数学中考题型(第25题)动点几何题型讲解
历年中考数学动点问题题型方法计划归纳
动点问题题型方法概括动向几何特色----问题背景是特别图形,考察问题也是特别图形,殊的关系;剖析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形置。
)动点问题向来是中考热门,近几年考察研究运动中的特别性:等腰相像三角形、平行四边形、梯形、特别角或其三角函数、线段或面积的最值。
下边就此问题的常有题型作简单介绍,解题方法、重点给予点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线y3x6与坐标轴分别交于A、B4从O点出发,同时抵达A点,运动停止.点Q沿线段OA运动,速度点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之(3)当48时,求出点P的坐标,并直接写出以点O、P、Q为S5四个极点M的坐标.yBPxO Q A提示:第(2)问按点P到拐点B全部时间分段分类;2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC(1)求⊙O的直径;(2)若D是AB延伸线上一点,连结CD,当BD长为多少时,CD(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动从B点出发沿BC方向运动,设运动时间为t(s)(0 t 2),连结EF为直角三角形.注意:第(3)问按直角地点分类议论C CFEA AB AO B D O图(1)图(2)图(面积最小?并求出最小值及此时PQ的长.注意:发现并充足运用特别角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。
二、4、(2009特别四边形边上动点年吉林省)如下图,菱形ABCD的边长为6厘米,B始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C以2厘米/秒的速度沿 A B C D的方向运动,当点Q运动到同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC方厘米(这里规定:点和线段是面积为O的三角形),解答以下问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时3)求y与x之间的函数关系式.D CPBA Q轴于点H.(1)求直线AC的分析式;(2)连结BM,如图 2,动点P从点A出发,沿折线ABC方向以 2点C匀速运动,设△PMB的面积为S(S 0),点P的运动时间为数关系式(要求写出自变量t的取值范围);3)在(2)的条件下,当t为什么值时,△MPB与△BCO互为余角,并线AC所夹锐角的正切值.yAHB yA H BMOx MCxO C图(1)2)问按点P到拐点B所用时间分段分类;注意:第(图(2)第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运∠MPB=∠ABM的两种状况,求出t值。
中考数学动点问题专题讲解
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考动点题解题思路
中考动点题解题思路中考动点题是数学中的一种题型,主要考察学生对于动点运动轨迹和运动规律的理解和应用能力。
这类题目通常会给出一个动点在二维平面上的运动过程或条件,并要求学生回答有关该动点运动的问题,如到达某一位置的时间、速度、加速度等。
下面将结合具体的例题,从问题的分析、解题思路和方法、以及注意事项三个方面详细探讨中考动点题的解题思路。
一、问题的分析在解动点题之前,学生首先要对问题进行分析,确定动点的运动过程或条件。
通常可以从题目中找到以下几点信息:1.动点的运动方式:动点是直线运动还是曲线运动,是匀速运动还是变速运动;2.动点的起始条件:动点开始的位置、速度或其他相关条件;3.动点的运动过程:动点在规定的时间内或规定的条件下的运动情况。
二、解题思路和方法1.画图辅助分析:将问题中的相关信息用图形表示出来,有助于更好地理解问题和分析解题思路。
可以根据问题的要求,画出动点在平面上的运动轨迹图或示意图,标注出起始位置、终止位置、运动方向等信息。
2.分析运动过程:根据问题中给出的动点运动过程或条件,分析动点在不同时间或条件下的运动状况,如位置的变化、速度的变化、加速度的变化等。
通过对运动过程的分析,可以找到解题的关键点。
3.应用运动公式求解:根据动点的运动方式和相关条件,利用数学中的运动公式来求解问题。
常用的运动公式有:物体在匀速直线运动中的位移公式、速度公式和时间公式;物体在匀变速直线运动中的位移公式、速度公式和加速度公式等。
根据题目所给的条件和要求,选择合适的公式进行计算,得到问题所求的答案。
4.根据图像和运动规律推理解答:有时候,问题中给出的信息比较复杂,难以直接利用运动公式来求解。
这时候可以通过观察图像和分析运动规律来得到解题的思路。
可以利用图像中的形状、对称性、周期性等特点,运用数学推理和逻辑推理的方法,得到问题所求的答案。
三、注意事项1.注意运动方式和条件的特殊性:有些题目中给出的动点运动方式或条件比较特殊,需要特别注意。
中考数学动点问题专题讲解
P B
义域.
F
●
EO
A
(3)当 BF=1 时,求线段 AP 的长.
解:(1)连结 OD.
D
根据题意,得 OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP. 又由 OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE∽△ C
●
EO
A
AEP.
3(2)
(2) ∵ ∠ ABC=90 ° ,AB=4,BC=3, ∴ AC=5. ∵ ∠ ABC= ∠
5
8
②若 EP 交线段 CB 于点 F,如图 3(2), 则 CF=2.
类似①,可得 CF=CE.
∴5- 8 x =2,得 x 15 .
5
8
可求得 y 6 ,即 AP=6.
综上所述, 当 BF=1 时,线段 AP 的长为 2 或 6. 三、应用求图形面积的方法建立函数关系式
例 4(2004 年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC= 2 2 ,⊙A 的半径为 1.若点 O 在 BC 边上
F
当 E 点在 AB 边上运动时,渗透入圆与圆的位置关系(相切
问题)的存在性的研究形成了第二小题,加入直线与圆的位置
E
关系(相切问题)的存在性的研究形成了第三小题.区分度测
4
B
D
C
量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法]
1.直线与圆的相切的存在性的处理方法:利用 d=r 建立方程.
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;
分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是
中考数学动点问题专题讲解(22页)
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学常见题型几何动点问题
中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P ,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少?例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10ACB By例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;图(3)BC PQBA MN(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
中考数学动点问题专题讲解
中考数学动点问题专题讲解中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
CE=.(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°,∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴,∴.(2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立,∴=,整理得.当时,函数解析式成立.例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3.点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)求证:△ADE∽△AEP.(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP的长.解:(1)连结OD.根据题意,得OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP,∴△ADE∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3,∴AC=5.∵∠ABC=∠ADO=90°,∴OD ∥BC,∴,,∴OD=,AD=.∴AE==.∵△ADE∽△AEP,∴,∴.∴().(3)当BF=1时,①若EP交线段CB的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP,∴∠PDE=∠PEC.∵∠FBP=∠DEP=90°,∠FPB=∠DPE,∴∠F=∠PDE,∴∠F=∠FEC,∴CF=CE.∴5-=4,得.可求得,即AP=2.②若EP交线段CB于点F,如图3(2),则CF=2.类似①,可得CF=CE.∴5-=2,得.可求得,即AP=6.综上所述,当BF=1时,线段AP的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A 的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,△AOC 的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.解:(1)过点A作AH⊥BC,垂足为H.∵∠BAC=90°,AB=AC=,∴BC=4,AH=BC=2.∴OC=4-.∵,∴().(2)①当⊙O与⊙A外切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.②当⊙O与⊙A内切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.综上所述,当⊙O与⊙A相切时,△AOC的面积为或.专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学动点问题专题讲解(22页)
中考动点专题之邯郸勺丸创作所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变更能力的考查从变换的角度和运动变更来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变更,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变更情况,需要理解图形在分歧位置的情况,才干做好计算推理的过程。
在变更中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学实质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操纵、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包含空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,掌控方向.只的这样,才干更好的培养学生解题素养,在素质教育的布景下更明确地体现课程尺度的导向.本文拟就压轴题的题型布景和区分度丈量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变更过程中量与量之间的变更规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变更,引起未知量与已知量间的一种变更关系,这种变更关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度坚持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x=,GP y=,求y关于x的函数解析式,并写出函数的定义域(即自变量x的取值范围).(3)如果△PGH是等腰三角形,试求出线段PH的长.B 解:(1)当点P在弧AB上运动时,OP坚持不变,于Py是线段GO 、GP 、GH 中,有长度坚持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中,22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验,6=x 是原方程的根,且符合题意.②GP=GH 时,2336312=+x ,解得0=x . 经检验,0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CEAB =,∴11x y =, ∴xy 1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立.例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP. (2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD=,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AEADAP AE =, ∴x x yx 585458=. ∴x y 516=(8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4. ∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°,∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2.②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述,当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,ABCO 图8H△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x .此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x .此时,△AOC 的面积y =21274=-.综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题布景是特殊图形,考查询题也是特殊图形,所以要掌控好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学动点问题专题讲解(22页)
中考动点专题所谓“动点型问题”是指题设图形中消失一个或多个动点,它们在线段.射线或弧线上活动的一类凋谢性标题.解决这类问题的症结是动中求静,灵巧应用有关数学常识解决问题.症结:动中求静.数学思惟:分类思惟函数思惟方程思惟数形联合思惟转化思惟重视对几何图形活动变更才能的考察从变换的角度和活动变更来研讨三角形.四边形.函数图像等图形,经由过程“对称.动点的活动”等研讨手腕和办法,来摸索与发明图形性质及图形变更,在解题进程中渗入渗出空间不雅念和合情推理.选择根本的几何图形,让学生阅历摸索的进程,以才能立意,考察学生的自立探讨才能,促进造就学生解决问题的才能.图形在动点的活动进程中不雅察图形的变更情形,须要懂得图形在不合地位的情形,才干做好盘算推理的进程.在变更中找到不变的性质是解决数学“动点”探讨题的根本思绪,这也是动态几何数学问题中最焦点的数学本质.二期课改后数学卷中的数学压轴性题正慢慢转向数形联合.动态几何.着手操纵.试验探讨等偏向成长.这些压轴题题型繁多.题意创新,目标是考察学生的剖析问题.解决问题的才能,内容包含空间不雅念.应用意识.推理才能等.从数学思惟的层面上讲:(1)活动不雅点;(2)方程思惟;(3)数形联合思惟;(4)分类思惟;(5)转化思惟等.研讨积年来各区的压轴性试题,就能找到本年中考数学试题的热门的形成和命题的动向,它有利于我们教师在教授教养中研讨对策,掌控偏向.只的如许,才干更好的造就学生解题素养,在本质教导的布景下更明白地表现课程尺度的导向.本文拟就压轴题的题型布景和区分度测量点的消失性和区分度小题处理手段提出本身的不雅点.函数揭示了活动变更进程中量与量之间的变更纪律,是初中数学的重要内容.动点问题反应的是一种函数思惟,因为某一个点或某图形的有前提地活动变更,引起未知量与已知量间的一种变更关系,这种变更关系就是动点问题中的函数关系.那么,我们如何树立这种函数解析式呢?下面联合中测验题举例剖析.一.应用勾股定理树立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上活动时,线段GO.GP.GH 中,有无长度保持不变的线段?假如有,请指出如许的线段,并求出响应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的界说域(即自变量x 的取值规模).(3)假如△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上活动时,OP 保持不变,于是线段GO.GP.GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=,∴2362121x OH MH -==.在Rt △MPH 中, .HM NGPO AB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情形: ①GP=PH 时,x x =+233631,解得6=x . 经磨练,6=x 是原方程的根,且相符题意.②GP=GH 时,2336312=+x ,解得0=x . 经磨练,0=x 是原方程的根,但不相符题意.③PH=GH 时,2=x .综上所述,假如△PGH 是等腰三角形,那么线段PH 的长为6或2. 二.应用比例式树立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,BD=,x CE=y . (1)假如∠BAC=30°,∠DAE=105°,试肯定y 与x 之间的函数解析式;(2)假如∠BAC 的度数为α,∠DAE 的度数为β,当α,β知足如何的关系式时,(1)中y 与x 之间的函数解析式还成立?试解释来由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CEAB =,∴11x y =, ∴xy 1=.(2)因为∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,AED CB图2 3(1)∴290α-︒=αβ-, 整顿得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的界说域.(3)当BF=1时,求线段AP 的长. 解:(1)贯穿连接OD.依据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =,∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE ADAP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延伸线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°,∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2.②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE.A3(2)∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述,当BF=1时,线段AP 的长为2或6. 三.应用求图形面积的办法树立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上活动(与点B.C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的界说域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-.综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. 动态几何特色----问题布景是特别图形,考察询题也是特别图形,所以要掌控好一般与特别的关系;剖析进程中,特别要存眷图形的特点(特别角.ACO 图8HC特别图形的性质.图形的特别地位.)动点问题一向是中考热门,近几年考察探讨活动中的特别性:等腰三角形.直角三角形.类似三角形.平行四边形.梯形.特别角或其三角函数.线段或面积的最值.下面就此问题的罕有题型作简略介绍,解题办法.症结给以点拨. 一.以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为极点作B EDF ∠=∠,分离交边AB 于点E ,交射线CA 于点F .(1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型布景和区分度测量点]本题改编改过教材九上《类似形》24.5(4)例六,典范的一线三角(三等角)问题,试题在原题的基本上改编出第一小题,当E 点在AB 边上活动时,渗入渗出入圆与圆的地位关系(相切问题)的消失性的研讨形成了第二小题,参加直AB CDEOlA ′线与圆的地位关系(相切问题)的消失性的研讨形成了第三小题.区分度测量点在直线与圆的地位关系和圆与圆的地位关系,从而应用方程思惟来求解.[区分度性小题处理手段]1.直线与圆的相切的消失性的处理办法:应用d=r 树立方程.2.圆与圆的地位关系的消失性(相切问题)的处理办法:应用d=R ±r(r R >)树立方程.3.解题的症结是用含x 的代数式暗示出相干的线段. [ 略解]解:(1) 证实CDF ∆∽EBD ∆∴BECDBD CF =,代入数据得8=CF ,∴AF=2 (2)设BE=x ,则,10==AC d ,10x AE -=应用(1)的办法xCF 32=,相切时特别切和内切两种情形斟酌: 外切,xx 321010+-=,24=x ;内切,xx 321010--=,17210±=x .100<<x∴当⊙C 和⊙A 相切时,BE 的长为24或17210-. (3)当以边AC 为直径的⊙O 与线段DE 相切时,320=BE . (二)线动问题在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O,且与AC 垂直交AD 于点E.(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中间A '重合,求BC 的长;(2)若直线l 与AB 订交于点F,且AO =41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值规模;ABCDE O lF ②摸索:是否消失如许的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若消失,请求出x 的值;若不消失,请解释来由.[题型布景和区分度测量点]本题以矩形为布景,联合轴对称.类似.三角等相干常识编制得到.第一小题考察了学生轴对称.矩形.勾股定理三小块常识内容;当直线l 沿AB 边向上平移时,寻找面积函数解析式为区分测量点一.参加直线与圆的地位关系(相切问题)的消失性的研讨形成了区分度测量点二.[区分度性小题处理手段]1.找面积关系的函数解析式,规矩图形套用公式或用割补法,不规矩图形用割补法.2.直线与圆的相切的消失性的处理办法:应用d=r 树立方程. 3.解题的症结是用含x 的代数式暗示出相干的线段. [ 略解](1)∵A ’是矩形ABCD 的对称中间∴A ’B =AA ’=21AC∵AB =A ’B,AB =3∴AC =6 33=BC(2)①92+=x AC ,9412+=x AO ,)9(1212+=x AF ,x x AE 492+=∴AF 21⋅=∆AE S AEFx x 96)9(22+=,xx x S 96)9(322+-=xx x S 968127024-+-= (333<<x )②若圆A 与直线l 相切,则941432+=-x x ,01=x (舍去),582=x ∵3582<=x ∴不消失如许的x ,使圆A 与直线l 相切.(三)面动问题如图,在ABC ∆中,6,5===BC AC AB ,D .E 分离是边AB .AC 上的两个动点(D 不与A .B 重合),且保持BC DE ∥,认为DE 边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重应时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出界说域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长. [题型布景和区分度测量点]本题改编改过教材九上《类似形》24.5(4)例七,典范的共角类似三角形问题,试题为了形成坡度,在原题的基本上改编出求等腰三角形面积的第一小题,当D 点在AB 边上活动时,正方形DEFG 整体动起来,GF 边落在BC 边上时,正好和教材中的例题对应,可以说是类似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD 的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的消失性来设置区分测量点二. [区分度性小题处理手段]1.找到三角形与正方形的重叠部分是解决本题的症结,如上图3-1.3-2重叠部分分离为正方形和矩形包含两种情形.2.准确的抓住等腰三角形的腰与底的分类,如上图3-3.3-4.3-5用方程思惟解决.C3.解题的症结是用含x 的代数式暗示出相干的线段. [ 略解]解:(1)12=∆ABC S .(2)令此时正方形的边长为a ,则446a a -=,解得512=a . (3)当20≤x 时, 22253656x x y =⎪⎭⎫ ⎝⎛=, 当52 x 时, ()2252452455456x x x x y -=-⋅=. (4)720,1125,73125=AD . [类题]改编自09奉贤3月考25题,将前提(2)“当点M .N 分离在边BA .CA 上时”,去失落,同时加到第(3)题中.已知:在△ABC 中,AB =AC ,∠B =30º,BC =6,点D 在边BC 上,点E 在线段DC上,DE =3,△DEF 是等边三角形,边DF .EF 与边BA .CA 分离订交于点M .N . (1)求证:△BDM ∽△CEN ;(2)设BD =x ,△ABC 与△DEF 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出界说域.(3)当点M .N 分离在边BA .CA 上时,是否消失点D ,使以M 为圆心,BM 为半径的圆与直线EF 相切,假如消失,请求出x 的值;如不消失,请解释来由.例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变更(不与A.B )重合,求∠ACB 的大小 .ABF DEMNC剖析:点C 的变更是否影响∠ACB 的大小的变更呢?我们无妨将点C 转变一下,若何变更呢?可能在优弧AB 上,也可能在劣弧AB 上变更,显然这两者的成果不一样.那么,当点C 在优弧AB 上变更时,∠ACB 所对的弧是劣弧AB,它的大小为劣弧AB 的一半,是以很天然地想到它的圆心角,贯穿连接AO.BO,则因为AB=OA=OB,即三角形ABC 为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=21∠AOB=300,当点C 在劣弧AB 上变更时,∠ACB 所对的弧是优弧AB,它的大小为优弧AB 的一半,由∠AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500,是以,本题的答案有两个,分离为300或1500.反思:本题经由过程点C 在圆上活动的不肯定性而引起成果的不独一性.从而须要分类评论辩论.如许由点C的活动变更性而引起的分类评论辩论在解题中经常消失.变式1:已知△ABC 是半径为2的圆内接三角形,若32=AB ,求∠C 的大小.本题与例1的差别只是AB 与圆的半径的关系产生了一些变更,其解题办法与上面一致,在三角形AOB中,232121sin ==∠OB AB AOB ,则06021=∠AOB ,即0120=∠AOB , 从而当点C 在优弧AB 上变更时,∠C 所对的弧是劣弧AB,它的大小为劣弧AB 的一半,即060=∠C ,当点C 在劣弧AB 上变更时,∠C 所对的弧是优弧AB,它的大小为优弧AB 的一半,由∠AOB=1200得,优弧AB的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:∠C=1200,是以060=∠C 或∠C=1200.变式2: 如图,半经为1的半圆O 上有两个动点A.B,若AB=1,断定∠AOB 的大小是否会随点A.B 的变更而变更,若变更,求出变更规模,若不变更,求出它的值.四边形ABCD 的面积的最大值.解:(1)因为AB=OA=OB,所以三角形AOB 为等边三角形,则∠AOB=600,即∠AOB 的大小不会随点A.B 的变更而变更.(2)四边形ABCD 的面积由三个三角形构成,个中三角形AOB 的面积为43,而三角形AOD 与三角形BOC 的面积之和为)(212121BG AF BG OC AF OD +=⨯+⨯,又由梯形的中位线定理得三角形AOD 与三角形BOC 的面积之和EH BG AF =+)(21,要四边形ABCD 的面积最大,只需EH 最大,显然EH ≤OE=23,当AB ∥CD 时,EH=OE,是以四边形ABCD 的面积最大值为43+23=433.对于本题同窗们还可以持续思虑:四边形ABCD 的周长的变更规模.变式3:别为A.B,另一个极点C 在半圆上,问如何截取才干使截出的三角形的面积最大?请求解释来由(广州市2000年考题)剖析:要使三角形ABC 的面积最大,而三角形ABC 的底边AB 为圆的直径为常量,只需AB 边上的高最大即可.过点C 作CD ⊥AB于点D,贯穿连接CO,因为CD ≤CO,当O 与D 重合,CD=CO,是以,当CO 与AB垂直时,即C 为半圆弧的中点时,其三角形ABC 的面积最大.本题也可以先猜测,点C 为半圆弧的中点时,三角形ABC 的面积最大,故只需另选一个地位C1(不与C 重合),,证实三角形ABC 的面积大于三角形ABC1的面积即可.如图显然三角形 ABC1的面积=21AB ×C1D,而C1D< C1O=CO,则三角形 ABC1的面积=21AB ×C1D<21AB ×C1O=三角形 ABC 的面积,是以,对于除点C 外的随意率性点C1,都有三角形 ABC1的面积小于三角形三角形 ABC 的面积,故点C 为半圆中点时,三角形ABC 面积最大.本题还可研讨三角形ABC 的周长何时最大的问题.提醒:应用周长与面积之间的关系.要三角形ABC 的周长最大,AB 为常数,只需AC+BC 最大,而(AC+BC )2=AC2+CB2+2AC ×BC=AB2+4×ΔABC 的面积,是以ΔABC 的面积最大时,AC+BC 最大,从而ΔABC 的周长最大.从以上一道题及其三个变式的研讨我们不难发明,解决动态几何问题的罕有办法有:一、 特别探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P 为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B,则PC BP 的值为(A )2 (B )3 (C )23(D )26剖析:本题是一道选择题,给出四个答案有且只有一个是准确的,是以可以取一个特别地位进行研讨,当点P 知足PB ⊥AB 时,可以经由过程盘算得出PB=221322=- BC ×AP=BP ×AB,是以 BC=62462288162822==+=+⨯BP AB BPAB ,在三角形BPC 中,PC=36222=-BC BP , 所以,PC BP =3选(B ) 当然,本题还可以依据三角形类似得BP AP PC BP =,即可盘算出结论.作为一道选择题,到此已经完成,但假如是一道解答题,我们得出的结论只是一个特别情形,还要进一步证实对一般情形也成立.AA例3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分离在边AB.AC 上滑动并保持AE=CF,但点F 不与A.C重合,点E 不与B.A 重合.断定∆OEF 的外形,并加以证实.断定四边形AEOF 的面积是否随点E.F 的变更而变更,若变更,求其变更规模,若不变更,求它的值.∆AEF 的面积是否跟着点 E.F 的变更而变更,若变更,求其变更规模,若不变更,求它的值.剖析:本题结论很难发明,先从特别情形入手.最特别情形为E.F 分离为AB.AC 中点,显然有ΔEOF 为等腰直角三角形.还可发明当点E 与A 无穷接近时,点F 与点C 无穷接近,此时ΔEOF 无穷接近ΔAOC,而ΔAOC 为等腰直角三角形,几种特别情形都可以得出ΔEOF 为等腰直角三角形.一般情形下成立吗?OE 与OF 相等吗?∠EOF 为直角吗?可否证实.假如它们成立,即可以推出三角形OFC 与三角形OEA 全等,一般情形下这两个三角形全等吗?不难从标题标前提可得:OA=OC,∠OCF=∠OAE,而AE=CF,则ΔOEA ≌ΔOFC,则OE=OF,且∠FOC=∠EOA,所以∠EOF=∠EOA+∠AOF=∠FOC+∠FOA=900,则∠EOF 为直角,故ΔEOF 为等腰直角三角形.二、着手实践,操纵确认例4(2003年广州市中测验题)在⊙O 中,C 为弧AB 的中点,D 为弧AC 上任一点(与A.C 不重合),则(A )AC+CB=AD+DB (B) AC+CB<AD+DB(C) AC+CB>AD+DB (D) AC+CB 与AD+DB 的大小关系不肯定剖析:本题可以经由过程着手操纵一下,器量AC.CB.AD.DB 的长度,可以F E O C B A测验测验换几个地位量一量,得出结论(C )例5:如图,过两齐心圆的小圆上任一点C 分离作小圆的直径CA 和非直径的弦CD,延伸CA 和CD 与大圆分离交于点B.E,则下列结论中准确的是( * )(A )AB DE = (B )AB DE >(C )AB DE <(D )AB DE ,的大小不肯定剖析:本题可以经由过程器量的办法进行,选(B )本题也可以可以证实得出结论,贯穿连接DO.EO,则在三角形OED 中,因为双方之差小于第三边,则 OE —OD<DE,即OB —OA<DE,是以ED AB <,即AB DE >三、 树立接洽,盘算解释例6:如图,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上随意率性一点,则DN+MN 的最小值为 .剖析:可否将DN 和NM 进行转化,与树立三角形双方之和大于第三边等问题,很天然地想到轴对称问题,因为ABCD 为正方形,是以贯穿连接BN,显然有ND=NB,则问题就转化为BN+NM 的最小值问题了,一般情形下:BN+NM ≥BM,只有在B.N.M 三点共线时,BN+NM=BM,是以DN+MN 的最小值为BM=522=+CM BC 本题经由过程树立平面上三个点中构成的三角形中的双方之和大于第三边及共线时的双方之和等于第三边的特别情形求最小值,最后经由过程勾股定理盘算得出结论.例7:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分离在边AB.AC 上滑动并保持AE=CF,但点F 不与A.C 重合,点E 不与B.A 重合.断定四边形AEOF 的面积是否随点E.F 的变更而变更,若变更,求其变更规模,若不变更,求它的值.∆AEF 的面积是否跟着点E.F 的变更而变更,若变更,求其变更规模,若不变更,求它的值. (即例3的第2.第3问)剖析:(2)本题的办法许多,其一,可以树立四边形AEOF 与AE 长的函数关系式,如设AE=x,则AF=x -22, 而三角形AOB 的面积与三角形AOE 的面积B M N DC B A F E O C B A之比=x 22,而三角形AOB 的面积=221=⨯⨯OA OB ,则三角形AOE 的面积=2x ,同理三角形AOF 的面积=222x-,是以四边形AEOF 的面积=22)22(=-+x x ;即AEOF 的面积不会随点E.F 的变更而变更,是一个定值,且为2.当然,本题也可以如许思虑,因为三角形AOE 与三角形COF 全等,则四边形AEOF 的面积与三角形AOC 的面积相等,而AOC 的面积为2,是以AEOF 的面积不会随点E.F 的变更而变更,是一个定值,且为2.本题经由过程树立函数关系或有关图形之间的关系,然后经由过程简略的盘算得出结论的办法应用比较普遍.第(3)问,也可以经由过程树立函数关系求得,∆AEF 的面积=1)2(21)22(212+--=-x x x ,又x 的变更规模为220<<x ,由二次函数常识得∆AEF 的面积的规模为:<0∆AEF 的面积1≤.本题也可以依据三角形AEF 与三角形OEF 的面积关系肯定∆AEF 的面积规模:不难证实∆AEF 的面积≤∆OEF 的面积,它们公用边EF,取EF 的中点H,显然因为∆OEF 为等腰直角三角形,则OH ⊥EF,作AG ⊥EF,显然AG ≤AH=AG (=EF 21),所以∆AEF 的面积≤∆OEF 的面积,而它们的和为2,是以<0∆AEF 的面积1≤.本题包涵的内在十分丰硕,还可以提出许多问题研讨:比方,比较线段EF 与AO 长度大小等(可以经由过程A.E.O.F 四点在以EF 为直径的圆上得出许多结论)例8:如图,在矩形ABCD 中,AB=12cm,BC=6cm,点P 沿AB 边从点A 开端向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开端向点A 以1厘米/秒的速度移动.假如P.Q同时动身,用t 秒暗示移动的时光(0≤ t ≤6),那么:(1)当t 为何值时,三角形QAP 为等腰三角形?(2)求四边形QAPC 的面积,提出一个与盘算成果有关的结论;(3)当t 为何值时,以点Q.A.P 为极点的三角形与△ABC 类似?剖析:(1)当三角形QAP 为等腰三角形时,因为∠A 为直角,只能是AQ=AP,树立等量关系,t t -=62,即2=t 时,三角形QAP 为等腰三角形;(2)四边形QAPC 的面积=ABCD 的面积—三角形QDC 的面积—三角形PBC 的面积 =6)212(211221612⨯--⨯⨯-⨯x x =36,即当P.Q 活动时,四边形QAPC 的面积不变.(3)显然有两种情形:△PAQ ∽△ABC,△QAP ∽△ABC, 由类似关系得61262=-x x 或12662=-x x ,解之得3=x 或2.1=x树立关系求解,包含的内容多,可所以函数关系,可所以方程组或不等式等,经由过程解方程.或函数的最大值最小值,自变量的取值规模等方面来解决问题;也可所以经由过程一些几何上的关系,描写图形的特点,如全等.类似.共圆等方面的常识求解.作为练习同窗们可以分解上述办法求解:点动.线动.形动构成的问题称之为动态几何问题. 它重要以几何图形为载体,活动变更为主线,集多个常识点为一体,集多种解题思惟于一题. 这类题分解性强,才能请求高,它能周全的考察学生的实践操纵才能,空间想象才能以及剖析问题息争决问题的才能. 个中以灵巧多变而著称的双动点问题更成为本年中测验题的热门,现采撷几例加以分类浅析,供读者观赏. 1 以双动点为载体,寻找函数图象问题 例1 (2007年杭州市)在直角梯形ABCD 中,∠C=90°,高CD=6cm(如图1). 动点P,Q 同时从点B 动身,点P 沿BA,AD,DC 活动到点C 停滞,点Q 沿BC 活动到点C 停滞,两点活动时的速度都是1cm/s. 而当点P 到达点A 时,点Q 正好到达点C. 设P,Q 同时从点B 动身,经由的时光为t(s)时,△BPQ 的面积为y(cm)2(如图2). 分离以t,y 为横.纵坐标树立直角坐标系,已知点P 在AD 边上从A 到D 活动时,y 与t 的函数图象是图3中的线段MN.(1)分离求出梯形中BA,AD 的长度;(2)写出图3中M,N 两点的坐标;(3)分离写出点P 在BA 边上和DC 边上活动时,y 与t 的函数关系式(注明自变量的取值规模),并在图3中补全全部活动中y关于x的函数关系的大致图象.评析本题将点的活动进程中形成的函数解析式与其响应的函数图象有机的联合在一路,二者相辅相成,给人以清爽.淡雅之感. 本题彰显数形联合.分类评论辩论.函数建模与参数思惟在解题进程中的灵巧应用. 解决本题的症结是从函数图象中肯定线段AB.梯形的高与t的函数关系式,树立起y与t的函数关系式,进而依据函数关系式填补函数图象.2 以双动点为载体,寻找结论凋谢性问题例2 (2007年泰州市)如图5,Rt△ABC中,∠B=90°,∠CAB=30°.它的极点A的坐标为(10,0),极点B的坐标为(5,53),AB=10,点P从点A动身,沿A→B→C的偏向匀速活动,同时点Q从点D(0,2)动身,沿y轴正偏向以雷同速度活动,当点P到达点C时,两点同时停滞活动,设活动的时光为t秒.(1)求∠BAO的度数.(2)当点P在AB上活动时,△OPQ的面积S(平地契位)与时光t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的活动速度.(3)求(2)中面积S与时光t之间的函数关系式及面积S取最大值时点P的坐标.(4)假如点P,Q保持(2)中的速度不变,那么点P沿AB边活动时,∠OPQ的大小跟着时光t的增大而增大;沿着BC边活动时,∠OPQ的大小跟着时光t的增大而减小,当点P沿这双方活动时,使∠OPQ=90°的点P有几个?请解释来由.解 (1)∠BAO=60°.(2)点P的活动速度为2个单位/秒. 评析本题是以双点活动构建的集函数.凋谢.最值问题于一体的分解题. 试题有难度.有梯度也有区分度,是一道具有很好的提拔功效的好题. 解决本题的症结是从图象中获取P的速度为2,然后树立S与t的函数关系式,应用函数的性质解得问题(3).本题的难点是题(4),考生要从标题标信息中肯定树立以B为直角极点的三角形,以B为临界点进行分类评论辩论,进而肯定点的个数问题.3 以双动点为载体,寻找消失性问题例3 (2007年扬州市)如图8,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点动身,分离沿B→A,B→C活动,速度是1厘米/秒.过M作直线垂直于AB,分离交AN,CD于P,Q.当点N到达终点C时,点M也随之停滞活动.设活动时光为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时光t,使△PNB∽△PAD,并求出它们的类似比;(3)若在活动进程中,消失某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值规模;(4)是否消失如许的矩形:在活动进程中,消失某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若消失,求a的值;若不消失,请解释来由.评析本题是以双动点为载体,矩形为布景创设的消失性问题.试题由浅入深.层层递进,将几何与代数常识完善的分解为一题,侧重对类似和梯形面积等常识点的考察,本题的难点主如果题(3),解决此题的症结是应用类似三角形的性质用t的代数式暗示PM,进而应用梯形面积相等列等式求出t与a的函数关系式,再应用t的规模肯定的a取值规模. 第(4)小题是题(3)结论的拓展应用,在解决此问题的进程中,要有全局不雅念以及对问题的整体掌控.4 以双动点为载体,寻找函数最值问题例4 (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E.F是对角线AC上的两个动点,它们分离从点。
中考数学动点问题专题讲解
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 2222233621419x x x MH PH MP +=-+=+= AEDCB 图2HM NGPOAB图1x y例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x .A3(2)ABCO 图8HC此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学动点题讲解
中考数学动点题讲解中考数学动点题主要考察考生对平面几何中动点的理解和应用能力。
在这种题型中,需要考生根据动点的特点和运动轨迹,推导出动点所在的图形的性质和相关参数。
以下是中考数学动点题的讲解。
1. 直线上动点问题直线上动点问题是动点题中最简单的一种,通常需要考生根据动点的移动轨迹,推导出线段长度、角度等相关量的变化规律。
例如,有一条长度为10的线段AB,动点P沿着这条线段从A点开始匀速向B点移动,求当P点到达B点时,线段AB的中点O的位置。
解题思路:由于P点是匀速移动的,可以通过构建等速度线段来找到P点在到达B点前所处的位置。
具体地,我们可以在AB上构造以A点和B点为端点、长度为5的等速度线段CD和EF,分别与P点的轨迹相交于C点和E点。
根据线段AB的中点公式,可以得出线段OB的长度为5,因此,当P点到达B点时,线段OB的位置位于B点的左侧5个单位长度处。
2. 圆上动点问题圆上动点问题通常需要考生根据动点所在的圆的性质,推导出相关的几何关系和参数。
例如,有一条固定的半径为3的圆和一个动点P沿着这个圆的周长运动,当P点从起始位置出发后,经过圆心O点后,再走过180度后又回到起始位置,求动点P所走的路径长度。
解题思路:由于P点沿着圆的周长匀速运动,因此,当P点运动经过180度后,它所走的路径长度就是圆的周长的一半,即3π。
又因为P点在运动过程中经过圆心O点,因此,P点所在的运动轨迹是一条弧线,其长度等于圆心角的对应弧长。
根据圆心角的定义,当P 点运动经过180度时,它所对应的圆心角为π,因此,P点所在弧线的长度为圆的周长的一半,即3π。
3. 平面内任意图形上动点问题平面内任意图形上的动点问题通常需要考生根据所给图形的几何特征,推导出动点所处的位置和相关参数。
例如,有一个正方形ABCD和一个动点P沿着正方形边界从A点开始匀速运动,当P点回到A点时,求P点所在的轨迹。
解题思路:由于P点沿着正方形边界匀速运动,它所在的轨迹应为一条四边形,其四个顶点分别为A、B、C、D。
中考动点问题题型方法归纳
图(3)B图(1)B图(2) 动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=x a y (0≠a )经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.提示:发现并充分运用特殊角∠DAB=60° 当△OPQ 面积最大时,四边形BCPQ 的面积最小。
初三动点问题的解题技巧
初三数学动点问题归类及解题技巧如下:
初中常见的动点问题:1.求最值问题。
2.动点构成特殊图形问题。
一、求最值问题
初中利用轴对称性质实现“搬点移线”求几何图形中一些线段和最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。
求线段和的最小值问题可以归结为:一个动点的最值问题,两个动点的最值问题。
以“搬点移线”为主要方法,利用轴对称性质求解决几何图形中一些线段和最小值问题。
如何实现“搬点移线”:1)确定被“搬”的点;2)确定被“移”的线。
二、动点构成特殊图形
问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)。
分析图形变化过程中变量和其他量之间的关系,或是找到变化中的不变量,建立方程或函数关系解决。
动点构成特殊图形解题方法:1、把握运动变化的形式及过程;思考运动初始状态时几何元素的关系,以及可求出的量。
2、先确定特定图形中动点的位置,画出符合题意的图形——化动为静。
3、根据已知条件,将动点的移动距离以及解决问题时所需要的条件用含t的代数式表示出来。
4、根据所求,利用特殊图形的性质或相互关系,找出等量关系列出方程来解决动点问题。
中考数学动点问题解题思路讲解
中考数学动点问题解题思路讲解
在中考数学中,动点问题是一个重要的考点,需要我们熟练掌握解题方法。
下面,我将为大家详细讲解动点问题的解题思路。
首先,我们需要明确动点问题的定义:动点问题是指在一个平面或空间中,有一个或多个点沿着规定的路径或轨迹运动,求其位置、速度、加速度等问题。
因此,解动点问题的关键在于理解运动轨迹和相关参数的变化规律。
其次,我们需要掌握常见的动点问题类型。
例如,直线运动、圆周运动、三角形内点运动、平面内多边形顶点运动等等。
对于不同类型的问题,我们需要采用不同的解题方法。
接着,我们需要熟练掌握求解动点问题的基本方法。
一般来说,我们需要根据题目所给的条件,求出动点的坐标或位置关系,并进一步求出相关参数的变化情况。
在此过程中,我们需要灵活运用向量、坐标、几何关系等知识,辅以画图和推导,逐步求解问题。
最后,我们需要注意解题的时候要注意细节,例如单位、符号、精度等问题。
同时,需要反复练习不同类型的动点问题,提高我们的解题能力和水平。
综上所述,掌握动点问题的解题思路,需要我们理解问题的定义、掌握不同类型的问题、熟练掌握基本方法、注意细节和多练习。
相信通过不断努力和实践,我们一定能够在中考中取得优异的成绩。
- 1 -。
中考数学动点问题专题讲解(22页)
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。
关键:动中求静。
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。
动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G 。
中考数学压轴题型研究——动点几何问题解题方法
中考数学压轴题型研究(一)——动点几何问题下面以具体实例简单的说一说此类题的解题方法。
一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题例1:(北京市石景山区2010年数学期中练习)在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P,Q 两点之间的距离是多少?点评:此题关键是明确点P 、Q 在△ABC 边上的位置,有三种情况。
(1)当0﹤t ≦6时,P 、Q 分别在AB 、BC 边上;(2)当6﹤t ≦8时,P 、Q 分别在AB 延长线上和BC 边上; (3)当t >8时, P 、Q 分别在AB 、BC 边上延长线上. 然后分别用第一步的方法列方程求解.例2: (北京市顺义2010年初三模考)已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P从A点出发,沿A →B →C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少? 点评:这个问题的关键是明确点P 在四边形ABCD 边上的位置,根据题意点P 的位置分三种情况:分别在AB 上、BC 边上、EC 边上.例3:(北京市顺义2010年初三模考)如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A .32B .18C .16D .10例4:(09齐齐哈尔)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S=时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 点评:本题关键是区分点P 的位置:点P 在OB 上,点P 在BA 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)在整个运动过程中,所形成的△PEF的面积存在最大值,
当△PEF的面积最大时,求线段BP的长;
(3)是否存在某一时刻t,使△PEF是直角三角形?若存在,
请求出此时刻t的值,若不存在,请说明理由。
A
A
线段运动与四边形问题(特殊平行四边形的判定)
E
F
H
线段运动与函数的综合(二次函数求面积最大值) B
DP C B
C
线段运动与存在性问题(分类思想)
X 广东2015 25.如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与
LOGO
Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=
∠ADC=90°∠CAD=30°,AB=BC=4cm.
(1)填空:AD=_________ (cm),DC=_____________(cm);
作
,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.
(1)填空:点B的坐标为____________ ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;
若不存在,请说明理由;
(3)①求证:
;②设
,矩形BDEF的面积为y,求关于y的函数关系式
(可利用①的结论),并求出的最小值。
请插入图片
3 作用:考查学生在学习数学中对 动态问题的认识和理解。
4 意义:培养学生在“分类讨论、数形结合、 方程与函数等”数学思想的形成。
5 题型出现的形式: 点动、线动、面动过程中求角、线段、 面积、函数极值问题, 或判定三角形、四边形的形状, 或存在性等问题。
PART ONE
02
以铜为镜,可以正衣冠
动 点 问 题
----数学中考题型(第25题)解题策略之分享
CONTENTS 目录
1 题型背景说明 2 广东中考回顾 3 解题策略分享 4 动态问题小结
PART ONE
01
题型背景说明
题型位置及比分 题型呈现的意义
题型体现的作用 题型出现的形式
LOGO
1 中考动点题型出在最后的第25题
2 考试分数9分,占据近8%的比例, 特征:“一简”“二繁”“三折”
以人为镜,可以明得失
以史为镜,可以知兴退
LOGOX 广东2013Fra bibliotekLOGO
25题.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,
∠FDE=90°,DF=4,DE=.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重
合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平
点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直
线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB.AC.AD于点E、F、
H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。
(1)当t=2时,连接DE.DF,求证:四边形AEDF为菱形;
线段运动与四边形问题(判断四边形形状)
线段运动过程中,判断线段的位置关系 与数量关系(三角形全等的应用)
线段运动与函数综合(二次函数最值问题的考查)
X 广东2017
25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分
别是
和
,点D是对角线AC上一动点(不与A、C重合),连结BD,
旋转与点运动的综合
1、通过旋转求角的大小 (旋转的性质、等边三角形判定)
2、求线段的长度(面积法、比例法) 3、动点与 函数综合应用(三角函数、一次函数、二次函数)
在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
“点”在路线上运动求线段长度 (勾股定理或三角函数知识)
点动时,求点到线段的距离(三角函数知识) 点动与函数的综合运用(数形结合与方程思想)
X 广东2016
25.如图12,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将 通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; (3)在平移变换过程中,设y= SOPB ,BP=x(0≤x≤2),求y与 x之间的函数关系式,并求出y的最大值.
“点”在线段上运动 1、求点的坐标
2、点动与存在性问题(等腰三角形的知识)
分类思想
3、动点与线段的关系及函数的综合应用(三角形相似知识)
X 广东2018
25.已知,Rt△OAB,∠OAB=900,∠ABO=300,斜边OB=4,将Rt△OAB绕点O顺时针旋转 600,如题图25-1,连接BC. (1)填空:∠OBC = ———— °; (2)如题图25-1,连接AC,作OP⊥AC,垂足为P,求OP的长度; (3)如题图25-2,点M、N同时从O点出发,在△OBC边上运动,M 沿路 O C B 径匀 速运动,N沿 O B C 路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为 1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x 为何值时y取得最大值?最大值为多少?
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上
沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结
MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),
行移动,当点F运动到点A时停止运动.
(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC
交于点M,则∠EMC=______度;
(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,
求FC的长;
(3)在三角板DEF运动过程中,设BF= x ,两块三角板重叠部分面积为,
求与的函数解析式,并求出对应的取值范围.
三角形运动求角(三角形外角定理)
三角形运动求线段长度(相似三角形性质)
三角形运动与函数的综合运用
分类思想、建模思想、数形结合思想
X 广东中考2014
LOGO
25. 如题25-1图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从