中考数学--动点问题题型方法归纳
历年中考数学动点问题题型方法计划归纳
动点问题题型方法概括动向几何特色----问题背景是特别图形,考察问题也是特别图形,殊的关系;剖析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形置。
)动点问题向来是中考热门,近几年考察研究运动中的特别性:等腰相像三角形、平行四边形、梯形、特别角或其三角函数、线段或面积的最值。
下边就此问题的常有题型作简单介绍,解题方法、重点给予点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线y3x6与坐标轴分别交于A、B4从O点出发,同时抵达A点,运动停止.点Q沿线段OA运动,速度点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之(3)当48时,求出点P的坐标,并直接写出以点O、P、Q为S5四个极点M的坐标.yBPxO Q A提示:第(2)问按点P到拐点B全部时间分段分类;2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC(1)求⊙O的直径;(2)若D是AB延伸线上一点,连结CD,当BD长为多少时,CD(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动从B点出发沿BC方向运动,设运动时间为t(s)(0 t 2),连结EF为直角三角形.注意:第(3)问按直角地点分类议论C CFEA AB AO B D O图(1)图(2)图(面积最小?并求出最小值及此时PQ的长.注意:发现并充足运用特别角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。
二、4、(2009特别四边形边上动点年吉林省)如下图,菱形ABCD的边长为6厘米,B始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C以2厘米/秒的速度沿 A B C D的方向运动,当点Q运动到同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC方厘米(这里规定:点和线段是面积为O的三角形),解答以下问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时3)求y与x之间的函数关系式.D CPBA Q轴于点H.(1)求直线AC的分析式;(2)连结BM,如图 2,动点P从点A出发,沿折线ABC方向以 2点C匀速运动,设△PMB的面积为S(S 0),点P的运动时间为数关系式(要求写出自变量t的取值范围);3)在(2)的条件下,当t为什么值时,△MPB与△BCO互为余角,并线AC所夹锐角的正切值.yAHB yA H BMOx MCxO C图(1)2)问按点P到拐点B所用时间分段分类;注意:第(图(2)第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运∠MPB=∠ABM的两种状况,求出t值。
动点问题题型方法归纳
图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.2、⊙O 的直,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 二、特殊四边形边上动点图(1)图(2)4、如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式.O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 5、如图1,在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.6、如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF;(3)设四边形AEFD 的面积为S .求S 关于t 的函数关系式;7、已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且 ∠AOC=60°,点B 的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B,C 三点的抛物线的解析式; (3)当3,a OD ==时,求t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、如图,在平面直角坐标系xoy 中,10-与x B. 过点B 作x轴的平行线BC,交抛物线于点C,连结AC .现有两动点P,Q 分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒) (1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQF 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 三、直线上动点8、如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结A C B C A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(此题备用)(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.9、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
中考数学动点题型全归纳
中考数学动点题型全归纳
中考数学动点题型往往与圆、椭圆、双曲线等曲线有关,因此要求考生理解更深,运用相应的公式将各种题型归纳如下:
一、求曲线上的一点到其它曲线的距离
以半径为r的圆为例,求该圆上一点P到另一圆或者椭圆上的一点Q的距离,可以利用它们的公式,将它们的焦点分别求出,然后求出两点之间的距离。
二、求曲线上最短的距离
可以根据曲线的公式来求出最短的距离。
以下面的两个椭圆为例:
A、椭圆公式:$frac{x^2}{a^2}+frac{y^2}{b^2}=1$;
B、椭圆公式:$frac{(x-h)^2}{a^2}+frac{(y-k)^2}{b^2}=1$
可以得出最短距离为:$sqrt{(h-a)^2+(k-b)^2}$。
三、求曲线上点到直线的距离
以半径为r的圆为例,求圆上一点P到直线ax+by+c=0上点Q的距离,可以用圆的标准方程将圆和直线求出截距,然后求出两点之间的距离即可。
四、求曲线上最近点到直线的距离
以半径为r的圆为例,设直线ax+by+c=0上一点Q,可以用图形的知识,将这条直线的截距求出,并利用圆的标准方程结合截距,从而求出最近点到直线的距离。
- 1 -。
中考动点问题的解题技巧
在中考数学中,动点问题是一个比较常见的题型。
这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。
以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。
对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。
2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。
比如,可以建立方程或不等式来描述点的位置和运动轨迹。
3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。
因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。
4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。
因此,需要进行分类讨论,逐一解决不同情况下的数学问题。
5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。
因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。
6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。
因此,在平时的学习中,需要加强这些知识点的学习和训练。
7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。
如果这些细节处理不当,可能会导致解题错误。
总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。
同时,也需要注意细节处理。
动点问题题型方法
动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上的动点 1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.图(3)B图(1)B图(2)注意:第(3)问按直角位置分类讨论3、如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°,当△OPQ 面积最大时,四边形BCPQ 的面积最小。
数学动点问题解题技巧初三
数学动点问题解题技巧初三
1. 着重理解问题意思:要仔细阅读题目,明确所求,理解问题中涉及的各项条件,并将其表示为数学式子。
2. 建立坐标系:尽量建立合适的坐标系,明确各个动点所在位置的坐标轴位置和数值。
这有助于我们更直观地看到动点运动的方向和路径。
3. 利用几何图形:有时候将问题中所涉及的几何图形画出来有助于我们更好地理解和解决问题。
4. 运用向量和向量运算:向量和向量运算是解决动点问题的重要基础,尤其是位移向量、速度向量和加速度向量。
5. 建立方程组:对于复杂的动点问题,可以通过建立方程组来求解,利用各个动点的运动状态和条件,把问题转化为数学方程进行求解。
6. 合理选择计算方法:对于复杂的动点问题,选择合适的计算方法也是非常重要的,有些问题可以通过空间几何、三角函数、微积分等方面的运算方法解决。
初三数学动点问题解题技巧
初三数学动点问题解题技巧
1.运用常识分析现象:问题中有两个变量(时间t和距离d),所以可以使用x=vt(物体速度v和时间t关联),d=vt(物体距离d和时间t也有关联)来描述时间和距离之间的关系。
2.用数理归纳:考虑从时间t1到 t2变化的情况,令s=d2-d1,s=vt2-
vt1=v(t2-t1)=v∆t;这是一个比较常的原理,得到的表达式可用来简化问题的解法。
3.用分析思考重新组织求解:将时间t和距离d抽象为一个整体,表述为一个乘法运算,即先乘以时间t,算出距离d,即d=vt。
由此可以多次迭代以确定每秒距离一定的最小速度v。
4.用计算求出结果:可以求出v的值来确定物体的最小速度,从而获得结果。
中考数学动点问题题型及解题方法归纳
中考数学动点问题题型及解题方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点例1:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
二、 特殊四边形边上动点例2:如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为BO 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
中考数学动点问题复习
中考数学动点问题复习中考数学复习(一)动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.对应训练1.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A. B. C. D.考点二:动态几何型题目(一)点动问题.例2 如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.对应训练2.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.(二)线动问题例3 如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A. B.C. D.对应训练3.如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A. B.C.D.(三)面动问题例4 如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.对应训练4.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()考点三:动点综合题动态问题是近几年来中考数学的热点题型,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.(一)因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB 上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图例2 如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例3 如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1例4 如图1,已知一次函数y=-x+7与正比例函数43y x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA 或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1例5 如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1例 6如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP =x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1 图2 图3例1 如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1例2 如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.例4设直线l1:y=k1x+b1与l2:y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线.(1)已知直线①122y x=-+;②2y x=+;③22y x=+;④24y x=+和点C(0,2),则直线_______和_______是点C的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式.图1例5 在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1例6 如图1,已知A 、B 是线段MN 上的两点,,,.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图14=MN 1=MA 1>MB x AB=例 7如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例8 如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.图1课后练习(一)一、选择题1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.52.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C 点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大 D.当y增大时,BE•DF的值不变3.如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD 与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.4.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2 B.3 C.4 D.55.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P 为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.7.如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,2 3 ),∠BCO=60°,OH⊥BC于点H。
动点问题解题技巧总结
动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。
专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)(原卷版)
专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)【方法清单】【关键】化动为静,分类讨论。
抓住动点,化动为静,以不变应万变寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等) 建立所求的等量代数式,求出未知数等等。
动点问题定点化是主要思想。
比如以某个速度运动,设出时间后即可表示该点位置:再如函数动点,尽量设一个变量,y 尽量用来表示,可以把该点当成动点,来计算。
【步骤】1.画图形2.表线段3.列方程4.求正解1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数一左边点表示的数2,点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b 个单位后表示的数为 a b; 向右运动b个单位后所表示的数为a+b。
3,分析数轴上点的运动要是数形结合进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系题型一、数轴上与速度、时间、距离有关问题【例1】.(2022秋•代县期中)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,从图中可以看出,终点表示的数是﹣2,已知A,B是数轴上的点.请参照图并思考,完成下列填空:(1)如果点A表示数3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是.(2)如果点B表示数2,将点B向左移动9个单位长度,再向右移动5个单位长度,那么终点A表示的数是,A,B两点间的距离是.(3)如果点A表示的数是﹣4,将点A向右移动168个单位长度;再向左移动2个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是,A,B两点间的距离是.【变式1】.(2022秋•博罗县期中)如图,点A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A,B表示的数:,;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.①当t=2时,求出此时P,Q在数轴上表示的数;②t为何值时,点P,Q相距2个单位长度,并写出此时点P,Q在数轴上表示的数.【变式2】.(2022秋•历下区期中)为宣传健康知识,某社区居委会派车按照顺序为7个小区(分别记为A,B,C,D,E,F,G)分发防疫安全手册.社区工作人员乘车从服务点(原点)出发,沿东西向公路行驶,如果约定向东为正,向西为负,当天的行驶记录如下(单位:百米):+10,﹣18,+14,﹣30,+6,+22,﹣6(1)请你在数轴上标记出这D,E,F这三个小区的位置(在相应位置标记字母即可).(2)服务车最后到达的地方距离服务点多远?若该车辆油耗为0.01升/百米,则这次分发工作共耗油多少升?(3)为方便附近居民进行核酸检测,现居委会计划在这七个小区中选一个作为临时核酸检测点,为使七个小区所有居民步行到检测点的路程总和最小,假设各小区人数相等,那么检测点的位置应设在小区.题型二、数轴上点之间的位置关系问题【例2】(2022秋•余江区期中)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第部分;(2)若AC=5,BC=3,b=﹣1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.【变式1】.(2022秋•南溪区期中)如图,在数轴上有三个点A,B,C,请回答下列问题:(1)将点B向左移动4个单位长度后,哪个字母所表示的数最小?是多少?(2)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?(3)怎样移动A、B、C中的两个点才能使三个点表示的数相同?有几种移法?【变式2】.(2022秋•惠济区期中)如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.【变式3】.(2022秋•庐阳区校级期中)根据课堂所学知识我们知道:数轴上两点A、B对应的数分别为a,b(a<b),那么A,B两点之间距离可以用代数式b﹣a来表示.已知:如图,数轴上两点M、N对应的数分别为﹣8、4,点P为数轴上任意一点,其对应的数为x.(1)M,N两点之间的距离是;(2)当点P到点M、点N的距离相等时,求x的值;(3)当点P到点M、点N的距离之和是16时,求出此时x的值.题型三、数轴上动点定值问题【例3】.(2022秋•灞桥区校级期中)如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是;(2)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度秒的速度也向左匀速运动,设运动时间为t秒,当t为何值时,点B与点C之间的距离为1个单位长度?(3)若线段AB、线段CD分别以1个单位长度/秒、2个单位长度/秒的速度同时向左匀速运动,与此同时,动点P从﹣15出发,以4个单位长度/秒的速度向右匀速运动.设运动时间为t秒,当0<t<5时,2AC﹣PD的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.【变式1】.(2022秋•河北区期中)在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A 与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC =;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.【变式2】.(2022秋•上林县期中)已知点A、B在数轴上对应的数分别为a、b,且a=﹣2,b=10,点A、B之间的距离记作AB.(1)线段AB的长为;(直接写出结果)(2)若动点P在数轴上对应的数为x,①当点P是线段AB上一点,P A=2PB,则点P表示的数为;此时P A+PB=;(直接写出结果)②当P A+PB=14时,求x的值;③当动点P在点A的左侧,M、N分别是P A、PB的中点,在运动过程中的值是否发现变化?若不变,求出其值;若变化,请求出变化范围.题型四、数轴上折叠问题【例4】(2022秋•仁怀市期中)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数对应的点重合;(3)若点A、B、C是数轴上的动点,点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,那么3BC﹣2AB的值是否随着运动时间t(秒)的变化而改变?若变化,请说明理由;若不变,请求出其值.【变式1】(2022秋•濮阳县期中)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣3的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣3的点与表示的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为.【变式2】.(2022秋•桓台县期中)如图所示的数轴中,点A表示1,点B表示﹣2,试回答下列问题:(1)A、B两点之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是;(3)若将数轴折叠,使点A与表示﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2022(点M在点N的左侧),且M,N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是和.【变式3】.(2022秋•南山区校级期中)学习完数轴以后,喜欢探索的小聪在纸上画了一个数轴(如图所示),并进行下列操作探究:(1)操作一:折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣4的点与表示的点重合.操作二:折叠纸面,使表示﹣3的点与表示1的点重合,回答以下问题:(2)表示2的点与表示的点重合;(3)若数轴上A、B两点之间距离是a(a>0)(A在B的左侧),且折叠后A、B两点重合.求A、B两点表示的数是多少?题型五、数轴上探究问题【例5】(2022秋•宛城区期中)【问题探索】如图,将一根木棒放在数轴(单位长度为lcm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30:若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长度为cm.(2)图中点A所表示的数是,点B所表示的数是.【实际应用】由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,丽丽去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我就106岁啦!”根据对话可知丽丽现在的岁数是,奶奶现在的岁数是.【变式】.(2022秋•和平区校级期中)阅读并解决相应问题:(1)问题发现:在数轴上,点A表示的数为﹣2,点B表示的数为3,若在数轴上存在一点P,使得点P到点A的距离与点P到点B的距离之和等于n,则称点P为点A、B的“n节点”.如图1,若点P表示的数为,有点P到点A的距离与点P到点B的距离之和为+=5,则称点P为点A、B的“5节点”.填空:①若点P表示的数为0,则n的值为.②数轴上表示整数的点称为整点,若整点P为A、B的“5节点”,请直接写出整点P所表示的数.(2)类比探究:如图2,若点P为数轴上一点,且点P到点A的距离为1,请你求出点P表示的数及n的值,并说明理由.(3)拓展延伸:在(1)(2)的条件下,若点P在数轴上运动(不与点A、B重合),满足点P到点B的距离等于点P到点A的距离的,且此时点P为点A、B的“n的节点”,求点P表示的数及n的值,并说明理由.题型六、数轴上新定义问题【例6】(2022秋•永安市期中)[阅读理解]点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离2倍,那么我们就称点C是{A,B}的关联点.例如,如图1,点A表示的数为﹣4,点B表示的数为2.表示0的点C到点A的距离是4,到点B的距离是2,那么点C是{A,B}的关联点;又如,表示﹣2的点D到点A的距离是2.到点B的距离是4,那么点D就不是{A,B}的关联点,但点D是{B,A}的关联点.[知识运用](1)如图2,M、N为数轴上两点,点M所表示的数为﹣4,点N所表示的数为5.数所表示的点是{M,N}的关联点;数所表示的点是{N,M}的关联点;[拓展提升](2)如图3,A、B为数轴上两点,点A所表示的数为﹣60,点B所表示的数为30.现有一动点从点P 出发向左运动.P点运动到数轴上的什么位置时,点P、点A和点B中恰有一个点为其余两点的关联点?【变式1】.(2022秋•衢州期中)点A,B,C为数轴上的三点,如果点C在点A,B之间,且到点A的距离是点C到点B的距离的3倍,那么我们就称点C是{A,B}的奇妙点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇妙点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇妙点,但点D是{B,A}的奇妙点.(1)点A表示的数为1,点B表示的数为2,点C表示的数为5,B是否为{C,A}的奇妙点?请说明理由.(2)如图2,M,N为数轴上的两点,点M所表示的数为﹣2,点N所表示的数为6.表示数的点是{M,N}的奇妙点;表示数的点是{N,M}的奇妙点;(3)如图3,A,B为数轴上的两点,点A所表示的数为﹣10,点B所表示的数为50.现有一动点P从点A出发向右运动,点P运动到数轴上的什么位置时,B为其余两点的奇妙点?【变式2】.(2022秋•平遥县期中)阅读下列材料:我们给出一个新定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.解答下列问题:(1)若点A表示的数为﹣3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为;(2)若点A表示的数为﹣3,点A与点B的“平衡点M”表示的数为﹣5,则点B表示数为;操作探究:如图,已知在纸面上有一条数轴.操作一:(3)折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:(4)折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为.【变式3】.(2022秋•高青县期中)数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.【变式4】.(2022秋•朝阳区校级期中)已知数轴上两点A、B,若在数轴上存在一点C,使得AC+BC=nAB,则称点C为线段AB的“n倍点”.例如图1所示:当点A表示的数为﹣2,点B表示的数为2,点C表示的数为0,有AC+BC=2+2=4=AB,则称点C为线段AB的“1倍点”.请根据上述规定回答下列问题:已知图2中,点A表示的数为﹣3,点B表示的数为1,点C表示的数为x.(1)当﹣3≤x≤1时,点C(填“一定是”或“一定不是”或“不一定是”)线段AB的“1倍点”;(2)若点C为线段AB的“n倍点”,且x=﹣4,求n的值;(3)若点D是线段AB的“2倍点”,则点D表示的数为;(4)若点E在数轴上表示的数为t,点F表示的数为t+12,要使线段EF上始终存在线段AB的“3倍点”,求t的取值范围(用不等号表示)题型七:数轴上存在性问题【例7】(2022秋•蓝山县期中)已知数轴上三点A、B、C对应的数分别是﹣1,1,4,点P为数轴上任意一点,且表示的数是x.(1)点A到点B的距离AB为多少个单位长度?(2)点P到B的距离PB可以表示为;(3)如果点P到点A和到点C的距离相等,那么x的值是多少?(4)数轴上是否存在点P,使点P到点A与到点C的距离之和是8?若存在,请直接写出x的值;若不存在,请说明理由.【变式1】(2022春•南岗区校级期中)若数轴上A、B两点对应的数分别为﹣5、4,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点,直接写出P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点的距离和为11?若存在,求出x值;若不存在,请说明理由.(3)若点P从点A出发向右运动,速度是2个单位/分,点Q从点B出发向左运动,速度是3个单位/分,它们同时出发,经过几分钟,Q、B、P三点中,其中一点是另外两点连成线段的中点?【变式2】(2022秋•定远县期中)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣4,点B表示数5,点M是点A,B的“联盟点”,点M在A、B之间,且表示一个负数,则点M表示的数为;(2)若点A表示数﹣2,点B表示数2,下列各数,0,4,6所对应的点分别为C1,C2,C3,C4,其中是点A,B的“联盟点”的是;(3)点A表示数﹣15,点B表示数25,P为数轴上一点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,此时点P表示的数是;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数.【变式3】(2022秋•鱼台县期中)如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C 之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为,点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由.【提升训练】1.(2022秋•桥西区期中)在一条不完整的数轴上标出若干个点,每相邻两点相距一个单位长度,其中点A,B,C对应的分别是整数a,b,c.(1)若以B为原点,写出a,c的值;(2)若c﹣2a=14,判断并说明A,B,C中哪个点是数轴的原点;(3)在(2)的条件下,M点从A点以每秒0.5个单位的速度向右运动,点N从点C以每秒1.5个单位的速度向左运动,点P从点B以每秒2个单位的速度先向左运动碰到点M后立即返回向右运动,碰到点N后又立即返回向左运动,碰到点M后又立即返回向右运动,三个点同时开始运动,当三个点聚于一点时停止运动.直接写出点P在整个运动过程中,移动了多少个单位.2.(2022秋•肥西县校级期中)如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数是﹣2,将点A向右移动5个单位长度到点B,那么点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数是4,将点A向左移动8个单位长度,再向右移动3个单位长度到点B,那么点B表示的数是,A、B两点间的距离是.(3)如果点A表示的数是m,将点A向左移动n个单位长度,再向右移动p个单位长度到点B,那么点B表示的数是.3.(2022秋•沙坪坝区校级期中)数轴上给定两点A、B,点A表示的数为﹣1,点B表示的数为3,若数轴上有两点M、N,线段MN的中点在线段AB上(线段MN的中点可以与A或B点重合),则称M点与N 点关于线段AB对称,请回答下列问题:(1)数轴上,点O为原点,点C、D、E表示的数分别为﹣3、6、7,则点与点O关于线段AB对称;(2)数轴上,点F表示的数为x,G为线段AB上一点,若点F与点G关于线段AB对称,则x的最小值为,最大值为;(3)动点P从﹣9开始以每秒4个单位长度,向数轴正方向移动时,同时,线段AB以每秒1个单位长度,向数轴正方向移动,动点Q从5开始以每秒1个单位长度,向数轴负方向移动;当P、Q相遇时,分别以原速立即返回起点,回到起点后运动结束,设移动的时间为t,则t满足时,P 与Q始终关于线段AB对称.4.(2022秋•泊头市期中)如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点.某天,小明参加该路线上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?5.(2022秋•夏津县期中)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.6.(2022秋•文成县期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离;(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.7.(2022秋•新郑市期中)如图,已知在纸面上有一条数轴.操作一:(1)折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示的点重合.操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示的点重合;②若数轴上A,B两点之间的距离为9(点A在点B的左侧),且A,B两点折叠后重合,求A,B两点表示的数.8.(2022秋•昆明期中)问题探究:(1)如图①,将两根长度为6cm的木棒放置在数轴(单位长度为1cm)上,第一根的两端分别与数轴上表示2的点和点A重合,第二根的两端分别与数轴上点A和点B重合,则图中点A所表示的数是,点B所表示的数是;(2)如图②,将一根未知长度的木棒放置在数轴(单位长度为1cm)上,木棒的左端与数轴上的点C重合,右端与数轴上的点D重合.若将木棒沿数轴向右移动,当它的左端移动到点D时,右端在数轴上所对应的数为26;若将木棒沿数轴向左移动,当它的右端移动到点C时,左端在数轴上所对应的数为2.由此可得这根木棒的长为cm;(3)在(2)的条件下,若数轴上有一点P,点P到木棒CD中点的距离为16个单位长度,则点P所表示的数是.9.(2022秋•嘉祥县期中)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?10.(2022秋•承德期中)如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.11.(2022秋•霍邱县期中)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?12.(2022秋•秦淮区校级期中)如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。
(完整版)初中数学动点问题归纳
BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
中考数学 重难点突破:初中数学动点问题7大类20小类全梳理
重难点突破:初中数学动点问题全梳理动点问题一直是中考热点题型,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数值、线段或面积的最值问题等,下面就此问题的常见题型作简单介绍。
题型一动点形成的面积问题1.面积公式:三角形面积用12S ah =来表示,利用未知数的代数式来表示底和高。
2.面积比等于相似比的平方:面积无法用底和高表示时,利用相似三角形的面积比等于相似比的平方来求解,只需要知道相似比和另一个三角形面积即可表示。
3.相似三角形:当面积公式和面积比等于相似比的平方不能有效解题时,利用相似三角形的比例关系求解。
角度1:利用公式法解决动点面积问题例题1:在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点30A (,)和23B (,).过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC ADC S S ∆∆=时,求点D 的坐标.变式1:如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且//AB x 轴,//AC y 轴.(1)当点P 横坐标为6,求直线AO 的表达式;(2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACPSS ∆∆的值;如果变化,请说明理由.Oxy(备用图)Oxy解析:(1)∵反比例函数12y x=的图像经过横坐标为6的点P ,∴点P 的坐标为(6,2).设直线AO 的表达式为y kx =(0k ≠).将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,得4x =.∴B 坐标为(4,3).∵AB =BO ,∴224(40)(30)a -=-+-9a =.∴点A 坐标为(9,3).(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.同理ACP ACO S APS AO ∆∆=.∴1ABP ACPS S ∆∆=.即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1变式2:如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作//PM BC 交射线AC 于点M ,联结CP ,若CPM ∆的面积为2,则请求出点P 的坐标;解析:(1)设这条抛物线的解析式为2(0)y ax bx c a =++≠它的顶点坐标为16(1,)3(2)过点P 作PH AC ⊥,垂足为H .∵P 点在x 轴的正半轴上,∴设0P x (,).∵A )0,1(-,∴1PA x =+.∵在Rt AOC ∆中,222OA OC AC +=;又∵14OA OC ==,∴17AC =90sin 117PH PH PHA CAO AP x ∠=︒∴∠===+ 17PH =//BP CMPM BC AB AC∴= ;300B P x (,),(,)1点P 在点B 的左侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)14(1)22417x -=解得110x .P =∴(,)2点P 在点B 的右侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)122417x -=解得1122x =+,2122x =-(不合题意,舍去)∴P (122+0).综上所述,P 的坐标为(1,0)或(122+0)角度2:利用面积比等于相似比的平方解决动点面积问题例题2:如图,已知在梯形ABCD 中,//AD BC ,5AB DC ==,4AD =.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且//ME DN ,//MF AN ,联结EF .(1)如图1,如果//EF BC ,求EF 的长;(2)如果四边形MENF 的面积是ADN ∆的面积的38,求AM 的长;A BCDM NEF(图1)A BCD MNEF解析:(1)∵AD //BC ,EF //BC ,∴EF //A D .又∵ME //DN ,∴四边形EF DM 是平行四边形.∴EF =DM .同理可证,EF =AM .∴AM =DM .∵AD =4,∴122EF AM AD ===.(2)∵38ADNMENF S S ∆=四边形,∴58AME DMF ADN S S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.∵ME //DN ,∴△AME ∽△AN D .∴22AME ADN S AM S AD ∆∆=.同理可证,△DM F ∽△DN A .即得22DMF ADN S DM S AD ∆∆=.设AM =x ,则4DM AD AM x =-=-.∴22(4)516168x x -+=.即得2430x x -+=.解得11x =,23x =.∴AM 的长为1或3.变式3:已知直线1l 、2l ,12//l l ,点A 是1l 上的点,B 、C 是2l 上的点,AC BC ⊥,60ABC ∠=︒,4AB =,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO翻折,点D 与'D 重合.(1)如图1,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图2,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.解析:变式4:如图1,在梯形ABCD 中,//AD BC ,对角线BC AC ⊥,4AD =cm ,︒=∠45D ,3=BC cm .(1)求B ∠cos 的值;(2)点E 为BC 延长线上的动点,点F 在线段CD 上(点F 与点C 不重合),且满足ADE AFC ∠=∠,如图2,设x BE =,y DF =,求y 关于x 的函数解析式,并写出函数的定义域;(3)点E 为射线BC 上的动点,点F 在射线CD 上,仍然满足ADE AFC ∠=∠,当AFD ∆的面积为2cm 2时,求BE 的长.解析:(1)∵//AD BC ,∴ACB DAC ∠=∠.∵AC BC ⊥,∴90ACB ∠=︒.∴90DAC ∠=︒.∵45D ∠=︒,∴45ACD ∠=︒.∴AD AC =.∵4AD =,∴4AC =.∵3=BC ,∴5AB ==.∴3cos 5BC B AB ∠==.(2)∵//AD BC ,∴ADF DCE ∠=∠.∵AFC FDA FAD ∠=∠+∠,ADE FDA EDC ∠=∠+∠,又AFC ADE ∠=∠,∴FAD EDC ∠=∠.∴ADF DCE ∆~∆.∴AD DFDC CE=.在Rt ADC ∆中,222AC AD DC +=,又4==AC AD ,∴24=DC .∵x BE =,∴3-=x CE .y DF =,∴3244-=x y.22322-=x y .定义域为113<<x .(3)当点E 在BC 的延长线上,由(2)可得:ADF DCE ∆~∆,∴2)(DCAD S S DCE ADF =∆∆.∵2AFD S ∆=,4=AD ,24=DC ,∴4=∆DCE S .∵AC CE S DCE ⨯⨯=∆21,∴44)3(21=⨯-⨯BE ,∴5BE =.当点E 在线段BC 上,同理可得:44)3(21=⨯-⨯BE .∴1BE =.所以BE 的长为5或1.角度3:利用锐角三角比法解决动点面积问题例题3:已知在平面直角坐标系xoy (如图)中,抛物线212y x bx c =++经过点(4,0)A 、点(0,4)C -,点B 与点A 关于这条抛物线的对称轴对称;(1)用配方法求这条抛物线的顶点坐标;(2)联结AC 、BC ,求ACB ∠的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为(0)m m >,过点P 作y 轴的垂线PQ ,垂足为Q ,如果QPO BCO ∠=∠,求m 的值;解析:变式5:已知在平面直角坐标系xoy 中,抛物线2(0)y ax bx c a =++>与x 轴相交于(1,0),(3,0)A B -两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12.(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.解析:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =∵90ACD ∠=︒,1tan 2ADC ∠=,∴4CD =,∵0a >,∴()1,4D -(2)设()214y a x =--将1,0x y =-=代入上式,得,1a =所以,这条抛物线的表达为223y x x =--(3)过点F 作FH x ⊥轴,垂足为点H设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==∵223FH x x =--,1AH x =+,∴223112x x x --=+解得172x =,21x =-(舍),∴79,24F ⎛⎫⎪⎝⎭巩固1:如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且OBC OAB ∠=∠,3AC =.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF OA ⊥,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 的坐标.A C BO y x解析:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,∴OC =1,OA =OC +AC =4,∴点A (4,0).∵∠OBC =∠OAB ,∴tan ∠OAB =tan ∠OBC ,∴OBOCOA OB =,∴OB OB 14=,∴OB =2,∴点B (0,2),∴⎩⎨⎧+-==,8160,2c a a c ∴⎪⎩⎪⎨⎧=-=.2,41c a ∴此抛物线的表达式为221412++-=x x y .(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,设m OF =,得m AF -=4,221412++-=m m DF ,由FG //OB ,得OA AF OB FG =,∴24m FG -=,∴2:524:)22141(2=-++-mm m ,∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45)巩固2:如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD DAF ∆∆∽;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,∴BCD ∆∽DAF∆(2)∵BCD ∆∽DAF ∆,∴BC CDAD AF=∵1BC =,设CD x =,AF y =,∴11x x y =-,∴()201y x x x =-<<(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD ∠=∠∴EBF ∆∽CBD ∆,∴BE BFBC BD=,∵BE BD =,1BC =,∴2BE BF =∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,∴279BE BF ==,∴29AF =∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==∵1BC =,BE BD =,∴279BD =过点B 作BH AC ⊥于点H ,∵60C ∠=︒,∴2BH =,∴16DH =,12CH =当点D 在线段CH 上时,111263CD CH DH =-=-=当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=综上所述,当13x =或23时,79BEF BCD S S ∆∆=.巩固3:在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上一动点,将三角板直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断EAP ∆与PDC ∆一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是EAP ∆周长等于PDC ∆周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.解析:(1)△EAP ∽△PDC①当P 在AD 边上时,如图(1):∵矩形ABCD ,==90D A ∠∠ ,∴1+2=90∠∠据题意=90CPE ∠ ∴3+2=90∠∠ ,∴1=3∠∠,∴△EAP ∽△PDC ②当P 在AD 边上时,如图(2):同理可得△EAP ∽△PDC (2)若点P 在边AD 上,据题意:PD x =6PA x =-4DC =AE y=又∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y xx -=,∴22613442x x y x x -==-+()06x <<若点P 在边DA 延长线上时,据题意PD x =,则6PA x =-,4DC =,AE y =,∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴()2664x x y x -=>(3)假如存在这样的点P ,使△EAP 周长等于PDC ∆的2倍①若点P 在边AD 上∵△EAP ∽△PDC ∴():6:4EAPPDCCCx =-,∴()6:42x -=,∴2x =-不合题意舍去;②若点P 在边DA 延长线上,同理得()6:42x -=,∴14x =综上所述:存在这样的点P 满足题意,此时14PD =巩固4:如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M的坐标.解析:(1)∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C ∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴这个抛物线的解析式为:2142y x x =--顶点为9(1,2-(2)如图:取OA 的中点,记为点N ∵OA =OC =4,∠AOC =90°∴∠ACB =45°∵点N 是OA 的中点∴ON =2又∵OB =2∴OB =ON 又∵∠BON =90°∴∠ONB =45°∴∠ACB =∠ONB∵∠OMB +∠OAB =∠ACB ∠NBA +∠OAB =∠ONB ∴∠OMB =∠NBA1°当点M 在点N 的上方时,记为M 1∵∠BAN =∠M 1AB ,∠NBA =∠OM 1B ,∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN =2,AB =∴110AM =又∵A (0,—4)∴1(0,6)M 2°当点M 在点N 的下方时,记为M 2,点M 1与点M 2关于x 轴对称,∴2(0,6)M -综上所述,点M 的坐标为(0,6)或(0,6)-题型二动点形成的相切问题1.直线和圆相切:圆心到直线距离等于半径构造直角三角形,利用三角比、勾股定理等来表示圆心到直线距离及半径,建立等量关系2.圆和圆相切:两圆半径和等于圆心距.利用平行线分线段成比例、勾股定理、三角比、相似等表示相关线段,建立等量关系角度4:直线与圆相切问题例题4:如图,在ABC ∆中,10,12,AB AC BC ===点E F 、分别在边BC AC 、上(点F 不与点A 、C 重合)//EF AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设FC x =.(1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE DF 、分别交AB 于M 、N ,若MN y =,求y 关于x 的函数关系式并写出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的E 与边AC1没有公共点时,求x 的取值范围.2一个公共点时,求x 的取值范围.3两个公共点时,求x 的取值范围.AECBFAB DGC EF 变式6:已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AFG AB x S y ∆==,,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.解析:(1)∵点F 为AD 中点,且AD =BC =6,∴AF =3∵矩形ABCD 中,∠ABC =90°,BG ⊥AC 于点E ,∴∠ABE +∠EBC =90°,∠AC ∠EBC =90°∴∠ABE =∠ACB ,∴△ABF ∽△BCF ,∴ABAFBC AB =∴AB =23(2)由(1)可得△ABF ∽△BCF ∴ABAFBC AB =∵AB =x ,BC =6∴AF =62x ;同理可得:CG =x 36①当F 点在线段AD 上时DG =CG -CD =xx x x 23636-=-∴S ⊿AFG =1236213x x CG AF -=⋅。
中考动点问题题型方法归纳
中考动点问题题型方法归纳Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o . (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=x a y (0≠a )经过点O 作(2)A -,0,抛物线的顶点为D ,射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形直角梯形等腰梯形(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的长.提示:发现并充分运用特殊角∠DAB=60° 当△OPQ 面积最大时,四边形BCPQ 的面积最小。
动点题初三数学技巧
动点题初三数学技巧
1.利用图像解题:在解决动点题时,可以先画出图像,从中找出规律,进而得出解题方法。
2. 列方程解题:动点题中经常涉及到时间、距离等变量,可以将其列成方程,从而解决问题。
3. 利用相似三角形求解:在动点题中,经常存在相似三角形的情况,可以利用相似三角形的性质求解。
4. 利用勾股定理求解:在动点题中,勾股定理也是一个常用的解题方法,可以帮助我们找到两点之间的距离。
5. 利用三角函数求解:在某些情况下,可以利用正弦、余弦、正切等三角函数来求解动点题。
6. 注意图像的变化:在解决动点题时,要注意动点的运动轨迹以及图像的变化,这可以帮助我们更好地理解问题并找到解决方法。
7. 多做练习:练习是提高解题能力的有效途径,多做动点题练习可以帮助我们熟悉解题方法,并提高解题速度和准确率。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点31、( 2009年齐齐哈尔市) 直线y x 6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,4同时到达A点,运动停止•点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O T B T A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△ OPQ的面积为S,求出S与t之间的函数关系式;「48(3)当S 时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的5坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点OP、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB是O O的直径,弦BC=2cm/ ABC=60).(1) 求O O的直径;(2) 若D是AB延长线上一点,连结CD当BD长为多少时,CD与O O相切;(3) 若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BCt(S)(0 ::: t ::: 2),连结EF,当t为何值时,△ BEF为直角三角形.注意:第(图问按直角位置分类讨论O 图(2)D Ay二a(x-1)2 3. 3(^-0)经过点A(-2, 0),抛物线的顶点为3、(2009重庆綦江)如图,已知抛物线过O作射线OM // AD .过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC =OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒 1 单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s),连接PQ ,当t为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ的长.注意:发现并充分运用特殊角/ DAB=60当厶OPC面积最大时,四边形BCPQ勺面积最小。
二、特殊四边形边上动点4、(2009年吉林省)如图所示,菱形ABCD的边长为6厘米,.B=60° •从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A > C > B的方向运动,点Q以2厘米/秒的速度沿A >B >C > D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△ APQ与厶ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为O的三角形),解答下列问题:(1) _________________________________________ 点P、Q从出发到相遇所用时间是____________________________________ 秒;(2)点P、Q从开始运动到停止的过程中,当△ APQ是等边三角形时(3)求y与x之间的函数关系式.7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且 / AOC=60,点B的坐标是(0,8 J3),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a (1 < a w 3)个单位长度的速度沿射线OA方向移动,设t(0 ::: t <8)秒后,直线PQ交OB于点D.(1) 求/ AOB的度数及线段OA的长;(2) 求经过A, B, C三点的抛物线的解析式;(3) 当a =3,OD 虫时,求t的值及此时直线PQ的解析3式;(4) 当a为何值时,以O, P, Q, D为顶点的三角形与OAB相似?当a为何值时,以Q P, Q, D为顶点的三角形与OAB不相似?请给出你的结论,并加以证明•8、( 08黄冈)已知:如图,在直角梯形COAB中,OC // AB ,以O为原点建立平面直角坐标系,A, B, C 三点的坐标分别为A(8,0), B(810) , C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(09 P 年黄冈瓯)1 2 4y=—x —— x —10与x 轴的交点为点 A,与y 轴的交点为点 B.18 9过点B 作x 轴的平行线BC 交抛物线于点C,连结AC 现有两动点 P,Q 分别从Q C 两点同时出发,点P 以每秒4个单位的速度沿 OA 向终点A 移动,点Q 以每秒1个单位的速度沿 CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OCPQ 相交于点D,过点D 作DE/ OA 交CA 于点E 射线QE 交x 轴于点F.设动点P ,Q 移动 的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标 ;当t 为何值时,四边形PQCA^平行四边形?请写出计算过程;9当0 v t v 时,△ P(F 的面积是否总为定值 ?若是,求出此定值,2,A ?9O 在平面直角坐标系x xoy 中,抛物线若不是,请说明理由;提示:第(3)问用相似比的代换,得PF=OA(定值)。
第(4)问按哪两边相等分类讨论① PQ=PF ② PQ=FQ ③ QF=PF. 三、直线上动点8、(2009年湖南长沙)如图,二次函数 y = ax 2 • bx • c ( a - 0) 的图象与x 轴交于A 、B 两点,与y 轴相交于点C .连结AC 、BC , A 、C 两点的坐标分别为 A(-3,0)、 C (0, 3),且当x = -4和x = 2时二次函数的函数值y 相等. (1) 求实数a, b, c 的值;(2) 若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿 BA 、 达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△ BVN 恰好落在 AC 边上的P 处,求t 的值及点P 的坐标;BC 边运动,其中一个点到 沿MN 翻折,B 点 (3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B, △ ABC 相似?如果存在,请求出点 Q 的坐标;如果不存在,请说明理由.(1) 求直线BC 的解析式;2(2) 若动点P 在线段OA 上移动,当t 为何值时,四边形 OPDC 的面积是梯形 COAB 面积的-?7(3) 动点P 从点O 出发,沿折线OABD 的路线移动过程中,设厶OPD 的面积为S ,请直接写出S 与t 的 函数关系式,并指出自变量 t 的取值范围;(4) 当动点P 在线段AB 上移动时,能否在线段 OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此 时动点P 的坐标;若不能,请说明理由.CCO N, Q 为项点的三角形与提示:第(2)问发现特殊角/ CAB=30 , / CBA=60 特殊图形四边形 BNPM 为菱形;第(3)问注意到厶ABC 为直角三角形后,按直角位置对应分类;先 画出与△ ABC 相似的△ BNQ ,再判断是否在对称轴上。
10、( 2009年兰州)如图①,正方形 ABCD^,点A 、B 的坐标分别为(0, 10), (8, 4),点C 在第一象 限.动点P 在正方形 ABCD 勺边上,从点A 出发沿A ^B T C T D 匀速运动,同时动点 Q 以相同速度在x 轴正 半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的 时间为t 秒.(1) 当P 点在边AB 上运动时,点 Q 的横坐标x (长度单位)关于 运动时间t (秒)的函数图象如图②所示,请写出点 Q 开始运动 时的坐标及点P 运动速度;(2) 求正方形边长及顶点 C 的坐标;⑶ 在(1)中当t 为何值时,△ OPQ 勺面积最大,并求此时 P 点 的坐标;⑷ 如果点P 、Q 保持原速度不变,当点P 沿A T 4 C T D 匀速运动 时,OP与PQ 能否相等,若能,写出所有符合条件的 t 的值;若不能, P 分别在AB BC CD 边上分类讨论;求t 值时,灵活运用等腰三角形如图,在平面直角坐标系 xOy 中,△ ABC 三个顶点的坐标分别为_ 1C 0,4..3,延长AC 到点D,使CD^ AC ,过点D 作DE// AB 交BC 的延长线于点 E.(1)求D 点的坐标;DE 的对称点F,分别连结DF 、EF ,若过B 点的直线kx b 将四边形CDFE 分成周 长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y 二kx • b 与y 轴的交点出发,先沿 y 轴到达G 点,再沿GA 到达A GA 上运动速度的2倍,试确定G 点的位置,使 P 点按照上述 (要求:简述确定 G 点位置的方法,但不要求证明)提示:第(2)问,平分周长时,直线过菱形的中心;第(3)问,转化为点G 到A 的距离加G 到(2)中直线的距离 和最小;发现(2)中直线与x 轴夹角为60° .见“最短路线问 题”专题。
请说明理由.注意:第(4)问按点 11、( 2009年北京市)A -6,0,B 6,0,(2)作C 点关于直线 点,若P 点在y 轴上运动的速度是它在直线 要求到达A 点所用的时间最短。
图工12、(2009年上海市)中S A APQ 表示△ APQ 的面积,S A PBC 表示△ PBC 的面积,求y 关于X 的函数解析式,并写出函数定义域; (3)当AD :: AB ,且点Q 在线段AB 的延长线上时(如图 3所示),求.QPC 的大小. 注意:第(2)问,求动态问题中的变量取值范围时,先动手操作 找到运动始、末两个位置变量的取值,然后再根据运动的特点确定满足条件的变量的取值范围。
当 PC X BD 时,点Q B 重合,x 获得最小值;当P 与D 重合时,x 获得最大值。
第(3)问,灵活运用 SSA 判定两三角形相似,即两个锐角三角形或两个钝角三角形可用 SSA 来判定两个三角形相似;或者用同一法;或者证/BQP=Z BCP 得B 、Q C P 四点共圆也可求解14、(2009年河北)如图,在 Rt △ ABC 中,/ C=90°, AC = 3 , AB = 5 .点P 从点C 出发沿 CA 以每秒1个 单位长的速度向点 A 匀速运动,到达点 A 后立刻以原来的速度沿 AC 返回;点Q 从点A 出发沿AB 以每秒1 个单位长的速度向点 B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分 PQ 且交PQ 于点D,交折线QBBGCP 于点E .点P 、Q 同时出发,当点 Q 到达点B 时停止运动,点 P 也随之停止•设点 P Q 运动的时间是t 秒(t > 0).(1) 当t = 2时,AP = ______ ,点Q 到AC 的距离是 ______ ;(2) 在点P 从C 向A 运动的过程中,求△ APQ 勺面积S 与t 的函数关系式;(不必写出t 的取值范围) (3) 在点E 从B 向C 运动的过程中,四边形 QBE [能否成为直角梯形?若能,求 t 的值.若不能,请说明 理由;提示:(3)按哪两边平行分类,按要求画出图形,再结合图形性质求出 t 值;有二种成立的情形,PQ PCAD _ AB1所示).已知/ ABC=90 , AB=2 BC=3 AD//BC, P 为线段BD 上的动点,点C Q 在射线AB 上,且满足(1) 当AD=2且点Q 与点B 重合时(如图2所示),求线段PC 的长;3(2)在图8中,联结AP.当AD=-,且点2Q 在线段AB 上时,设点BQ 之间的距离为x ,S\ APQy ,S APBCBD图3DE//QE,PQ//EC;(4)按点P运动方向分类,按要求画出图形再结合图形性质求出t值;有二种情形,CQ=CP = AQ= t 时,QC = PC=6-t 时.15、(2009年包头)已知二次函数y=ax2・bx・c ( a=0)的图象经过点A(1,0) , B(2,0) , C(0,-2),直线x二m ( m 2 )与x轴交于点D .(1)求二次函数的解析式;(2)在直线x=m ( m 2 )上有一点E (点E在第四象限),使得E、D、B为顶点的三角形与以A、0、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.提示:第(2)问,按对应锐角不同分类讨论,有两种情形;第(3)问,四边形ABEF为平行四边形时,E、F两点纵坐标相等,且AB=EF对第(2)问中两种情形分别讨论。