扑修改等,辅助网格划分
第35页/共257页
材料管理器
Material管理器的功能完全可以在窗口左侧模型树的右键快捷菜单实现。
Introduction to ABAQUS/CAE
第36页/共257页
创建截面属性
Name:便于记忆及管理
Category(种类)和Type(类型)配 合起来指定截面的类型:
➢Solid(实体),一般选择默认的 Homogeneous(均匀的)。
第37页/共257页
创建截面属性
1
2 选择已建立的材料
三维模型不需要设置该参数,采用 默认值1即可。
2 指定厚度
3 选择已建立的材料
Introduction to ABAQUS/CAE
第38页/共257页
分配截面属性
2 选择要分配材料的目标体 1
3 选择已建立的Section
未被分配截面属性的Cell呈灰色, 已经正确分配截面属性的Cell呈青色, 被重复分配几种截面属性的Cell呈黄色。
abaqus各功能模块入门讲解
Introduction to ABAQUS/CAE
CREATE SHELL
Create Shell的方法依次为:Extrude、Revolve、Sweep、Loft、Planar、From solid和Remove face。
Length Force Mass Time Stress Energy Density Ace
SI m N kg s Pa J Kg/m3 m/s2
SI(mm) mm
US Unit in
N
1bf
T (103kg)
1bf s2/in
s
s
MPa mJ (10-3J)
t/mm3 mm/s2
psi in 1bf 1bf s2/in4
Introduction to ABAQUS/CAE
创建截面属性
2 选择已建立的材料
1
三维模型不需要设置该参数,采用 默认值1即可。
2 指定厚度 3 选择已建立的材料
Introduction to ABAQUS/CAE
分配截面属性
2 选择要分配材料的目标体 1
3 选择已建立的Section
未被分配截面属性的Cell呈灰色, 已经正确分配截面属性的Cell呈青色, 被重复分配几种截面属性的Cell呈黄色。
Introduction to ABAQUS/CAE
网格划分
Mesh Part,即整体划分网格 Mesh Region,即局部划分网格 Delete Part Mesh,即删除整体网格 Delete Region Mesh,即删除局部网 格
Abaqus各功能模块入门讲解
Introduction to ABAQUS/CAE
网格划分
Mesh Part,即整体划分网格 Mesh Region,即局部划分网格 Delete Part Mesh,即删除整体网格 Delete Region Mesh,即删除局部网格
Introduction to ABAQUS/CAE
网格质量
Auto-offset from other instances 在多次调用同一Part进Assembly时应用。
SI Length m SI(mm) mm US Unit in
Force
N
N
1bf
Mass
kg
T (103kg) s
1bf s2/in
Time
s
s
Stress
Pa
MPa
psi
Energy
Density Ace
J
Kg/m3 m/1bf
1bf s2/in4
Introduction to ABAQUS/CAE
PARTITION CELL
Use Datum Plane
选择作为切割平面的基准面
Introduction to ABAQUS/CAE
PARTITION CELL
Extend Face
选择作为切割平面的实际面
Introduction to ABAQUS/CAE
仅包含四面体单元
Wedge
仅包含楔形单元
Introduction to ABAQUS/CAE
SEED PART
全局网格尺寸指定
Introduction to ABAQUS/CAE
SEED EDGE
指定边上网格数量
1、选取要单独设置网格密度的边 2、指定边上网格数量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
版本X F E M(扩展有限元)例子的详细图解
一、part模块中的操作:
二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1)
三、 2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和
editdimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)
四、 3.完成后拉伸此矩形,深度为1.(如图3)
五、图1,图2,图3,
4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)
5.生成一条线,此线的左端点坐标为(0,),右端点坐标为(,)
6.完成后拉伸此线,深度为1.(如图6)
7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。
二、Material模块中的操作:
1.创建材料elsa,其弹性参数为E=210GPa,泊松比为(如图12)
最大主应力失效准则作为损伤起始的判据,最大主应力为(如图13)
损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为
G1C=G2C=G3C=42200N/m,=1.(如图14)
2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17)
3.赋予材料取向,分别如图18~21所示。
三、划分网格:
网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)
四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(,-3,0)(如图27,28)。
将参考点的名字改为db(如图29,30)。
生成集合bdisp,此集合包含db这个点。
五、Interaction模块中创建约束方程
ce_bot,如图31所示。
六.Step模块中的操作:
1.建立个static的分析步,如图32所示。
打开几何非线性开关,如图33所示。
设置增量步,如图34所示。
打开解控制,如图35和图36所示,并进行有关参数的设置,如图37和图38所示。
设置场输出变量,如图39所示。
请求一个新的历史输出变量,如图40所示。
七、Load模块中的操作:
设置4个位移边界条件,位移值、边界条件的名称、类型、作用载荷步、作用区域等分别如图41~44所示。
八、设置XFEM型裂纹:返回Interaction模块,先生成一个硬接触属性contact,如图45所示。
再建立XFEM型裂纹,过程如图46~49所示。
九、通过关键词编辑器加入损伤稳定性控制,如图50,图51所示。
十、生成jobXFEMtutor,进行计算,结果如图52所示。