中考数学--动点问题题型方法归纳

合集下载

历年中考数学动点问题题型方法计划归纳

历年中考数学动点问题题型方法计划归纳

动点问题题型方法概括动向几何特色----问题背景是特别图形,考察问题也是特别图形,殊的关系;剖析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形置。

)动点问题向来是中考热门,近几年考察研究运动中的特别性:等腰相像三角形、平行四边形、梯形、特别角或其三角函数、线段或面积的最值。

下边就此问题的常有题型作简单介绍,解题方法、重点给予点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线y3x6与坐标轴分别交于A、B4从O点出发,同时抵达A点,运动停止.点Q沿线段OA运动,速度点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之(3)当48时,求出点P的坐标,并直接写出以点O、P、Q为S5四个极点M的坐标.yBPxO Q A提示:第(2)问按点P到拐点B全部时间分段分类;2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC(1)求⊙O的直径;(2)若D是AB延伸线上一点,连结CD,当BD长为多少时,CD(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动从B点出发沿BC方向运动,设运动时间为t(s)(0 t 2),连结EF为直角三角形.注意:第(3)问按直角地点分类议论C CFEA AB AO B D O图(1)图(2)图(面积最小?并求出最小值及此时PQ的长.注意:发现并充足运用特别角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

二、4、(2009特别四边形边上动点年吉林省)如下图,菱形ABCD的边长为6厘米,B始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C以2厘米/秒的速度沿 A B C D的方向运动,当点Q运动到同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC方厘米(这里规定:点和线段是面积为O的三角形),解答以下问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时3)求y与x之间的函数关系式.D CPBA Q轴于点H.(1)求直线AC的分析式;(2)连结BM,如图 2,动点P从点A出发,沿折线ABC方向以 2点C匀速运动,设△PMB的面积为S(S 0),点P的运动时间为数关系式(要求写出自变量t的取值范围);3)在(2)的条件下,当t为什么值时,△MPB与△BCO互为余角,并线AC所夹锐角的正切值.yAHB yA H BMOx MCxO C图(1)2)问按点P到拐点B所用时间分段分类;注意:第(图(2)第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运∠MPB=∠ABM的两种状况,求出t值。

动点问题题型方法归纳

动点问题题型方法归纳

图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.2、⊙O 的直,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 二、特殊四边形边上动点图(1)图(2)4、如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式.O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 5、如图1,在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.6、如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF;(3)设四边形AEFD 的面积为S .求S 关于t 的函数关系式;7、已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且 ∠AOC=60°,点B 的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B,C 三点的抛物线的解析式; (3)当3,a OD ==时,求t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、如图,在平面直角坐标系xoy 中,10-与x B. 过点B 作x轴的平行线BC,交抛物线于点C,连结AC .现有两动点P,Q 分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒) (1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQF 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 三、直线上动点8、如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结A C B C A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(此题备用)(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.9、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

中考动点问题的解题技巧

中考动点问题的解题技巧

在中考数学中,动点问题是一个比较常见的题型。

这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。

以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。

对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。

2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。

比如,可以建立方程或不等式来描述点的位置和运动轨迹。

3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。

因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。

4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。

因此,需要进行分类讨论,逐一解决不同情况下的数学问题。

5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。

因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。

6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。

因此,在平时的学习中,需要加强这些知识点的学习和训练。

7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。

如果这些细节处理不当,可能会导致解题错误。

总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。

同时,也需要注意细节处理。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳初中物理学动点问题是指分析物体在空间中沿特定轨迹运动的问题。

动点问题通常涉及位置、速度、加速度等物理量的变化及其关系,通常可以通过数学方法进行分析和解决。

在初中物理教学中,动点问题是一个重要的知识点,对学生的数学思维能力和物理理解能力具有一定的要求。

下面将对初中动点问题的解决方法进行归纳总结。

1.位置、速度和加速度的关系在解决动点问题时,首先需要了解位置、速度和加速度三者之间的关系。

位置是描述物体在空间中的具体位置,速度是描述物体在单位时间内所走的距离和方向的改变,加速度是描述速度随时间的变化率。

在物理学中,位置、速度和加速度之间有着具体的数学关系,通过这些关系可以解决动点问题。

初中生需要掌握位置、速度和加速度的数学表达式,以及它们之间的相互转化关系,才能解决动点问题。

2.匀速直线运动的解决方法在解决动点问题时,最简单的情况是匀速直线运动。

匀速直线运动的特点是物体在单位时间内所走的距离相等,速度不变。

针对匀速直线运动,可以通过速度和时间的关系,求出物体的位移。

在初中物理教学中,学生通常会接触到匀速直线运动的解决方法,可以通过公式计算物体的位移、速度和时间等物理量。

3.变速直线运动的解决方法相对于匀速直线运动,变速直线运动在初中物理学中更具有挑战性。

在变速直线运动中,物体的速度随时间的变化,加速度不为0。

在解决变速直线运动问题时,需要利用速度和加速度的关系,求出物体在不同时间内的速度和位移。

针对变速直线运动的问题,通常需要运用微积分等高等数学知识进行分析和解决。

4.抛体运动的解决方法抛体运动是一个常见的动点问题,描述的是物体在被施加初速度的情况下,同时沿水平方向和竖直方向运动的情况。

在初中物理学中,学生通常需要掌握抛体运动的解决方法,包括通过初速度、加速度等参数计算物体的运动轨迹、最大高度、飞行时间等物理量。

对于抛体运动,学生需要了解抛体的水平运动和竖直运动之间的关系,以及如何通过物理公式和数学方法进行求解。

动点问题题型方法

动点问题题型方法

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上的动点 1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.图(3)B图(1)B图(2)注意:第(3)问按直角位置分类讨论3、如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°,当△OPQ 面积最大时,四边形BCPQ 的面积最小。

数学动点问题解题技巧初三

数学动点问题解题技巧初三

数学动点问题解题技巧初三
1. 着重理解问题意思:要仔细阅读题目,明确所求,理解问题中涉及的各项条件,并将其表示为数学式子。

2. 建立坐标系:尽量建立合适的坐标系,明确各个动点所在位置的坐标轴位置和数值。

这有助于我们更直观地看到动点运动的方向和路径。

3. 利用几何图形:有时候将问题中所涉及的几何图形画出来有助于我们更好地理解和解决问题。

4. 运用向量和向量运算:向量和向量运算是解决动点问题的重要基础,尤其是位移向量、速度向量和加速度向量。

5. 建立方程组:对于复杂的动点问题,可以通过建立方程组来求解,利用各个动点的运动状态和条件,把问题转化为数学方程进行求解。

6. 合理选择计算方法:对于复杂的动点问题,选择合适的计算方法也是非常重要的,有些问题可以通过空间几何、三角函数、微积分等方面的运算方法解决。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳初中动点问题是初中物理学习中非常重要的内容,它涉及到物体在运动中所具有的一系列特性和规律。

在学习过程中,我们经常会遇到一些与动点问题相关的题目,这些题目需要我们运用一定的方法和技巧来解决。

下面将对初中动点问题的解决方法进行归纳总结。

一、描述物体的运动状态1.位置、速度和加速度在解决动点问题时,首先要对物体在运动过程中的状态进行描述,这包括物体的位置、速度和加速度。

位置是物体所处的空间位置,速度是物体在单位时间内所移动的距离,加速度是物体在单位时间内速度的变化量。

在描述物体的运动状态时,我们需要了解物体的初始位置、初速度、加速度等参数,这可以帮助我们解决动点问题。

2.坐标系的选择在描述物体的运动状态时,我们通常会选择合适的坐标系来进行描述。

常见的坐标系有直角坐标系和极坐标系。

在选择坐标系时,应该根据具体情况确定物体的运动方向和位置,选择合适的坐标系可以简化问题的分析和解决过程。

二、分析物体的运动规律1.运动图象的绘制在解决动点问题时,通常会涉及到物体的位移-时间图象、速度-时间图象和加速度-时间图象。

这些图象可以帮助我们直观地了解物体在运动过程中的变化规律。

绘制这些图象需要根据物体的运动状态和参数,通过计算得出相应的数值,并将其表示在坐标系中,从而得到相应的运动图象。

2.运动规律的表达物体在运动过程中,其运动规律可以用公式来表示。

常见的运动规律有匀速直线运动、匀变速直线运动和曲线运动。

在解决动点问题时,需要根据具体情况选用相应的运动规律,将其与物体的运动参数相结合,从而得出问题的解决方法。

三、解决动点问题的方法和技巧1.运动的方程在解决动点问题时,我们通常会使用位移、速度和加速度之间的关系来求解。

位移-时间关系、速度-时间关系和加速度-时间关系都可以用来描述物体的运动规律,通过这些关系可以得到相应的运动方程,从而求解出问题的答案。

2.分段计算在解决复杂的动点问题时,有时需要将问题分段计算,分别求解不同阶段的运动情况,然后综合得出整体的运动规律。

初三数学动点问题解题技巧

初三数学动点问题解题技巧

初三数学动点问题解题技巧
1.运用常识分析现象:问题中有两个变量(时间t和距离d),所以可以使用x=vt(物体速度v和时间t关联),d=vt(物体距离d和时间t也有关联)来描述时间和距离之间的关系。

2.用数理归纳:考虑从时间t1到 t2变化的情况,令s=d2-d1,s=vt2-
vt1=v(t2-t1)=v∆t;这是一个比较常的原理,得到的表达式可用来简化问题的解法。

3.用分析思考重新组织求解:将时间t和距离d抽象为一个整体,表述为一个乘法运算,即先乘以时间t,算出距离d,即d=vt。

由此可以多次迭代以确定每秒距离一定的最小速度v。

4.用计算求出结果:可以求出v的值来确定物体的最小速度,从而获得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 B图 B 图动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.3)问按直角位置分类讨论3.如图,已知抛物线(1)20)y a x a=-+≠经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

QB C二、 特殊四边形边上动点4.如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部...分.的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.7、已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,∠AOC=60°,点B的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式; (3)当3,a OD ==时,求t 的值及此时直线PQ 的解析式;8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,得PF=OA (定值)。

第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.三、 直线上动点8、如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60° 特殊图形四边形BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。

10、如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.注意:第(4)问按点P 分别在AB 、BC 、CD 边上分类讨论;求t 值时,灵活运用等腰三角形“三线合一”。

11、如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,(0,43C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点A D P C Q 图1 D A P CB (Q) 图2 图3 C A D P B Q按照上述要求到达A 点所用的时间最短。

(要求:简述确定G 点位置的方法,但不要求证明)提示:第(2)问,平分周长时,直线过菱形的中心;第(3)问,转化为点G到A的距离加G到(2)中直线的距离和最小;发现(2)中直线与x轴夹角为60°.见“最短路线问题”专题。

12、(2009年上海市)已知∠ABC=90°,AB=2,BC=3,AD ∥BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足ABADPC PQ =(如图1所示). (1)当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长;(2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示△APQ 的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图3所示),求QPC ∠的大小.注意:第(2)问,求动态问题中的变量取值范围时,先动手操作找到运动始、末两个位置变量的取值,然后再根据运动的特点确定满足条件的变量的取值范围。

当PC ⊥BD 时,点Q 、B 重合,x 获得最小值; 当P 与D 重合时,x 获得最大值。

第(3)问,灵活运用SSA 判定两三角形相似,即两个锐角三角形或两个钝角三角形可用SSA 来判定两个三角形相似;或者用同一法;或者证∠BQP=∠BCP,得B、Q、C、P四点共圆也可求解14、如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.t值;有二种成立的情形,DE∥QB,PQ∥BC;(4)按点P运动方向分类,按要求画出图形再结合图形性质求出t值;有二种情形,CQ=CP=AQ=t时,QC=PC=6-t时.15、已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m=(2m >)与x 轴交于点D . (1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由. 提示:第(2)问,按对应锐角不同分类讨论,有两种情形;第(3)问,四边形ABEF 为平行四边形时,E 、F 两点纵坐标相等,且AB=EF ,对第(2)问中两种情形分别讨论。

相关文档
最新文档