高中数学选修22主要内容
人教版A版高中数学选修2-2:定积分的概念教学内容

求和:求出n个小矩形面积之和,作为曲边梯
n
形面积S的近似值,即S Sn i1
1 f i 1 n n
n
由 Sn
i 1
1 f i 1 n n
n
1
i
1
2
i1 n n
1
0
1
1
2
1
2
2
1
n
1
2
n n n n n n n
1 n3
n
1n2n
1
0.8
0.6
0.4
f(x) = x2
0.2
01
n
0.2
2 3 4 0.5 nn n
i 1 i nn
f (i 1) n
1 n
A
1
f(i) n
f (i 1) n
f(i) n
1 n
1 n
1.5
2
0.4
1.4
以第一种方1.2法为例,可把曲边梯形分割成n个小矩形
1
0.8
0.6
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的小矩形越来越多时,观察所有的矩形面积之 1.4
和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 10.00
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的1.4小矩形越来越多时,观察所有的矩形面积之 和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 20.00
即S
人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。
第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。
人教版高中数学选修2-2全套课件

(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
湘教版高中数学选修二目录

湘教版高中数学选修二目录第1章平面向量及其应用
1.1向量
1.2向量的加法
1.3向量的数乘
1.4向量的分解与坐标表示
1.5向量的数量积
1.6解三角形
1.7平面向量的应用举例
小结与复习
复习题
第2章三角恒等变换
2.1两角和与差的三角函数
2.2二倍角的三角函数
2.3简单的三角恒等变换
复习题二
第3章复数
3.1复数的概念
3.2复数的四则运算
3.3复数的几何表示
3.4复数的三角表示
数学文化数系扩充简史
复习题三
第4章立体几何初步
1.1空间的几何体
1.2平面
1.3直线与直线、直线与平面的位置关系
1.4平面与平面的位置关系
数学实验正四棱锥的截面
1.5几种简单几何体的表面积和体积
数学文化几何学的产生和发展
小结与复习
复习题四
第5章概率
5.1随机事件与样本空间
5.2概率及运算
5.3用频率估计概率
数学实验用计算机模拟掷质地均匀的硬币试验5.4随机事件的独立性
数学文化概率论发展简史
复习题五
第6章数学建模
6.1走进异彩纷呈的数学建模世界
6.2数学建模——从自然走向理性之路6.3数学建模案例(一):最佳视角
6.4数学建模案例(二):曼哈顿距离6.5数学建模案例(三):人数估计。
高中数学 1.7 1定积分的应用教案 新人教A版选修2-2

2013年高中数学 1.7 1定积分的应用教案新人教A版选修2-2一、主要内容:1.面积:了解定积分的元素法,掌握用两条、三条、四条简单曲线所围平面图形的面积,并能根据图形选用以y作积分变量以简化计算过程;会用参数方程求解常用图形(圆、星形线)的面积,能用极坐标求用极坐标表示的圆、阿基米德螺线的图形的面积2.体积:掌握简单图形分别绕x轴、y轴旋转所得旋转体体积,能在平行截面面积为已知时求立体的体积3.弧长:掌握用参数方程所表示的常用曲线(圆、星形线等)的弧长4.功:会求在变力沿直线所作的功5.习题课2学时二、具体的内容分配如下:习题6-1:定积分的元素法,平面图形的面积, 旋转体体积(1)习题6-2:旋转体体积(2),平面曲线的弧长,变力沿直线所作的功总习题六:三、习题内容:习题6—1一、填空题1、曲线x e y =,x 轴及直线()ln ,ln 0.x a x b b a ==,围成图形面积 是_____2、由曲线θcos 2a r =所围成图形的面积是 二、选择题1、曲线3x y =与直线1,0==y x 围成的面积是( ) A .43 B .1 C .34 D .32 2、由x 轴、曲线2x y =和直线32=x 围成的图形面积被直线k x =分成两个相等的面积,则 k 应为( )A .322- B .612 C .1 D .312-三、求解题1、用定积分计算下列图形的面积 (1)由曲线222,1x y x y =+=围成(2)由曲线21y x=与直线4,==y x y 围成(3)由曲线x y 42=与圆()4122=+-y x 围成2、求星形线{33cos sin x a ty a t==所围成0.的面积 3、求以下极坐标所表示的图形的面积 (1)心形线()θcos 1-=a r 围成(2)对数螺线a r e θ=对应θ从0到2π的一段与极轴所围成 (3)伯努利双纽线θ2cos 22a r =右边一支(即对应θ从4π-到4π的一段)习题 6—2 一、填空题1、连续曲线()x f y = ()()0≥x f ,直线b x a x ==,()b a 及x 轴所围成图形绕x 轴旋转而成的旋转体的体积是______2、曲线2x y =及直线1=y 所围成图形绕y 轴旋转而成的旋转体的体积是_______ 二、选择题1、由曲线2x y =与直线x y =围成平面图形绕y 轴旋转所得的旋转体的体积是( )A .()dx x x ⎰-102π B.)21d y y π-⎰C.()⎰-1042dx x x π D.()dy y y ⎰-102π2、底面为圆422=+y x ,垂直于x 轴的所有截面都是正方形的立体体积为( )A. 3121 B. 3210 C. 3242 D. 3185 三、解答题1、求下列旋转体的体积(1)曲线x y sin = ()π≤≤x 0与x 轴所围成的图形分别绕x 轴、y 轴旋转(2)曲线x y =与直线2-=x y ,0=y 所围成的图形分别绕x 轴、y轴旋转(3)星形线{ta y t a x 33sin cos == ()π≤≤t 0绕x 轴旋转2、求底面为园222R y x =+,而垂直于x 轴的所有截面都是等边三角形的立体的体积习题6—3一、求下列弧线段的长度1、星形线{ta y ta x 33sin cos ==的全长 2、抛物线x y 2= 从()2,1到()4,4的一段二、根据虎克定律,弹簧的倔强系数为k ,把弹簧拉长x 的拉力为kx f =,求将一根弹簧从原长拉伸x 的长度,外力做的功三、在一个半径为R 的半球形容器里盛放着密度为ρ的液体,求为将液体吸出容器至少应做多少功四、水渠的截面为一等腰梯形,上、下底分别为2m 和1m ,深为2m ,水渠上有一闸门,求渠水满时对闸门的压力(水的密度31000m kg=ρ)。
高中数学理科选修知识点(2-2,2-3,4-1,4-4,4-5)

数学选修2-2知识点总结 第一章 导数及其应用 一、导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()limx f x x f x x ∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x ∆→+∆-'=∆二.导数的计算1.函数()y f x c ==的导数2.函数()y f x x ==的导数3.函数2()y f x x ==的导数4.函数1()y f x x ==的导数基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '= 6 若()x f x e =,则()x f x e '=7 若()logxa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x '=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=∙三.导数在研究函数中的应用 1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理. 类比推理的一般步骤:找出两类事物的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
高中数学人教A版选修232.2.2事件的相互独立性教案

§2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3.对于事件A 与B 及它们的和事件与积事件有下面的关系:三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与B J 至少有1个开的情况例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2. (1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅ ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54( ∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n =∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便 四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )5.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3第60页 习题 2. 2A 组4. B 组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
人教A版高中数学选修2

另外,我发现有些同学在向量坐标运算方面还存在困难,尤其是在向量减法和数乘运算的坐标表示上。针对这个问题,我计划在下一节课中增加一些针对性的练习,帮助同学们巩固这部分知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平面向量》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过力的合成与分解的情况?”(如两个人拉扯物体)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面向量的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面向量的基本概念。平面向量是有大小和方向的量,它是描述物体运动状态和力的作用效果的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平面向量在力的合成与分解中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调向量加法、减法、数乘这两个重点。对于难点部分,如向量加法的平行四边形法则,我会通过举例和比较来帮助大家理解。
5.向量的投影:向量在另一个向量上的投影,投影向量的计算。
二、核心素养目标
本节课旨在培养学生的以下核心素养:
1.逻辑推理:通过向量的概念及运算的学习,使学生能够运用逻辑推理进行向量问题的分析,提高解决问题的能力。
2.数学建模:培养学生运用向量知识解决实际问题的能力,学会建立向量模型,并运用模型进行问题的求解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平面向量相关的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 导数及其应用变化率与导数问题中的变化率可用式子 1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212在前面我们解决的问题:1、求函数2)(x x f =在点(2,4)处的切线斜率。
x xx f x f x y ∆+=∆-∆+=∆∆4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是12-=t V ,求o t t =时的瞬时速度。
t t tt v t t v t V o o o ∆+=∆-∆+=∆∆2)()(,故斜率为4 二、知识点讲解上述两个函数)(x f 和)(t V 中,当x ∆(t ∆)无限趋近于0时,t V ∆∆(xV∆∆)都无限趋近于一个常数。
归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ∆无限趋近于0时,xx f x x f x y o o ∆-∆+=∆∆)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(',函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlim x x f x x f x fxx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()limx f x f x f x x x ∆→-'=-当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即: 0()()()limx f x x f x f x y x∆→+∆-''==∆。
函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。
1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函数在点0x 处的导数的方法之一。
1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00limlim 00x x yy x ∆→∆→∆'===∆ 函数导数y c =0y '=0y '=表示函数y c =图像(图)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00lim lim11x x yy x ∆→∆→∆'===∆函数导数y x =1y '=1y '=表示函数y x =图像(图)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x+∆+∆-==+∆∆所以00limlim(2)2x x yy x x x x ∆→∆→∆'==+∆=∆函数导数2y x = 2y x '=2y x '=表示函数2y x =图像(图)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x-+∆==-+∆∆+⋅∆所以220011limlim()x x y y x x x x x∆→∆→∆'==-=-∆+⋅∆(2)推广:若*()()ny f x x n Q ==∈,则1()n f x nx -'=导数的计算导数的运算法则导数运算法则1.[]'''()()()()f x g x f x g x ±=±2.[]'''()()()()()()f x g x f x g x f x g x ⋅=±3.[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 函数导数y c ='0y = *()()n y f x x n Q ==∈'1n y nx -= sin y x ='cos y x = cos y x ='sin y x =- ()x y f x a == 'ln (0)x y a a a =⋅>()x y f x e == 'x y e =()log a f x x =()ln f x x = '1()f x x=复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。
复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦1.3 导数在研究函数中的应用在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数. 求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值生活中的优化问题举例解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。
再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.定积分的概念回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:分割→近似代替(以直代曲)→求和→取极限(逼近)定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121ii nax x x x x x b将区间[,]a b 等分成n 个小区间,每个小区间长度为x (b axn),在每个小区间1,i i x x 上任取一点1,2,,ii n ,作和式:11()()nnni i i i b aS f xf n如果x 无限接近于0(亦即n)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。