(word完整版)北师大版九年级数学动点问题题型方法归纳,推荐文档

合集下载

初中数学动点问题(北师大版)

初中数学动点问题(北师大版)

初中数学动点问题(北师大版)1. 引言初中数学动点问题是数学中经常出现的一个考点,它涉及到点在平面内移动的问题。

通过解决这类问题,可以帮助学生理解和掌握坐标系、图形变换等数学概念。

本文将重点介绍北师大版初中数学教材中关于动点问题的内容。

2. 动点问题的基本概念动点问题是指一个点在平面内以一定的规律进行移动的情况。

这个点可以在平面内的不同位置上,可以沿直线、曲线等路径运动。

学生需要根据提供的条件,确定点的运动轨迹、速度、方向等。

解决动点问题需要运用坐标系、直线方程、参数方程等知识。

3. 动点问题的解决方法解决动点问题的方法有多种,下面介绍几种常见的方法:- 使用坐标系:通过建立合适的坐标系,将点的位置用坐标表示,便于进行计算和分析。

- 利用直线方程:当点在直线上运动时,可以通过直线方程来确定点的位置,进而求解相关问题。

- 应用参数方程:对于复杂的轨迹,可以使用参数方程来描述点的位置,通过确定参数值来求解问题。

- 运用速度概念:当点的位置随时间变化时,可以利用速度概念来描述点的运动,并解决相关问题。

4. 例题分析下面通过例题来具体说明解决动点问题的步骤和方法。

例题:一条船以每小时12公里的速度顺水航行,沿江下游行驶,下游距离为96公里。

一条狗站在江边,见船过去需0.5小时,它就跳入江中追船,每小时游5公里。

试问,狗游完全程需要多少时间?一条船以每小时12公里的速度顺水航行,沿江下游行驶,下游距离为96公里。

一条狗站在江边,见船过去需0.5小时,它就跳入江中追船,每小时游5公里。

试问,狗游完全程需要多少时间?解答:首先,设狗追船的时间为$t$小时,则船运动的时间为$t+0.5$小时。

根据题意可得:船的位移 = 船的速度 ×船的时间狗的位移 = 狗的速度 ×狗的时间根据题目中给出的数据,可列出方程组:$$12 \times (t+0.5) = 96$$$$5 \times t = 96$$解方程可得:$t=\frac{192}{17}$因此,狗游完全程需要$\frac{192}{17}$小时。

初三动点问题的方法归纳总结

初三动点问题的方法归纳总结

初三动点问题的方法归纳总结初三动点问题的方法归纳总结一、引言初三是学生成长道路上的关键一年,学习任务繁重,考试压力大,如何有效地解决动点问题,是许多初三学生和家长头疼的难题。

本文将探讨初三动点问题的方法,帮助学生和家长更好地理解和应对这一问题。

二、什么是初三动点问题初三动点问题是指学习过程中出现的难点、疑惑或不理解的知识点。

这些问题如果得不到妥善解决,将会成为学习的绊脚石,影响学生成绩和学习兴趣。

三、高效解决初三动点问题的方法1. 积极主动地寻求帮助在学习过程中,遇到动点问题时,首先要积极主动地寻求帮助。

可以向老师请教,组织学习小组共同讨论,或者上网查阅资料。

不要因为自尊心而不愿意主动求助,更不能因为害怕别人笑话而把问题憋在心里。

2. 找准问题的根源解决问题的第一步是找准问题的根源。

动点问题可能是由于基础不扎实、学习方法不当、对知识点理解不透彻等原因造成的。

只有找准问题的根源,才能有针对性地解决问题。

3. 多角度思考,多种方法尝试对动点问题,不要一棍子打死,要运用多角度思考、多种方法尝试的策略。

可以从不同的角度去理解知识点,尝试不同的学习方法,找到最适合自己的解决办法。

4. 善于总结和归纳解决动点问题并不是一蹴而就的过程,需要不断总结和归纳。

将解决问题的经验和方法进行总结,形成自己的学习方法论和问题解决策略,以便于在今后的学习中更好地应对各种问题。

四、我对初三动点问题的个人观点和理解初三动点问题是学习过程中的常见现象,但并非不可逾越的障碍。

只要学生和家长能够正确看待和积极应对,便能够有效解决动点问题,取得更好的学习成绩。

关键在于要有正确的学习态度和方法,积极主动地解决问题,善于总结和归纳解决问题的经验。

初三是一个学习的关键阶段,只有克服各种困难,才能够迎接更大的挑战。

五、总结初三动点问题是学习过程中难免遇到的问题,但只要学生能够积极主动地寻求帮助,找准问题的根源,多角度思考,善于总结和归纳,便能够有效解决这一问题。

数学动点问题解题技巧总结

数学动点问题解题技巧总结

数学动点问题解题技巧总结动点问题解题技巧归纳解这类题目要“以静制动”,即把动态问题,变为静态问题来解。

1、仔细读题,分析给定条件中哪些量是运动的,哪些量是不动的.针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论.针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

2、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系.如果没有静止状态,通过比例、相等等关系建立变量间的函数关系来研究。

3、做题过程中时刻注意分类讨论,不同的情况。

动点问题解题技巧1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的.产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。

动点题型解题技巧解决动点问题的关键是“动中求静”。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

北师大 中考 实用总结中考 数学动点问题专题讲解(22页)

北师大  中考  实用总结中考  数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. AB CO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

北师大 中考 实用总结中考 数学动点问题专题讲解(22页)

北师大  中考  实用总结中考  数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. AB CO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

数学北师大版九年级下册动点动形专题讲解

数学北师大版九年级下册动点动形专题讲解
都昌县任远中学 吴华南
一、中考解读
动态型问题是近几年中考命题的热点,这类题不 仅能在运动变化中考查考生的操作能力、想象能力、 综合解决问题的能力,同时还体现了数形结合思想、
分类讨论思想等,因此常常是压轴题.在试卷中的所
占分值约为15-18分,尤其是由动点在几何图形或抛
物线上运动形成的特殊的三角形、四边形的面积的最
值与存在性问题、开放性问题相结合的题型,预计会 是今后中考命题的趋势.
二、动态问题的分类
动态几何问题就是以几何知识为背景,渗入运动变化观点的一类问题, 它通常分为三种类型:
(1)点动型(常见形式是点在线段或曲线上运动)
(2)线动型(常见形式是直线或者线段在三角形或四边形上运动)
(3)形动型(动形问题通常是图形的翻转,平移、旋转变换问题)
三、动态问题的解题策略
动 中 窥 静
1、分析运动的全过程
2、找到运动的临界点 3、把握每个阶段的运动 4、数形结合、分类讨论是解决几何动态 问题的重要思想,并常与函数、方程、 不等式等联系起来
以 静 制 动
四、范例讲解
例1(2013年辽宁营口中考题)如图1,在矩形 ABCD中,动点E从点B出发,沿着BADC方向运动至 点C处停止,设点E运动的路程为x,△BCE的面积 为y,若y关于x的函数图象如图2所示,则当X=7时, 点E应运动到( ) y
(2)设△AMN的面积为S,求 S与t的函数关系式;
N
A
M
B x m
例3 Rt△PMN中,∠P=90°,PM=PN,MN=
8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和 M点重合,BC和MN在一条直线上。令Rt△PMN不 动,矩形ABCD沿MN所在直线向右以每秒1cm的速 度移动,直到C点与N点重合为止。设移动x秒后,矩 形ABCD与△PMN重叠部分的面积为y (c㎡),求y与 读题要领: x之间的函数关系式? P

初中数学动点问题(北师大版)

初中数学动点问题(北师大版)

初中数学动点问题(北师大版)什么是动点问题?在初中数学中,我们经常会遇到动点问题。

所谓动点问题,就是指描述物体或者点在时间推移过程中的运动规律问题。

这类问题常常涉及到时间、距离、速度等概念,需要我们通过分析运动规律来求解。

动点问题的解题方法对于动点问题的解题,我们可以采用以下几种方法:1. 利用图象法:通过绘制物体或点的运动图象,观察并分析其运动规律。

2. 利用表格法:将物体或点在不同时间的位置、距离、速度等数据记录在表格中,通过查找规律来求解问题。

3. 利用方程法:利用物理公式或者运动方程,建立方程并解方程求解问题。

解题示例下面我们通过一个例子来说明解决动点问题的方法。

例题:小明骑自行车从A地点出发,以每小时10千米的速度向B地点前进。

同一时刻,小红从B地点骑自行车以每小时8千米的速度向A地点前进。

A、B两地点的距离为40千米,请问他们什么时候会相遇?解题步骤:1. 首先,我们可以利用表格法来分别记录小明和小红在不同时间的位置。

假设t为时间(小时),则小明离A地点的距离为10t 千米,小红离B地点的距离为40-8t千米。

根据题目条件可列出如下表格:2. 通过观察表格,我们可以发现小明和小红在5小时的时候相遇,此时小明骑行50千米,小红骑行40千米,两人相遇位置即为相遇点。

3. 因此,小明和小红在5小时后会相遇。

总结动点问题是初中数学中的常见题型,需要我们通过分析运动规律来解决。

我们可以利用图象法、表格法和方程法等方法来求解动点问题。

通过多做练,熟练掌握这些解题方法,我们就能够更好地应对动点问题,提高数学解题能力。

(完整版)(完整word)初三数学动点问题总结,推荐文档

(完整版)(完整word)初三数学动点问题总结,推荐文档
5
解得:t=< (5分)
33
而MN=..NC= ..(1+t)
(4)①当MP=Mffl-(如图1)贝U有:NP=NC
即PC=2NC・4-t=2(1+t)
2当CM=CP^(如图2)
则有:
5
(1+t)=4-t
11
解得:t=/3当PM=PC寸(如图Fra bibliotek)则有:
在Rt△MNF中,PM2=MN2+PN2
33
而MN=.-NC= ..(1+t)
BC, CB DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(xm0),贝U AP=2xcm
CM=3xcm DN=x2cm
(1)当x为何值时,以PQ MN为两边,以矩形的边(AD或BC的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q, M, N为顶点的四边形是平行四边形;
以P,Q,MN为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MCBQ=ND当点P在点N的右侧时,AN=MC BQ=PD所以可以根据这些条件列出方程关系式.
1当皿卩=皿时,那么PC=2NC据此可求出t的值.
2当CM=CPt,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
3当MP=PC寸,在直角三角形MNP中先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:
解: (1)vAQ=3-t
•CN=4-(3-t)=1+t
四边形PCDQ勾成平行四边形就是PC=DQ列方程4-t=t即解;

(完整word版)初中数学动点问题解题技巧Du

(完整word版)初中数学动点问题解题技巧Du

动点问题解题技巧以运动的看法研究几何图形部分规律的问题,称之为动向几何问题。

动向几何问题充足表现了数学中的“变”与“不变”的和睦一致,其特色是图形中的某些元素(点、线段、角等)或某部分几何图形按必定的规律运动变化,进而又惹起了其余一些元素的数目、地点关系、图形重叠部分的面积或某部分图形等发生变化,可是图形的一些元素数目和关系在运动变化的过程中却相互依存,拥有必定的规律可寻。

所谓“ 动点型问题”是指题设图形中存在一个或多个动点 , 它们在线段、射线或弧线上运动的一类开放性题目,着重对几何图形运动变化能力的观察。

解决这种问题的重点是动中求静 , 灵巧运用相关数学知识解决问题 . 在变化中找到不变的性质是解决数学“动点”研究题的基本思路 , 这也是动向几何数学识题中最中心的数学实质。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。

这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应意图识、推理能力等。

从数学思想的层面上讲需要具备以下思想:分类议论思想、数形联合思想、转变思想、函数思想、方程思想。

常有的动点问题一、数轴上的动点问题数轴上的动点问题离不开数轴上两点之间的距离。

为了便于对这种问题的剖析,先明确以下 3 个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右侧的数减去左侧的数的差。

即数轴上两点间的距离=右侧点表示的数—左侧点表示的数。

2.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看作正速度,而向左运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就能够直接获得运动后点的坐标。

即一个点表示的数为 a,向左运动 b 个单位后表示的数为 a—b;向右运动 b 个单位后所表示的数为 a+b。

3.数轴是数形联合的产物,剖析数轴上点的运动要联合图形进行剖析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图(3) B图(1)B 图(2) 动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论B C D3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

二、 特殊四边形边上动点 4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A CB →→的方向运动,点Q 以2厘米/秒的速度沿A BCD →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。

5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2)问按点P 到拐点B 所用时间分段分类;第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。

利用OB ⊥AC,再求OP 与AC 夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF; (3)设四边形AEFD 的面积为S . ①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可). 注意:发现特殊性,DE ∥OA 7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式;(3)当43,33a OD ==时,求t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.B AC D P O Q xy(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,得PF=OA (定值)。

第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.三、 直线上动点8、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交ABDC O P x y ABDCOy (此题备用)y O xCNBPM A 于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由. 提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60° 特殊图形四边形BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类; 先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。

9、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。

⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。

提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。

相关文档
最新文档