算法设计与分析期末试题答案解析
算法设计与分析 期末试卷 A卷(完整含答案)
4
0 0 0 0 0 0 0 a 1 b 1 c 1 d 1 e 1 f 1
装 订 线
考试科目: 考试时间: 年级专业 三(16) 四(24)
算法设计与分析 120 分钟
姓名 一(20) 二(25)
五(15)
总分
得分 评阅人
说明: (1)请勿漏填学号姓名等信息。本试卷仅一份,请将答案直接填于试卷上,莫将试卷当草稿,想好了再 写,若空白的位置不够,标注清楚后可以写反面; (2)答题时,对算法的描述可以采用文字、公式、图、伪代码、实例说明等混合形式。请注意表达应条 理清晰,思想简洁,勿长篇累述不得要领。
后续n-i个元素比较并判定是否逐个插入堆, 最坏情况为 O(( n i ) log i ) , 最后对i个堆中元素逐个输出堆顶 元素需要 O(i log i ) ,合计后略去低阶项为 O(n log i ) 。
得分 二、简答题(共5小题,每题5分,共25分) 1、请将下列函数的阶按上升顺序排列。 (5分)
算法 1 Loop1(n) s=0; for(i=1;i<=n;i++) for(j=1;j<=i;j++) s=s+i*j;
算法1:O(
);
算法 2 Loop2(n) s=0; for(i=1;i<=n2;i++) for(j=1;j<=n;j++) s=s+i*j;
算法2:O(
);
1
算法 3 Loop3(n) s=0; for(i=1;i<=n2;i++) for(j=1;j<=i;j++) s=s+i*j;
算法设计与分析考试题目及答案
算法设计与分析考试题⽬及答案算法设计与分析考试题⽬及答案Newly compiled on November 23, 2020《算法分析与设计》期末复习题⼀、选择题1.应⽤Johnson 法则的流⽔作业调度采⽤的算法是(D )A. 贪⼼算法B. 分⽀限界法C.分治法D. 动态规划算法塔问题如下图所⽰。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )3. 动态规划算法的基本要素为(C ) A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质 C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤4. 算法分析中,记号O 表⽰(B ),记号Ω表⽰(A ),记号Θ表⽰(D )。
A.渐进下界 B.渐进上界 C.⾮紧上界 D.紧渐进界E.⾮紧下界Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) { if (n > 0) { hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) { if (n > 0) { hanoi(n-1, A, C, B); move(n,a,b); hanoi(n-1, C, B, A); }D. void hanoi(int n, int C, int A, int B) { if (n > 0) { hanoi(n-1, A, C, B); move(n,a,b); hanoi(n-1, C, B, A); }5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ?=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==?=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=?=6.能采⽤贪⼼算法求最优解的问题,⼀般具有的重要性质为:(A)A. 最优⼦结构性质与贪⼼选择性质B.重叠⼦问题性质与贪⼼选择性质C.最优⼦结构性质与重叠⼦问题性质D. 预排序与递归调⽤7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
电大计算机本科_算法设计与分析(期末考试复习题含答案)
1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A ).A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A ).A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D ).A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B ).A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A ).A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
算法设计与分析历年期末试题整理_含答案_
《算法设计与分析》历年期末试题整理(含答案)(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5 个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
《算法分析与设计》期末试题及参考答案
《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。
7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。
算法设计与分析期末试题汇总
A卷一、选择题1.二分搜索算法是利用(A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树3.下列算法中通常以自底向上的方式求解最优解的是(B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法4.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 ( B ) 。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)6.分支限界法解最大团问题时,活结点表的组织形式是( B)。
A、最小堆B、最大堆C、栈D、数组7、下面问题(B )不能使用贪心法解决。
A 单源最短路径问题B N皇后问题C 最小花费生成树问题D 背包问题8.下列算法中不能解决0/1背包问题的是(A )A 贪心法B 动态规划C 回溯法D 分支限界法9.背包问题的贪心算法所需的计算时间为( B )A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)10.背包问题的贪心算法所需的计算时间为(B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)二、填空题1.算法的复杂性有复杂性和复杂性之分。
2.算法是由若干条指令组成的有穷序列,且要满足输入、、确定性和四条性质。
其中算法的“确定性”指的是组成算法的每条是清晰的,无歧义的。
3.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是,需要排序的是,。
4.动态规划算法的两个基本要素是. 性质和性质。
5.回溯法是一种既带有又带有的搜索算法;分支限界法是一种既带有又带有的搜索算法。
6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
算法设计与分析期末试题答案解析
问题空间是按广度优先的策
果满足进入该子树,继续按
略进行搜索“限界”策略是
深度优先的策略搜索。 否则, 为了加速搜索速度面采用启
不去搜索以该结点为根的子
发信息剪枝策略。
树,而是逐层向其祖先结点
可能会让画出 “子集树斩图”
回溯。其实回溯法就是对隐
235 页例题及图好好看一下。
7
( 1)分解:将原问题分 解为若干个规模较小,相互 独立,与原问题形式相同的 子问题;
( 2)解决:若子问题规 模较小而容易被解决则直接 解,否则递归地解各个子问 题;
4
( 3)合并:将各个子问 贪婪法
题的解合并为原问题的解。 优,达到最终的全局最优。
基本思想: 以逐步的局部最 【问题】 背包问题
转移有着天然的联系,状态 转移就是根据上一阶段的状
1、 确定问题的解空间: 应 用回溯法时,首先应明确
态和决策来导出本阶段的状
定义问题的解的空间。问
态。所以,如果我们确定了
题的解空间应至少包含问
决策,状态转移方程也就写
题的一个解。
出来了。但事实上,我们常 常是反过来做,根据相邻两
2、 确定结点的扩展规则 3、 搜索解空间: 从开始结
int
s=s+w[i];
m,n,i,j,w[50],p[50],pl[50],b[5
}
0],s=0,max;
if(s<=m)prntf(" 输入背包容量 m, 物品种类 n :");
{ printf("whole
scanf("%d %d",&m,&n);
choose\n");
for(i=1;i<=n;i=i+1)
算法题__计算机算法设计与分析期末试题4套(含答案)
(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
算法设计与分析历年期末试题整理_含答案_
《算法设计与分析》历年期末试题整理(含答案)(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5 个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
算法设计和分析试题(卷)与答案解析
湖南科技学院二○ 年 学期期末考试信息与计算科学专业 年级《算法设计与分析》 试题考试类型:开卷 试卷类型:C 卷 考试时量:120 分钟 一、填空题(每小题3 分,共计30 分)1. 用O 、Ω和θ表示函数f 与g 之间的关系______________________________。
()()log log f n n n g n n ==2. 算法的时间复杂性为1,1()8(3/7),2n f n f n n n =⎧=⎨+≥⎩,则算法的时间复杂性的阶为__________________________。
3. 快速排序算法的性能取决于______________________________。
4. 算法是_______________________________________________________。
5. 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是_________________________。
6. 在算法的三种情况下的复杂性中,可操作性最好且最有实际价值的是_____情况下的时间复杂性。
7. 大Ω符号用来描述增长率的下限,这个下限的阶越___________,结果就越有价值。
8. ____________________________是问题能用动态规划算法求解的前提。
9. 贪心选择性质是指________________________________________________________ ____________________________________________________________。
10. 回溯法在问题的解空间树中,按______________策略,从根结点出发搜索解空间树。
二、简答题(每小题10分,共计30分)1. 试述回溯法的基本思想及用回溯法解题的步骤。
2. 有8个作业{1,2,…,8}要在由2台机器M1和M2组成的流水线上完成加工。
算法分析与设计习题答案
算法分析与设计习题答案《算法分析与设计》期末复习题及答案⼀、简要回答下列问题:1.算法重要特性是什么?2.算法分析的⽬的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述⼆分检索(折半查找)算法的基本过程。
7.背包问题的⽬标函数和贪⼼算法最优化量度相同吗?8.采⽤回溯法求解的问题,其解如何表⽰?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么⽤分治法设计的算法⼀般有递归调⽤?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.⼆分检索算法最多的⽐较次数?15.快速排序算法最坏情况下需要多少次⽐较运算?16.贪⼼算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束⼀般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归⼀般要⽤到什么数据结构?21.什么是哈密顿环问题?22.⽤回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
参考答案:1. 确定性、可实现性、输⼊、输出、有穷性2. 分析算法占⽤计算机资源的情况,对算法做出⽐较和评价,设计出额更好的算法。
3. 算法的时间复杂性与问题的规模相关,是问题⼤⼩n的函数。
4.当问题的规模n趋向⽆穷⼤时,影响算法效率的重要因素是T(n)的数量级,⽽其他因素仅是使时间复杂度相差常数倍,因此可以⽤T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输⼊实例下的算法所耗时间。
最坏情况下的时间复杂性取的输⼊实例中最⼤的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输⼊实例的处理时间与各⾃概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6. 设输⼊是⼀个按⾮降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x⽐较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]回溯法的搜索特点是什么7. 不相同。
算法设计与分析试卷及答案
湖南科技学院二○ 年 学期期末考试信息与计算科学专业 年级《算法设计与分析》 试题考试类型:开卷 试卷类型:C 卷 考试时量:120 分钟 一、填空题(每小题3 分,共计30 分)1. 用O 、Ω和θ表示函数f 与g 之间的关系______________________________。
()()log log f n n n g n n ==2. 算法的时间复杂性为1,1()8(3/7),2n f n f n n n =⎧=⎨+≥⎩,则算法的时间复杂性的阶为__________________________。
3. 快速排序算法的性能取决于______________________________。
4. 算法是_______________________________________________________。
5. 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是_________________________。
6. 在算法的三种情况下的复杂性中,可操作性最好且最有实际价值的是_____情况下的时间复杂性。
7. 大Ω符号用来描述增长率的下限,这个下限的阶越___________,结果就越有价值。
8. ____________________________是问题能用动态规划算法求解的前提。
9. 贪心选择性质是指________________________________________________________ ____________________________________________________________。
10. 回溯法在问题的解空间树中,按______________策略,从根结点出发搜索解空间树。
二、简答题(每小题10分,共计30分)1. 试述回溯法的基本思想及用回溯法解题的步骤。
题 号 一二三四五总分 统分人得 分 阅卷人复查人2. 有8个作业{1,2,…,8}要在由2台机器M1和M2组成的流水线上完成加工。
(完整版)算法设计与分析期末考试卷及答案a
考生 信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线考 生信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线 pro2(n) ex1(n/2) end if return end ex1 3.用Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D 0,D 1,D 2和D 3,其中D k [i, j]表示从顶点i 到顶点j 的不经过编号大于k 的顶点的最短路径长度。
三.算法填空题(共34分) 1.(10分)设n 个不同的整数按升序存于数组A[1..n]中,求使得A[i]=i 的下标i 。
下面是求解该问题的分治算法。
算法 SEARCH 输入:正整数n ,存储n 个按升序排列的不同整数的数组A[1..n]。
输出:A[1..n]中使得A[i]=i 的一个下标i ,若不存在,则输出 no solution 。
i=find ( (1) ) if i>0 then output i else output “no solution” end SEARCH 过程 find (low, high) // 求A[low..high] 中使得A[i]=i 的一个下标并返回,若不存在,考生 信息 栏 ______学院______系______ 专业 ______年级姓名______学号_____ 装订线《算法设计与分析》期考试卷(A)标准答案 一. 填空题:1. 元运算 考生 信 息 栏 ______学院______系______ 专业 ______年级姓名______ 学号_____ 装订线2. O3.∑∈n D I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值随机选主元13. 比较n二. 计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=Ω(g(n))(3) f(n)=Ω(g(n))(4) f(n)= O(g(n))(5) f(n)=Θ(g(n))阶最低的函数是:100阶最高的函数是:n 32. 该递归算法的时间复杂性T(n)满足下列递归方程:⎩⎨⎧>+===1n ,n log T(n/2)T(n)1n , 1T(n)2 将n=k2, a=1, c=2, g(n)=n log 2, d=1代入该类递归方程解的一般形式得: T(n)=1+∑-=1k 0i i 22n log =1+k n log 2-∑-=1k 0i i =1+ k n log 2-2)1k (k -=n log 2122+n log 212+1 所以,T(n)= n log 2122+n log 212+1=)(log 2n Θ。
《算法设计与分析》考试题目及答案
《算法分析与设计》期末复习题一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
《算法分析与设计》期末试题及参考答案-推荐下载
5. 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 5. 最坏情况下的时间复杂性和平均时间复杂性考察的是 n 固定时,不同输入实例下的 算法所耗时间。最坏情况下的时间复杂性取的输入实例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn
二、复杂性分析 1、 MERGESORT(low,high) if low<high; then mid←(low,high)/2; MERGESORT(low,mid); MERGESORT(mid+1,high); MERGE(low,mid,high); endif end MERGESORT
17. 回溯法的解(x1,x2,……xn)的隐约束一般指什么? 17.回溯法的解(x1,x2,……xn)的隐约束一般指个元素之间应满足的某种关系。
18. 阐述归并排序的分治思路。 18. 讲数组一分为二,分别对每个集合单独排序,然后将已排序的两个序列归并成一
个含 n 个元素的分好类的序列。如果分割后子问题还很大,则继续分治,直到一个元素。
《算法分析与设计》期末试题及参考答案
一、简要回答下列问题 : 1. 算法重要特性是什么? 1. 确定性、可行性、输入、输出、有穷性 2. 2. 算法分析的目的是什么? 2. 分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。 3. 3. 算法的时间复杂性与问题的什么因素相关? 3. 算法的时间复杂性与问题的规模相关,是问题大小 n 的函数。
青岛农业大学成人教育《算法分析与设计》期末考试复习题及参考答案
18:回溯法解决四皇后问题,可行解共有( )个。 A.2行时间无关的因素有( )。
A.算法选用的策略 B.问题的规模
C.编写程序的语言 D.程度的长度
11-14.CDBC
三、简答题 1.简述分治法的思想? 【答案】将一个规模为 N 的问题分解为 K 个规模较小的子问题,这些子问题相互独立且与 原问题性质相同。将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上 逐步求出原来问题的解。 2.采用分治法解决的问题具有什么特征? 【答案】该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规 模较小的相同问题,即该问题具有最优子结构性质;利用该问题分解出的子问题的解可以 合并为该问题的解;该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公 共的子问题。 3.简述贪心算法的思想?能用贪心法解决的问题有哪些,举例 2 个以上。 【答案】贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最 优考虑,它所作出的选择只是在某种意义上的局部最优选择。最小生成树,最优装载, 哈夫曼编码。 4.贪心法求解的问题具有什么特征? 【答案】贪心算法求解的问题一般具有 2 个重要的性质:贪心选择性质和最优子结构 性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选 择,即贪心选择来达到。当一个问题的最优解包含其子问题的最优解时,称此问题具 有最优子结构性质。 5.动态规划法中,子问题重叠性质是?动态规划是如何解决该问题的。 【答案】递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反 复计算多次。这种性质称为子问题的重叠性质。1 动态规划算法,对每一个子问题只 解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常 数时间查看一下结果。2 通常不同的子问题个数随问题的大小呈多项式增长。因此用动 态规划算法只需要多项式时间,从而获得较高的解题效率。 6. 回溯法的基本思想和过程? 【答案】回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间 树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定
《算法设计与分析》考试题目及答案(DOC)
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) }; C. O(g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有
12. k 带图灵机的空间复杂性 S(n)是指(B) A. k 带图灵机处理所有长度为 n 的输入时,在某条带上所使用过的最大方格
数。 B. k 带图灵机处理所有长度为 n 的输入时,在 k 条带上所使用过的方格数的
总和。 C. k 带图灵机处理所有长度为 n 的输入时,在 k 条带上所使用过的平均方格
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) };
C. (g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有 n n0 有:0 f(n)<cg(n) };
n n0 有:0 f(n)<cg(n) }; D. O(g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有
n n0 有:0 cg(n) < f(n) };
15. 记号 的定义正确的是(B)。 A. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 f(n)
return b;
}
11. 用回溯法解布线问题时,求最优解的主要程序段如下。如果布线区域划分 为 n m 的方格阵列,扩展每个结点需 O(1)的时间,L 为最短布线路径的长度, 则算法共耗时 ( O(mn) ),构造相应的最短距离需要(O(L))时间。
算法分析期末试题集答案(6套)1
《算法分析与设计》一、解答题 1. 机器调度问题。
问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理。
每件任务的开始时间为s i ,完成时间为f i ,s i <f i 。
[s i ,f i ]为处理任务i 的时间范围。
两个任务i ,j 重叠指两个任务的时间范围区间有重叠,而并非指i ,j 的起点或终点重合。
例如:区间[1,4]与区间[2,4]重叠,而与[4,7]不重叠。
一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。
因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。
最优分配是指使用的机器最少的可行分配方案。
问题实例:若任务占用的时间范围是{[1,4],[2,5],[4,5],[2,6],[4,7]},则按时完成所有任务最少需要几台机器?(提示:使用贪心算法)画出工作在对应的机器上的分配情况。
2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩,其中,b 、c 是常数,g(n)是n 的某一个函数。
则f(n)的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑。
现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩,求h(n)的非递归表达式。
解:利用给出的关系式,此时有:b=2, c=1, g(n)=1, 从n 递推到1,有:n 1n 1n 1i i 1n 1n 22n h(n)cbb g(i)22 (22121)----=--=+=+++++=-∑3. 单源最短路径的求解。
问题的描述:给定带权有向图(如下图所示)G =(V,E),其中每条边的权是非负实数。
另外,还给定V 中的一个顶点,称为源。
现在要计算从源到所有其它各顶点的最短路长度。
这里路的长度是指路上各边权之和。
这个问题通常称为单源最短路径问题。
解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径。
《算法设计与分析》考试题目及答案解析
《算法设计与分析》考试题⽬及答案解析《算法分析与设计》期末复习题⼀、选择题1.应⽤Johnson法则的流⽔作业调度采⽤的算法是(D)A. 贪⼼算法B. 分⽀限界法C.分治法D. 动态规划算法2.Hanoi塔问题如下图所⽰。
现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi塔问题的移动规则。
由此设计出解Hanoi塔问题的递归算法正确的为:(B)Hanoi塔3. 动态规划算法的基本要素为(C)A. 最优⼦结构性质与贪⼼选择性质B.重叠⼦问题性质与贪⼼选择性质C.最优⼦结构性质与重叠⼦问题性质D. 预排序与递归调⽤4. 算法分析中,记号O表⽰(B),记号Ω表⽰(A),记号Θ表⽰(D)。
A.渐进下界B.渐进上界C.⾮紧上界D.紧渐进界E.⾮紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ?=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==?=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=?=6.能采⽤贪⼼算法求最优解的问题,⼀般具有的重要性质为:(A)A. 最优⼦结构性质与贪⼼选择性质B.重叠⼦问题性质与贪⼼选择性质C.最优⼦结构性质与重叠⼦问题性质D. 预排序与递归调⽤7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.⼴度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分⽀限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.⼴度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D.10. 回溯法的效率不依赖于以下哪⼀个因素?(C )A.产⽣x[k]的时间;B.满⾜显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满⾜约束函数和上界函数约束的所有x[k]的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、用计算机求解问题的步骤:
1、问题分析
2、数学模型建立
3、算法设计与选择
4、算法指标
5、算法分析
6、算法实现
7、程序调试
8、结果整理文档编制
2、算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程
3、算法的三要素
1、操作
2、控制结构
3、数据结构
算法具有以下5个属性:
有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口
可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:
正确性:算法应满足具体问题的需求;
可读性:算法应该好读,以有利于读者对程序的理解;
健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法
迭代法
基本思想:迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
解题步骤:1、确定迭代模型。
根据问题描述,分析得出前一个(或几个)值与其下一个值的迭代关系数学模型。
2、建立迭代关系式。
迭代关系式就是一个直接或间接地不断由旧值递推出新值的表达式,存储新值的变量称为迭代变量
3、对迭代过程进行控制。
确定在什么时候结束迭代过程,这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
对于前一种情况,可以构建一
个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。
如果所有的兔子都不死去,问到第12 个月时,该饲养场共有兔子多少只?
Main()
{int I,a=1,b=1; Print(a,b);
For(i=1;i<=10;i++) {
C=a+b; Print(c); A=b;
B=c;
}
}
分而治之法
1、基本思想
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治法所能解决的问题一般具有以下几个特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
3、分治法的基本步骤
(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
(3)合并:将各个子问题的解合并为原问题的解。
贪婪法
基本思想:以逐步的局部最优,达到最终的全局最优。
无后效性
【问题】背包问题
问题描述:有不同价值、不同重量的物品n件,求从这n 件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
#include<stdio.h>
void main()
{
int
m,n,i,j,w[50],p[50],pl[50],b[5 0],s=0,max;
printf("输入背包容量m,物品种类n :");
scanf("%d %d",&m,&n);
for(i=1;i<=n;i=i+1)
{
printf("输入物品的重量W和价值P :");
scanf("%d %d",&w[i],&p[ i]);
pl[i]=p[i];
s=s+w[i];
}
if(s<=m)
{
printf("whole
choose\n");
//return;
}
for(i=1;i<=n;i=i+1)
{
max=1;
for(j=2;j<=n;j=j+1)
if(pl[j]/w[j]>pl[max]/w[ma x])
max=j;
pl[max]=0;
b[i]=max;
}
for(i=1,s=0;s<m && i<=n;i=i+1)
s=s+w[b[i]];
if(s!=m)
w[b[i-1]]=m-w[b[i-1]];
for(j=1;j<=i-1;j=j+1)
printf("choose
weight %d\n",w[b[j]]);
}
动态规划
基本思想:把求解的问题分成许多阶段或多个子问题,然后按顺序求解各个子问题。
前一个子问题的解为后一个子问题的求解提供了有用的信息。
在求解任何一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解,依次解决各子问题,最后一个子问题就是问题的解。
基本步骤
(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。
注意这若干个阶段一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。
(2)选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。
当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转
移方程:之所以把这两步放在一起,是因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。
所以,如果我们确定了决策,状态转移方程也就写出来了。
但事实上,我们常常是反过来做,根据相邻两段的各状态之间的关系来确定决策。
回溯法
基本思想:按照深度优先策略,从根结点出发搜索解空间。
算法搜索至解空间的任一结点时总是先判断该结点是否问题的约束条件。
如果满足进入该子树,继续按深度优先的策略搜索。
否则,不去搜索以该结点为根的子树,而是逐层向其祖先结点回溯。
其实回溯法就是对隐式图的深度优先搜索算法基本步骤:
1、确定问题的解空间:应
用回溯法时,首先应明确
定义问题的解的空间。
问
题的解空间应至少包含问
题的一个解。
2、确定结点的扩展规则
3、搜索解空间:从开始结
点出发,以深度优先的方
式搜索整个解空间。
【问题】n皇后问题
分支限界法
基本思想:分支限界法是由“分支”和“限界”两部分组成。
“分支”策略体现在对问题空间是按广度优先的策略进行搜索“限界”策略是为了加速搜索速度面采用启发信息剪枝策略。
可能会让画出“子集树斩图”235页例题及图好好看一下。