数显温度计课程设计
基础课程设计-数显温度计设计与制作

基础课程设计-数显温度计设计与制作2020-12-12【关键字】方案、情况、设想、思路、方法、条件、空间、模式、行动、监测、运行、传统、问题、系统、有效、继续、充分、整体、现代、合理、快速、保持、发展、发现、掌握、规律、特点、关键、稳定、思想、基础、需要、环境、工程、体系、能力、方式、作用、标准、结构、水平、任务、反映、速度、关系、设置、检验、分析、简化、借鉴、调节、逐步、形成、拓展、丰富、规划、保证、确保、指导、强化、帮助、教育、解决、调整、完善、方向、扩大、实现、提高、核心、智能化设计课题:数显温度计设计与制作专业班级:09级电子信息工程2班设计时间: 2011年10月10日—12月28日目录一、结构设计方案选择 (3)方案一:汽车尾灯电设计与制作………………………………………...3方案二:数显温度计设计与制作 (5)方案比较与选择.............................................................................................. (6)二、摘要 (7)三、设计任务与要求 (8)四、单元电路设计、参数计算及元器件...........................9温度采样电路部分 (9)A/D转换的设计部分 (10)数码管的驱动部分 (11)五、总原理图及元器件清单 (11)六、安装与调试 (13)温度的采样电路部分 (13)A/D部分 (13)数字电压表的设计部分 (14)数码管的驱动部分................................................................................. (14)七、性能测试 (14)八、主要参考文献 (15)九、实验总结及拓展分析 (15)十、心得与体会 (16)一、制作设计方案选择方案一:汽车尾灯的设计与制作一、设计任务与制作假设汽车尾部左右两侧各有4个指示灯(用发光二极管模拟)有四种显示模式如下:1.汽车正常运行时指示灯全灭;2.右转弯时,右侧4个指示灯按右循环顺序点亮,每灯只亮0.5秒;3.左转弯时,左侧4个指示灯按左循环顺序点亮,每灯只亮0.5秒;4.临时刹车时左右两侧所有指示灯同时闪烁。
数字温度表设计课程设计

FPGA课程设计题目:数字温度表的设计摘要:本文主要研究利用FPGA器件和MAXPLUSⅡ工具软件设计数字温度表的问题,本文介绍了一种基于FPGA的数字温度表的设计,给出了仪表的硬件结构,详细介绍了用VHDL语言设计FPGA器件电路的方法。
本课题在MAX+PLUSⅡ开发环境下,采用VHDL语言设计并实现了数字温度表。
设计采用VHDL的结构描述风格,依据功能将系统分为三个模块,控制模块、数据处理模块和扫描显示模块,通过波形仿真、下载芯片的测试,完成了温度表的功能。
由AD590与FPGA 组成的测温系统的硬件电路和软件设计及提高测量精度的方法,通过对实际温度的测量,本设计具有结构简单、外围电路少、抗干扰能力强、功耗小、可靠性高、速度快、反应时间短等优点。
关键字:VHDL;FPGA;MAX+PLUSⅡ;数字温度表Design and Emulation of the Digital ThermometerAbstract:This article main research the question using the FPGA components and the software tool MAXPLUSⅡ.design digit thermometer's, this article introduced one kind design of digital thermometer's based on the FPGA, has given the hardware architecture of measuring appliance’s, introduced the method using the languag e VHDL design circuit of FPGA component in detail. Under the development environment of MAX+PLUSⅡ this topic used the VHDL language design, and has realized the digital thermometer. The design take the structure description style of VHDL, based on the function the system consists of three modules, the control module, the data processing module and the scanning display module, via the profile simulation, the downloading chip's test, has completed thermometer's function. The temperature measurement system's hardware circuit which consist of AD590 and FPGA and the method that enhancement measuring accuracy, through the testing of the practical temperature, found this design has the merits simple structure, few outside-circuit, strong ability anti interrupter ,small power loss, high reliability, high speed, short time of reaction and so on.Key Words: VHDL; FPGA; MAX+PLUSⅡ; Digital thermometerI目录第1章总体方案设计 (1)1.1方案原理的构思及比较 (1)1.2A/D转换器的合理选用 (1)1.2.1 A/D转换器的主要技术指标 (1)1.2.2 A/D转换器的选用原则 (2)1.2.3 本系统中A/D转换器的选择 (2)1.2.4 ADC0804转换原理 (3)1.3A/D温度传感器的合理选用 (5)1.3.1 传感器选用原则 (5)1.3.2 本系统中温度传感器的选择 (7)1.4多个LED的动态扫描显示 (7)1.5数字温度表测量原理 (8)1.6系统的硬件结构 (8)第2章 FPGA功能模块 (10)2.1FPGA简介 (10)2.2FPGA结构与原理 (11)2.3利用硬件描述语言VHDL设计数字系统 (11)2.4系统中的FPGA器件设计 (13)第3章系统仿真 (16)3.1MAX+PLUSⅡ简介与设计流程 (16)3.2各模块的仿真 (18)3.3顶层总电路图和总仿真波形 (20)结束语 (21)参考文献 (22)致谢 (23)附录 (24)第1章总体方案设计1.1 方案原理的构思及比较任何物质的温度变化都会引起它本身的物理特征与几何形状的改变。
数显温度计课程设计

目录摘要 (4)一.设计的目的............................................... ..4二.设计要求.. (4)三.总体设计方案....................... .................... (4)3.1设计思路........................................ . (4)3.2总体设计框图................................. . (4)四.系统硬件电路的设计..................................... . (5)4.1 AT89C52的简介 (5)4.2复位电路的设计 (9)4.3晶振电路的设计 (9)4.4温度采集电路中DS18B20的简介与用法.............. ..104.5温度传感器与单片机的连接 (12)4.6温度显示电路......................................... ..13五.系统程序的设计 (13)六.仿真分析 (15)七. 设计总结................................................ .. 16 8.参考文献. (17)附录 (18)数字温度计摘要:此电路是用AT89C52单片机器件,并利用DS18B20温度传感器和4位共阳极LED数码管动态扫描来完成温度显示。
电路特点有体积小,灵敏度和精度高,很适应很多对精度要求较高的场合,完成对设备及场地的温度控制,能有效的提高工作人员对环境的变化的反应速度。
关键词:AT89C52;DS18B20;LED;温度控制等。
一.设计的目的系统地运用已学的理论知识解决实际问题的能力和查阅资料的能力。
培养一定的自学能力和独立分析问题、解决问题的能力,能通过独立思考、查阅工具书、参考文献,寻找解决方案;二.设计要求1、基本范围-50℃-110℃2、精度误差小于0.5℃3、LED数码直读显示扩展功能:1、可以任意设定温度的上下限报警功能;2、实现语音报数三.数字温度计的总体设计方案3.1设计思路:(总电路图见附录)温度只要在所设定的上下温度界限内,就会在显示设备中精确的显示出来,如果温度超过了所设定的温度界限,就发出报警声。
数显温度测量器课程设计

数字电子技术基础课程设计系别电气与电子工程系专业电气工程及其自动化题目:数显温度测量器学生姓名:班号:学号:指导教师:时间:指导教师评语:成绩:一、设计目的和要求1、设计目的本课程设计是在前导验证性认知实验基础上,进行更高层次的命题设计实验,要求学生在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。
培养学生利用模拟、数字电路知识,解决电子线路中常见实际问题的能力,使学生积累实际电子制作经验,目的在于巩固基础、注重设计、培养技能、追求创新、走向实用。
2、设计要求1.以电子技术基础的基本理论为指导,将设计实验分为基础型和系统型两个层次,基础型指基本单元电路设计与调试,系统型指若干个模拟、数字基本单元电路组成并完成特定功能的电子电路的设计、调试;2.熟悉常用电子仪器操作使用和测试方法;3.学习计算机软件辅助电路设计方法,能熟练应用电子线路CAD进行电路设计和印刷电路板的设计制作;4.学习电子系统电路的安装调试技术;5.拓展电子电路的应用领域,能设计、制作出满足一定性能指标或特定功能的电子电路设计任务。
二、设计指标数显温度测量器技术指标与要求:1)温度测量范围:20~100℃。
2)以数字形式显示温度。
3)具有调零电路,为减少或消除外界干扰,电路应具有低通功能。
三、总体电路 分析1)电路总体框图2)总体设计方案讨论数字式测温电路应具有下列基本功能:1、 能把温度测量转换为成比例的模拟信号(电压或者电流)。
2、 能把模拟电信号变换为数字信号。
3、 最后通过数字电路直接显示出温度值。
四、各部分电路的组成和分析 (一)温度传感器及电压放大温度传感器有多种类型,可根据测温范围和测温精度进行选择。
根据设计要求的测量范围,可选用集成温度传感器,型号AD590。
温度传感器电压放大 V/F 转换计数及寄存译码及驱动电路数码管显示门控电路AD590是一个二端器件,其输出电流I的大小受温度控制,温度系数为1μA/℃,直接比例于绝对温度,通过电R得到电压U。
数字温度计设计课程设计范本

数字温度计设计课程设计范本
设计题目:数字温度计设计
设计目的:通过设计数字温度计,学习数字电路设计基础知识,掌握数字温度计的设计方法和实现过程。
设计要求:
1.温度测量范围:-40℃ ~ 120℃;
2.温度分辨率:0.1℃;
3.显示方式:7段LED数码管显示,至少显示4位数字,其中小
数点占据一位;
4.温度传感器:使用DS18B20数字温度传感器;
5.显示方式:采用共阴极数码管,使用74HC595锁存器进行驱动,
使用AT89C51单片机进行控制;
6.设计过程:包括硬件设计和软件设计两个部分,其中硬件设计
包括电路原理图设计和PCB板设计,软件设计包括单片机程序
设计和烧录。
设计步骤:
1.硬件设计
1)根据DS18B20数字温度传感器的特性,设计传感器电路,包括电源电路和传感器接口电路。
2)根据温度范围和分辨率要求,设计ADC电路,将传感器输出的模拟信号转换为数字信号。
3)设计数码管驱动电路,使用74HC595锁存器进行驱动。
4)设计单片机接口电路,将数字信号传输到单片机,实现温度数据的处理和显示。
5)根据硬件设计结果,绘制电路原理图和PCB板图。
2.软件设计
1)根据硬件设计结果,编写单片机程序,实现温度数据的读取、处理和显示。
2)使用Keil C51软件进行编程和调试。
3)将程序烧录到单片机中。
4)进行系统测试和调试,确保数字温度计的正常工作。
设计结果:
1.电路原理图和PCB板图。
2.单片机程序。
3.数字温度计实物。
数字温度计课程设计

数字温度计课程设计1 设计课题任务、功能要求说明及总体方案介绍1.1 设计任务设计一个具有特定功能的数字温度计。
1.2 功能要求说明该数字温度计上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。
测量温度范围0℃~99℃,测量精度小数点后两位,可以通过开始和结束键控制数字温度计的工作状态。
1.3 总体方案介绍及工作原理说明1.3.1 总体方案介绍利用单片机AT89S52单片机作为本系统的中控模块。
单片机可把DS18B20读来的数据利用软件来进行处理,从而把数据传输到数码管显示模块,实现温度显示。
数码管显示模块为主要的显示模块,把单片机传来的数据显示出来,。
在显示电路中,主要靠按键来实现各种显示要求的选择与切换。
1.3.2 工作原理说明利用温度传感器DS18B20可以直接读取被测温度值,进行转换的特性,模拟温度值经过DS18B20处理后转换为数字值,然后送到单片机中进行数据处理,并与设置的温度报警限比较,超过限度后通过扬声器报警。
同时处理后的数据送到LED中显示。
本课题以是AT89S52单片机为核心设计的一种数字温度控制系统,系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等组成。
系统框图主要由主控制器、单片机复位、报警按键设置、时钟振荡、LED显示、温度传感器组成。
系统框图如图1所示。
AT89S52按键输入电路时钟电路、复位电路报警电路驱动电路显示电路测温电路拓展口图1 系统基本方框图2 硬件系统的设计2.1 硬件系统各模块功能简要介绍该数字温度计主要由单片机最小系统、独立式键盘模块、LED显示电路模块、蜂鸣电路模块和DS18B20测温模块组成。
各模块的功能如下:(1)单片机最小系统由AT89S52单片机、时钟电路和复位电路构成。
AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。
时钟电路由一个12MHz的石英晶体振荡器和两个33pF的的电容组成振荡电路和分频电路。
数字温度计课设

数字温度计一、设计任务用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。
具体要求如下:1、测量范围0~200度。
2、测量精度0.1度。
3、4位LED数码管显示。
4、温度超过40度报警。
二、总体设计1、原理图2、具体电路设计利用温度传感器采集周围的温度变化,产生电压,通过对采样得到的电压处理,传输到A/D转换器将模拟量转化成数字量,最后由LED显示器显示温度。
(1)温度传感器设计LM34具有很高的工作精度和较宽的线性工作范围,该器件输出电压与摄氏温度成线性比例关系,并且无需外部校准,可以提供±1/4℃的常用的室温精度。
很适合本次设计要求,以下是LM34芯片介绍1)工作电压:直流4~30V;2)工作电流:小于133μA3)输出电压:+6V~-1.0V4)输出阻抗:1mA 负载时0.1Ω;5)精度:0.5℃精度;6)比例因数:线性+10.0mV/℃; 7)非线性值:±1/4℃;8) 测温范围:-50~300℃ (2) 电压采样设计采用电阻分压原理,使得采集到的电压符合A/D 芯片的工作要求,并且要考虑到温度与电压成线性关系,用两个电阻进行分压使得输入A/D 电压为温度传感器的电压的1/10,输入A/D 芯片电压为图中A 、B 两点电压。
(3) A/D 转换设计TC7107是一种高性能、低功耗的三位半A\D 转换器,同时包含有七段译码器、显示驱动器、参考源和时钟系统。
直接驱动共阳极数码管显示。
以下是TC7107引脚图1)工作电压:±5V ; 2)供电电流:小于1.8mA 3)噪声:典型值15uV 4)输入端漏电流:小于10pA 5)模拟公共端电压:2.7~3.35V功能介绍1端:V+ =5V ,电源正端。
26端:V- =﹣5V ,电源负端。
19端:AB4,千位数笔段驱动输出端,由于213位的计数满量程显示为“1999”,所以AB4输出端应接千位数显示器显示“1”字的b 和c 笔段。
lcd1602显示温度课程设计

lcd1602显示温度课程设计一、课程目标知识目标:1. 学生能理解LCD1602显示屏的基本原理和结构。
2. 学生能掌握温度传感器与LCD1602的连接方法。
3. 学生能掌握通过编程控制LCD1602显示温度值的方法。
技能目标:1. 学生能够运用所学知识,独立完成温度传感器与LCD1602的硬件连接。
2. 学生能够编写程序,实现温度的实时采集和LCD1602显示。
3. 学生能够通过课程实践,培养动手操作能力和问题解决能力。
情感态度价值观目标:1. 学生在学习过程中,培养对电子制作和编程的兴趣,提高探究精神。
2. 学生通过小组合作,培养团队协作能力和沟通能力。
3. 学生能够认识到科技在生活中的应用,增强学以致用的意识。
课程性质:本课程为电子技术实践课程,结合理论知识,注重培养学生的动手操作能力和实际问题解决能力。
学生特点:学生处于初中年级,已具备一定的物理知识和电子制作基础,对新鲜事物充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,引导学生主动探究,培养创新意识。
将课程目标分解为具体的学习成果,以便在教学过程中进行有效评估。
二、教学内容1. 理论知识:- 温度传感器原理与分类- LCD1602显示屏的工作原理与结构- 单片机与LCD1602的接口技术2. 实践操作:- 温度传感器与LCD1602的硬件连接- 编程环境搭建与程序编写- 温度采集与LCD1602显示实现3. 教学大纲:- 第一阶段:理论知识学习,介绍温度传感器、LCD1602显示屏原理,以及单片机与LCD1602的接口技术。
- 第二阶段:实践操作,指导学生完成温度传感器与LCD1602的硬件连接,并进行编程环境搭建。
- 第三阶段:编程实践,教授学生编写程序,实现温度的实时采集和LCD1602显示。
4. 教材章节:- 《电子技术基础》第三章:传感器及其应用- 《单片机原理与应用》第四章:显示器与键盘接口技术教学内容安排与进度:- 理论知识:2课时- 实践操作:4课时- 编程实践:3课时教学内容注重科学性和系统性,结合课本知识,确保学生能够在实践中掌握所学内容。
数字温度计课程设计

数字温度计课程设计一、引言本文档旨在设计一门名为“数字温度计”的课程,旨在教授学生如何设计并制作一个简单的数字温度计。
通过这门课程,学生将了解温度的概念、温度测量的原理,并通过实践操作来设计、制作和调试一个数字温度计原型。
二、课程大纲1. 课程简介在本节课中,我们将介绍本门课程的内容、目标和教学方法。
2. 温度的概念和单位这一节课中,我们将学习温度的基本概念,温度的不同单位以及它们之间的转换关系。
3. 温度测量的原理在本节课中,我们将讲解温度测量的一些基本原理,包括使用热敏电阻、红外线传感器和半导体温度传感器等。
4. 温度传感器的选择和使用这节课我们将学习如何选择合适的温度传感器,并了解它们的使用方法和注意事项。
5. 数字温度计的设计与制作在本节课中,我们将介绍数字温度计的基本原理和电路设计。
学生们将分组进行设计并制作一个数字温度计原型。
6. 数字温度计的调试和应用这节课中,学生需要将制作好的数字温度计原型进行调试,并学习如何将其应用到实际生活中。
7. 课程总结和展望在最后一节课中,我们将对整个课程进行总结,并展望学生们在将来可以进一步深入研究的方向。
三、教学方法本门课程采用以下教学方法:1.授课:教师将通过讲解的方式,将温度概念、温度测量原理等知识传达给学生。
2.实验:学生将参与到温度计设计与制作的实验中,通过实际操作来理解概念和原理。
3.小组讨论:学生将分组进行温度计设计的讨论和合作,提高团队合作和问题解决能力。
4.实际应用:学生将通过调试和应用数字温度计原型,加深对温度测量的理解和实践能力。
四、课程评估本门课程的评估主要分为以下几个方面:1.实验成果:学生根据实验设计制作的数字温度计原型的质量和完成情况。
2.调试和应用:学生能否成功调试数字温度计原型,并将其应用到实际生活中。
3.报告和展示:学生需要撰写相关实验报告,并进行课程展示,展示他们的学习成果和理解。
五、参考资料以下是一些参考资料,供学生们深入了解和学习:1.电子技术基础教程2.温度传感器原理与应用3.温度计原理与设计以上是对《数字温度计课程设计》的简要说明,希望这门课程能够为学生们提供实践操作和实际应用的机会,帮助他们更深入地理解温度测量的原理与方法,培养他们的实践能力和问题解决能力。
温度计课程设计报告

位数字显示温度计》设计报告设计时间: 2011 12 20班级:姓名:报告页数: 17 页课程设计报告学院信息工程专业学号姓名(合作者: )成绩评定_______教师签名_______课程设计报告目录一、设计任务与要求二、设计方案及比较(设计可行性分析)三、系统设计总体思路四、系统原理框图及工作原理分析五、系统电路设计及参数计算, 主要元器件介绍及选择以及数据指标的测量六、画出电路原理图及PCB图七、产品制作及调试八、实验结果和数据处理九、结论(设计分析)十、问题与讨论摘要:温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。
测量温度的基本方法是使用温度计直接读取温度。
最常见到的测量温度的工具是各种各样的温度计, 例如, 水银玻璃温度计, 酒精温度计, 热电偶或热电阻温度计等。
它们常常以刻度的形式表示温度的高低, 人们必须通过读取刻度值的多少来测量温度。
本次我们设计的数字显示温度计可以直接测量温度, 得到温度的数字值, 既简单方便, 又直观准确。
一、设计任务与要求(一)设计任务:采用温度传感器LM35, 位A/D转换器、数码或液晶显示器设计一个日常温度数字温度计。
产品指标及技术要求:①温度显示范围: 0℃~50℃;②数字显示分辨率: 0.1℃;③精度误差≤0.5℃;④电路工作电源可在5~9V范围内工作.参考芯片: 3位半A/D转换器: CC7106/ CC7107、CC7126/ CC7127 温度传感器: LM35 LCD显示器: 数码显示管:共阳或共阴极(二)实验测试要求1. 测温度传感器输出曲线, 即V/℃曲线;2. 调整电路的参数以及参考电压;3. 用示波器测量A/D转换器的BP、POL管脚波形及输出驱动波形;4. 记录Vin与显示的数值关系;二、方案论证与比较电路的组成: LM35温度传感器、芯片ICL7107、数码管和其他元件组成的电路。
选择理由:原理简单, 节约成本1.LM35温度传感器的选择感测温度的產品有多种类型, 依特性可概分为膨胀变化型、颜色变化型、电阻变化型、电流变化型、电压变化型、频率变化型…等, 常用的有热敏电阻、热电偶、热电阻、双金属片传感器、集成温度传感器。
数字温度计课程设计报告

一.数字温度计的总体方案设计根据系统设计的功能,本时钟温度系统的设计必须采用单片机软件系统实现,用单片机的自动控制能力来测量、显示温度数值。
初步确定设计系统由单片机主控模块、测温模块、显示模块共3个模块组成,电路系统框图如图所示。
图系统基本方框图对于单片机的选择,如果用8051系列,由于它没有内部RAM,系统又需要一定的内存存储数据。
AT89S52是一个低功耗、高性能CMOS 8位的单片机,片内含8k Bytes ISP的可反复擦写1000次的Flash只读程序存储器,兼容标准MCS-51指令系统及80C51引脚结构,功能强大的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。
而AT89S52与AT89C51相比,外型管脚完全相同,AT89C51的HEX程序无须任何转换可直接在AT89S52运行,且AT89S52比AT89C51新增了一些功能,相比较后,在本设计中选用AT89S52更能很好的实现温度计控制功能。
测温电路可以使用热敏电阻之类的器件,利用其感温效应,将被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据处理。
但是这种感温电路比较复杂,且采用热敏电阻精度低,重复性、可靠性都比较差。
如果采用温度传感器DS18B20可以减少外部硬件电路,而且可以很容易直接读取被测温度值,进而转换,且成本低、易使用,可以很好的满足设计要求。
所以本文采用传感器DS18B20代替传统的测温电路。
温度的显示可以采用LED数码管来显示,LED亮度高、醒目,但是电路复杂,占用资源多且信息量小。
而采用液晶显示器有明显的优点:工作电流比LED小几个数量级,功耗低;尺寸小,厚度约为LED的1/3;字迹清晰、美观、使人舒服;寿命长,使用方便,可得性强。
故本设计采用LCD来显示温度。
二、系统器件的具体选择单片机的选择本次设计采用的是单片机AT89C52。
AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,AT89C52单片机在电子行业中有着广泛的应用。
新型数字温度计课程设计

新型数字温度计课程设计一、课程目标知识目标:1. 学生能理解新型数字温度计的工作原理与构造,掌握其使用方法。
2. 学生能描述温度的物理意义,并运用温度单位进行换算。
3. 学生了解新型数字温度计与传统温度计的区别及各自的优势。
技能目标:1. 学生能够正确使用新型数字温度计进行温度测量,并准确读取数据。
2. 学生通过实验操作,培养动手能力和观察分析能力。
3. 学生能够运用所学知识解决实际生活中的温度测量问题。
情感态度价值观目标:1. 学生对物理学产生兴趣,认识到物理知识与日常生活的紧密联系。
2. 学生在实验中培养合作意识,学会分享与交流,增强团队协作能力。
3. 学生在探索新型数字温度计的过程中,培养创新意识和科学探究精神。
本课程针对初中生设计,结合学生好奇心强、动手能力逐步提高的特点,注重理论知识与实践操作的相结合。
通过学习新型数字温度计的知识,使学生能够更好地理解物理学科,提高科学素养,同时培养其解决实际问题的能力。
教学过程中,注重启发式教学,引导学生主动探索,激发学生的学习兴趣和积极性。
课程目标的设定旨在让学生在学习过程中获得具体、可衡量的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 新型数字温度计的原理与构造- 温度测量的基本概念- 数字温度计的工作原理- 新型数字温度计的构造及功能特点2. 温度单位与换算- 摄氏度、华氏度等温度单位- 温度单位之间的换算方法3. 新型数字温度计的使用方法- 新型数字温度计的操作步骤- 正确读取温度数据的方法- 注意事项及安全操作规范4. 实践操作与数据分析- 实验室温度测量实践- 数据记录与处理- 分析新型数字温度计与传统温度计的优缺点5. 温度测量在生活中的应用- 生活中常见的温度测量场景- 新型数字温度计在实际应用中的优势教学内容依据课程目标,紧密结合教材,按照以下进度安排:第一课时:新型数字温度计的原理与构造,温度单位与换算第二课时:新型数字温度计的使用方法,实践操作与数据分析第三课时:温度测量在生活中的应用,总结讨论教学内容注重科学性和系统性,结合实验操作,使学生在实践中掌握新型数字温度计的相关知识,提高学生的实际操作能力。
数字温度计设计毕业设计(两篇)2024

数字温度计设计毕业设计(二)引言概述数字温度计是一种用于测量温度的电子设备,它通过传感器将温度转换为数字信号,然后显示在数字屏幕上。
本文将针对数字温度计的设计进行详细讨论,包括硬件设计和软件设计两个主要方面。
硬件设计部分将包括传感器选择、信号调理电路设计和数字显示设计;软件设计部分将包括嵌入式程序设计和用户界面设计。
通过本文的详细介绍,读者将能够了解到数字温度计的设计原理、设计流程和关键技术。
正文内容1. 传感器选择1.1 温度传感器类型1.2 温度传感器比较与选择1.3 温度传感器参数测试与校准2. 信号调理电路设计2.1 信号条件2.2 放大和滤波电路设计2.3 ADC(模数转换器)选型和使用3. 数字显示设计3.1 显示芯片选型和使用3.2 显示屏尺寸和分辨率选择3.3 显示内容设计和显示方式选择4. 嵌入式程序设计4.1 控制器选型和使用4.2 温度数据采集与处理4.3 温度数据存储和传输5. 用户界面设计5.1 按键和控制部分设计5.2 显示界面设计与实现5.3 温度单位与切换设计正文详细阐述1. 传感器选择1.1 温度传感器类型在数字温度计的设计中,可以选择多种温度传感器,包括热电偶、热敏电阻和半导体温度传感器等。
本文将比较各种传感器的特点和适用范围,从而选择最合适的传感器。
1.2 温度传感器比较与选择通过比较热电偶、热敏电阻和半导体温度传感器的精度、响应时间和成本等特点,结合设计需求和成本预算,选择最佳的温度传感器。
1.3 温度传感器参数测试与校准为了确保传感器的准确性,需要对其参数进行测试和校准。
本文将介绍传感器参数测试的方法和仪器,以及校准的步骤和标准。
2. 信号调理电路设计2.1 信号条件传感器输出的信号需要进行电平调整和滤波等处理,以便进一步处理和显示。
本文将介绍信号调理的基本原理和设计方法。
2.2 放大和滤波电路设计为了放大和滤波传感器输出的微弱信号,本文将介绍放大和滤波电路的设计原理和实现方法,包括运放、滤波器和滤波器的选型和参数设置。
数字式温度表课程设计

目录第1章数字显示仪表的工作原理 (1)1.1数字式显示仪表原理 (1)1.2数字式显示仪表结构 (1)1.3数字仪表的主要技术指标 (2)1.4线性化问题 (3)1.5信号的标准化及标度变换 (3)第2章数字显示仪表的制作 (4)2.1ICL7107双积分A/D转换器 (4)2.2LED显示器 (8)2.3主要集成块 (9)第3章数字显示仪表的安装 (10)3.1数显部分的安装 (10)3.2电源部分的安装 (10)第1章 数字显示仪表的工作原理1.1 数字式显示仪表原理工业生产过程中常用的数字式仪表有数字式温度计、数字式压力计、数字流量计、数字电子秤等。
数字仪表的出现适应了科学技术及自动化生产过程中高速、高准确度测量的需要,它具有模拟仪表无法比拟的优点。
数字仪表的主要特点有:准确度高、分辨力高、无主观读数误差、测量速度快、能以数码形式输出结果。
同时数字量来传输信息,可使得传输距离不受限制。
数显仪表按工作原理分为:不带微处理器和带微处理器的。
其原理框图如图1-1所示。
1.2 数字式显示仪表结构不带微处理器的仪表,通常用运算放大器和中、大规模集成电路来实现;带微处理器的仪表,是借助软件的方式来实现原理框图中的有关功能。
不带微处理器的数显仪表一般应具备模数转换,非线性补偿及标度变换三大部分,这三部分又各有很多种类,三者间相互巧妙的组合,可以组成适应于各种不同要求场合的数字式显示仪表。
尽管数字仪表的品种繁多,原理各不相同,但其基本构成形式可由图1-2所示的主要环节组成。
模一数转换器是数字仪表的核心,以它为中心,将仪表分为模拟和数字两大部分。
图1-1 数字显示仪表原理图传感器的统一电量信号一般都比较微弱,并且包含着在传输过程中产生的各种干扰成分,因此在其转换成数字量前,首先要进行滤波与放大。
前置放大器就是用来提高仪表的灵敏度、输入阻抗及信号的信噪比。
仪表的数字部分一般由计数器、译码器、时钟脉冲发生器、驱动显示电路以及逻辑控制电路组成。
数字温度计课程设计最新

数字温度计课程设计最新一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握数字温度计的工作原理、构造及使用方法。
技能目标要求学生能够运用数字温度计进行温度测量,并能够进行简单的故障排查和维修。
情感态度价值观目标要求学生培养对科学的兴趣和好奇心,提高学生对物理实验的热爱,培养学生团结协作、勇于探索的精神。
二、教学内容本课程的教学内容主要包括数字温度计的工作原理、构造及使用方法。
首先,介绍数字温度计的工作原理,让学生了解其内部结构和工作机制。
其次,讲解数字温度计的构造,包括各个部分的功能和作用。
最后,教授学生如何使用数字温度计进行温度测量,以及如何进行简单的故障排查和维修。
三、教学方法本课程的教学方法包括讲授法、实验法、讨论法和案例分析法。
首先,通过讲授法向学生传授数字温度计的相关理论知识。
其次,利用实验法让学生亲自动手操作数字温度计,加深对理论知识的理解。
接着,通过讨论法引导学生进行思考和交流,培养学生的创新思维和团队协作能力。
最后,运用案例分析法让学生分析实际问题,提高学生解决问题的能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材和参考书为学生提供理论知识的学习材料,多媒体资料为学生提供形象的视觉感受,实验设备则是学生进行实践操作的重要工具。
通过丰富多样的教学资源,为学生提供全面、立体的学习体验,提高学生的学习效果。
五、教学评估本课程的评估方式包括平时表现、作业和考试等。
平时表现主要评估学生的课堂参与度、提问回答和团队协作等情况,占总评的30%。
作业主要包括课后练习和小论文,占总评的20%。
考试包括期中考试和期末考试,占总评的50%。
评估方式应客观、公正,能够全面反映学生的学习成果。
六、教学安排本课程的教学安排如下:共16周,每周2课时。
教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。
教学地点选在教室和实验室,方便学生进行理论学习和实践操作。
数字显示温度计设计[管理资料]
![数字显示温度计设计[管理资料]](https://img.taocdn.com/s3/m/be83f69731b765ce04081485.png)
任务书一、任务设计一个数字显示的温度计,参考原理框图如下所示。
二、要求(1)能数字显示被测温度,测量温度范围0~100 0C;(2)0C;(3)带有计时和时间显示功能;(4)至少有高、低两路限温控制输出接口控制外部电路,实际制作时可以发光二极管模拟显示其控制状态输出;(5)高、低两路限温控制点可在0~100 0C范围内独立设置,当温度达到高、低限温控制点发出声光报警。
(1)提高温度测量精度,;(2)自动顺时测量并保存温度值和测量时间;(3)可以查询、回显存储器中自动测量的温度值和测量时刻;(4)多路温度巡检(至少两路)和多路温度、时间保存;(5)其他发挥。
第一章课题背景信息采集与检测的意义测量控制的作用是从生产现场中获取各种参数,运用科学计算的方法,综合各种先进技术,使每个生产环节都能够得到有效的控制,不但保证了生产的规范化、提高产品质量、降低成本,还确保了生产安全。
所以,测量控制技术已经被广泛应用于炼油、化工、冶金、电力、电子、轻工和纺织等行业。
温度采集控制系统是在嵌入式系统设计的基础上发展起来的。
嵌入式系统虽然起源于微型计算机时代,但是微型计算机的体积、价位、可靠性,都无法满足广大对象对嵌入式系统的要求,因此,嵌入式系统必须走独立发展道路。
这条道路就是芯片化道路。
将计算机做在一个芯片上,从而开创了嵌入式系统独立发展的单片机时代。
单片机以其集成度高、运算速度快、体积小、运行可靠、价格低廉等优势,在过程控制、数据采集、机电一体化、智能化仪表、家用电器以及网络技术等方面得到了广泛的应用,特别是单片机嵌入式技术的开发与应用,标志着计算机发展史上又一个新的里程碑。
作为计算机两大发展方向之一的单片机,以面向对象的实时控制为己任,嵌入到如家用电器、汽车、机器人、仪器仪表等设备中,使其智能化。
目前国内外各大电气公司,大的半导体厂商正在不断的开发、使用单片机,使其无论在控制能力,减小体积,降低成本,还是开发环境的改善等方面,都得到空前迅速的发展。
数字温度计课程设计mul

数字温度计课程设计mul一、课程目标知识目标:1. 学生能理解数字温度计的工作原理,掌握温度测量单位摄氏度(℃)和华氏度(℉)的转换方法。
2. 学生能描述数字温度计在日常生活和科学实验中的应用,了解不同场合下温度测量的重要性。
3. 学生了解温度对环境、生物及物体性质的影响,理解温度变化与自然现象之间的关系。
技能目标:1. 学生能够正确使用数字温度计进行温度测量,并准确读取温度值。
2. 学生能够运用所学知识解决实际生活中的温度测量问题,如体温测量、气温观测等。
3. 学生通过小组合作和实验探究,培养观察、分析、解决问题的能力。
情感态度价值观目标:1. 学生养成对温度测量数据的严谨态度,注重实验操作的准确性和安全性。
2. 学生认识到温度测量在科学研究、生活实践等方面的重要意义,增强对科学技术的兴趣和好奇心。
3. 学生通过学习数字温度计相关知识,培养环保意识,关注气候变化对环境的影响。
4. 学生在小组合作中学会沟通、协作,培养团队精神和尊重他人意见的品质。
本课程设计针对学生年级特点,结合数字温度计相关知识,注重理论与实践相结合,旨在提高学生的科学素养和实践能力。
课程目标具体、可衡量,便于教学设计和评估。
在教学过程中,教师需关注学生个体差异,充分调动学生的积极性,引导他们主动探究、合作交流,实现课程目标。
二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。
主要包括以下几部分:1. 数字温度计工作原理:介绍数字温度计的基本结构、传感器原理以及温度测量方法。
2. 温度单位及转换:讲解摄氏度与华氏度的定义,引导学生掌握两者之间的转换公式及计算方法。
3. 数字温度计的使用方法:教授如何正确使用数字温度计进行温度测量,包括操作步骤、注意事项等。
4. 温度测量的应用:分析数字温度计在日常生活、科学实验、医疗健康等领域的应用,强调温度测量在实际生活中的重要性。
5. 温度对生物及物体性质的影响:探讨温度对生物生长、物体状态变化等方面的影响,引导学生了解温度与自然现象之间的关系。
数字温度计课程设计

数字温度计课程设计
一、数字温度计课程设计
1. 数字温度计的原理
数字温度计是一种用于测量温度的仪器,它通过将温度转换成一个数字值来表示温度,这个数字值有可能是摄氏度、华氏度或其他单位的温度计。
数字温度计的原理是改变温度,会改变某种传感器的电阻值,这种电阻值改变可以通过计算机来进行捕捉,然后转换成数字形式,来测量温度。
2. 数字温度计的结构
数字温度计由传感器、显示模块、控制模块和电源模块组成。
传感器:主要用于检测周围环境的温度变化,由于温度的变化会使电阻值发生变化,这种变化可以被传感器捕捉,转换成数字信号。
显示模块:用于将温度信号转换成易于人们阅读的数字值,例如显示温度读数。
控制模块:根据传感器反馈的信号,控制显示模块显示不同的温度值。
电源模块:为数字温度计提供电源,使传感器、显示模块和控制模块能够正常工作。
3. 数字温度计的应用
数字温度计可以用来测量室内、室外的温度,它可以准确的读出温度,而且易于使用。
另外,它也可以用于检测生物体温度,例如,它可以用于检测人体的体温,也可以用于检测样品的温度,如食物、饮料等,以保证样品的品质。
数字温度计还可以用于检测其他环境温度,比如空调房间、汽车内部等等,以确保环境适宜。
数字温度计设计课程设计

数字温度计设计课程设计引言数字温度计是一种用于测量温度的设备,它将温度转换为数字信号来表示。
在本课程设计中,我们将探讨数字温度计的设计原理和实现方法。
通过本设计,学生将能够理解数字温度计的工作原理,掌握数字信号的转换方式,并通过实际搭建一个数字温度计的电路来锻炼实践能力。
设计目标本课程设计旨在帮助学生达到以下目标:1.理解数字温度计的基本原理和工作机制;2.掌握数字信号的转换方式;3.学会使用模拟传感器完成温度测量;4.能够使用电路和编程工具实现数字温度计。
设计步骤步骤一:理解数字温度计的原理在本步骤中,学生将学习数字温度计的基本原理和工作机制。
他们需要学习关于传感器、模拟信号和数字信号的知识。
可以使用实验示意图、图表和实际温度计来帮助学生理解。
步骤二:选择传感器和电路元件在本步骤中,学生将学习如何选择合适的传感器和电路元件来实现数字温度计。
他们需要学习传感器的种类和特性,并选择合适的传感器来测量温度。
此外,学生还需要选择合适的电路元件来转换模拟信号为数字信号。
步骤三:搭建电路在本步骤中,学生将使用所选的传感器和电路元件来搭建数字温度计的电路。
他们需要按照电路图纸的指导,正确地连接电路,并确认电路的正常工作。
步骤四:测试和校准在本步骤中,学生将测试他们搭建的数字温度计的性能和准确性。
他们可以使用已知温度源来测试数字温度计的响应和精度,并根据需要调整传感器和电路的参数。
步骤五:实现数字温度显示在本步骤中,学生将使用数字信号转换器和显示设备来实现数字温度的显示。
他们需要学习如何将数字信号转换为合适的格式,并将其显示在合适的设备上。
步骤六:编写文档和报告在本步骤中,学生需要撰写关于数字温度计设计的文档和实验报告。
他们需要描述设计的原理、电路图纸、实验步骤和测试结果,并对设计中遇到的问题和解决方法进行讨论。
实验工具和材料•Arduino Uno开发板•温度传感器•电阻、电容和电路连接线•电脑和编程软件•调试工具:万用表、示波器等总结通过本课程设计,学生将能够理解数字温度计的工作原理,掌握数字信号的转换方式,并通过实际搭建一个数字温度计的电路来锻炼实践能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (4)一.设计的目的............................................... ..4二.设计要求.. (4)三.总体设计方案....................... .................... (4)3.1设计思路........................................ . (4)3.2总体设计框图................................. . (4)四.系统硬件电路的设计..................................... . (5)4.1 AT89C52的简介 (5)4.2复位电路的设计 (9)4.3晶振电路的设计 (9)4.4温度采集电路中DS18B20的简介与用法.............. ..104.5温度传感器与单片机的连接 (12)4.6温度显示电路......................................... ..13五.系统程序的设计 (13)六.仿真分析 (15)七. 设计总结................................................ .. 16 8.参考文献. (17)附录 (18)数字温度计摘要:此电路是用AT89C52单片机器件,并利用DS18B20温度传感器和4位共阳极LED数码管动态扫描来完成温度显示。
电路特点有体积小,灵敏度和精度高,很适应很多对精度要求较高的场合,完成对设备及场地的温度控制,能有效的提高工作人员对环境的变化的反应速度。
关键词:AT89C52;DS18B20;LED;温度控制等。
一.设计的目的系统地运用已学的理论知识解决实际问题的能力和查阅资料的能力。
培养一定的自学能力和独立分析问题、解决问题的能力,能通过独立思考、查阅工具书、参考文献,寻找解决方案;二.设计要求1、基本范围-50℃-110℃2、精度误差小于0.5℃3、LED数码直读显示扩展功能:1、可以任意设定温度的上下限报警功能;2、实现语音报数三.数字温度计的总体设计方案3.1设计思路:(总电路图见附录)温度只要在所设定的上下温度界限内,就会在显示设备中精确的显示出来,如果温度超过了所设定的温度界限,就发出报警声。
能够及时向温度监控人员发出温度超限信息。
便于温控人员及时的调整与控制。
另外此温度控制器操作简单,体积小,灵敏度高,精度高。
3.2总体设计方框图:图3.1 设计方框图方框图(图3.1)所示为数字温度控制器的单体设计方框图。
其工作原理为:当该电路上电工作以后,首先刷新显示(LED),然后,温度传感器采集温度送单片机检查温度的高低,由单片机送出信号经过驱动电路送往显示电路或报警电路。
四.系统硬件电路的设计4.1 AT89C52的简介对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。
所以,我们选用51系列单片机AT89C52。
AT89C52是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可编程的Flash只读程序存储器,兼容标准8051指令系统及引脚,并集成了Flash 程序存储器,既可在线编程(ISP),也可用传统方法进行编程,因此,低价位AT89C52单片机可应用于许多高性价比的场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。
单片机AT89C52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
A T89C52的主要特性如下:▲与MCS-51 兼容;▲4K字节可编程闪烁存储器;▲寿命:1000写/擦循环;▲数据保留时间:10年;▲全静态工作:0Hz-24Hz;▲三级程序存储器锁定;▲128*8位内部RAM;▲32根可编程I/O线;▲两个16位定时器/计数器;▲5个中断源;▲可编程串行通道;▲低功耗的闲置和掉电模式;▲片内振荡器和时钟电路。
1、AT89C52引脚图芯片AT89C52的引脚排列和逻辑符号如图4.1 所示。
图 4.1 AT89C52单片机引脚图2、AT89C52引脚功能介绍单片机芯片AT89C52为40引脚双列直插式封装。
其各个引脚功能[5]介绍如下:(1) VCC:供电电压;(2) GND:接地;(3) P0口P0口为一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。
当P1口的管脚写”1”时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高。
(4) P1口P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入”1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
(5) P2口P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写”1”时,其管脚电位被内部上拉电阻拉高,且作为输入。
作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址”1”时,它利用内部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
(6) P3口P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入”1”后,它们被内部上拉为高电平,并用作输入。
作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,同时P3口同时为闪烁编程和编程校验接收一些控制信号。
其具体功能如表3.1所示。
表3.1 P3口的特殊功能端口定义符号表示功能描述P3.0 RXD 串行输入口P3.1 TXD 串行输出口P3.2 INT0 外部中断0P3.3 INT1 外部中断1P3.4 T0 定时器0外部输入P3.5 T1 定时器1外部输入外部数据存储器写P3.6 WR选通P3.7 RD 外部数据存储器读选通(7) RST:复位输入端。
当振荡器复位时,要保持RST脚两个机器周期的高电平时间。
(8) ALE / PROG当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE只有在执行MOVX,MOVC指令时ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
(9) PSEN外部程序存储器的选通信号。
在由外部程序存储器取址期间,每个机器周期PSEN两次有效。
但在访问外部数据存储器时,这两次有效的PSEN信号将不出现。
(10) EA/VPP当EA保持低电平时,访问外部ROM;注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,访问内部ROM。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
(11) XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
(12) XTAL2:来自反向振荡器的输出。
4.2复位电路的设计单片机复位电路的设计如图4.2所示。
该复位电路采用手动复位与上电复位相结合的方式。
当按下按键时,VCC通过R2电阻给复位输入端口一个高电平,实现复位功能,即手动复位。
上电复位就是VCC通过电阻R2和电容C构成回路,该回路是一个对电容C充电和放电的电路,所以复位端口得到一个周期性变化的电压值,并且有一定时间的电压值高于CPU复位电压,实现上电复位功能。
图4.2复位电路图4.3晶振电路的设计单片机晶振电路的设计如图4.3所示。
XTAL1(X1)为反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2(X2)是来自反向振荡器的输出。
按照理论上AT89C52使用的是12MHz的晶振。
图4.3晶振电路图4.4温度采集电路中DS18B20的简介与用法。
由于传统的热敏电阻等测温元件测出的一般都是电压,再转换成对应的温度,需要比较多的外部元件支持,且硬件电路复杂,制作成本相对较高。
这里采用DALLAS公司的数字温度传感器DS18B20作为测温元件。
DALLAS 最新单线数字温度传感器DS18B20是一种新型的”一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。
DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持”一线总线”接口的温度传感器。
温度测量范围为-55~+125 摄氏度,可编程为9位~12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。
被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS18B20 的性能特点如下:▲独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条总线即可实现微处理器与DS18B20的双向通讯;▲DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温;▲DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内;▲适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;▲测温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;▲零待机功耗;▲可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;▲在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;▲用户可定义报警设置;▲报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;▲测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力;▲负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作以上特点使DS18B20非常适用与多点、远距离温度检测系统。