苏科版八年级数学上册 第二章 轴对称图形 单元测试(含答案)
2023年苏科版八上数学第2章轴对称图形测试题
2022-2023学年苏科版八年级数学上册《第2章轴对称图形》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各图形均是由边长为1的小正方形组成,其中不是轴对称图形的是()A.B.C.D.2.已知一个等腰三角形的两边长分别为3cm、7cm,则该三角形的周长是()A.13cm B.13cm或17cm C.17cm D.16cm3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=4,则AD长是()A.4B.6C.8D.104.如图,△ABC中,AB的垂直平分线交AC与点M.若AC=9cm,BC=5cm,则△MBC 的周长是()cm.A.23B.19C.14D.125.已知线段AB垂直平分线上有两点C、D,若∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.60°或100°D.40°或90°6.如图①是一个直角三角形纸片,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,如果C′为AB的中点,△BCD的面积为1,则△ABC的面积为()A.2B.3C.4D.57.如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有()A.0个B.1个C.2个D.3个8.如图,在△ABC中,BD平分∠ABC,点E在BC的垂直平分线上,若∠A=60°,∠ABD =24°,则∠ACE的度数为()A.48°B.50°C.55°D.60°二.填空题(共8小题,满分40分)9.如果一个等腰三角形的一角为80°,那么它的顶角是.10.如图,已知∠A=13°,AB=BC=CD,那么∠BCD=度.11.如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.若等腰三角形一腰上的中线将它的周长分成了15cm和18cm两部分,则它的腰长为cm.13.如图,在Rt△ABC中,∠C=90°,直线DE是边AB的垂直平分线,连接BE.(1)若∠A=35°,则∠CBE=°;(2)若AE=3,EC=1,则△ABC的面积为.14.如图,已知ABC为等边三角形,若沿图中虚线剪去∠A,则∠1+∠2=.15.如图,线段AC,AB的垂直平分线交于点O,连接OA、OB、OC,已知OC=2cm,则OB等于cm.16.如图,在△ABC中,∠ABC=50°,∠C=23°,∠ABC的角平分线交AC于点D,过点D作DF∥AB交BC于点F,点E是BA延长线上一点,且BE=FC,连接EF交AC 于点O,则∠EOC=.三.解答题(共6小题,满分40分)17.如图,△ABC中,已知AB=AC,BC平分∠ABD.(1)求证:AC∥BD;(2)若∠A=100°,求∠1的度数.18.如图,在△ABC中,AD为∠BAC的角平分线,FE垂直平分AD,垂足为E,EF交BC 的延长线于点F,若∠CAF=50°,求∠B的度数.19.在△ABC中,∠ABC=∠ACB,点D在BC边所在的直线上,点E在射线AC上,且始终保持∠ADE=∠AED.(1)如图1,若∠B=∠C=30°,∠BAD=80°,求∠CDE的度数;(2)如图2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)如图3,当点D在BC边的延长线上时,猜想∠BAD与∠CDE的数量关系,并说明理由.20.如图,已知△ABC,AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若AB+AC=10,DE=3,求△ABC的面积.21.如图,在单位长度为1的正方形网格中,已知△ABC的三个顶点都在格点上.(1)画出△ABC关于直线DE的轴对称图形△A1B1C1;(2)求△A1B1C1的面积.22.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.请你用三种不同的方法分别在每个网格中再选一个白色小方格涂成黑色,使涂成黑色部分的图形成为轴对称图形.参考答案一.选择题(共8小题,满分40分)1.解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.2.解:当3cm是腰时,3+3<7,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17(cm).故它的周长为17cm.故选:C.3.解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣60°=30°,又∵∠A=15°,∴∠ABD=30°﹣15°=15°=∠A,∴AD=BD,在Rt△BDC中,BC=4,∠BDC=30°,∴BD=2BC=8=AD,故选:C.4.解:∵MD是AB的垂直平分线,∴AM=BM,∴△MBC的周长为BM+MC+BC=AM+CM+BC=AC+BC=14(cm).故选:C.5.解:如图,DE垂直平分AB,垂足为E,∴DA=DB,∴∠DAB=∠DBA=(180°﹣∠ADB)=×(180°﹣80°)=50°,当C点在线段DE上,∠CAD=10°时,则∠CAB=50°﹣10°=40°,∵CA=CB,∴∠CAB=∠CBA=40°,∴∠ACB=180°﹣40°﹣40°=100°;当C′点在ED的延长线上,∠C′AD=10°时,则∠C′AB=50°+10°=60°,∵CA=CB,∴∠C′AB=60°,综上所述,∠ACB的度数为60°或100°.故选:C.6.解:∵△ABC为直角三角形,∴∠C=∠BC′D=∠AC′D=90°,由折叠的性质得:△BCD≌△BC′D,∴S△BCD=S△BC′D=1,∵C′为AB的中点,∴AC′=BC′,∵∠BC′D=∠AC′D=90°,DC′=DC′,∴△ADC′≌△BDC′(SAS),∴S△ADC′=S△BCD=S△BC′D=1,∴△ABC的面积=S△ADC′+S△BDC′+S△BCD=3,故选:B.7.解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.8.解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠CBD=∠ABD=24°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵点E在BC的垂直平分线上,∴EB=EC,∴∠ECB=∠CBD=24°,∴∠ACE=∠ACB﹣∠ECB=72°﹣24°=48°,故选:A.二.填空题(共8小题,满分40分)9.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.10.解:∵AB=BC,∴∠BCA=∠A=13°,∴∠CBD=∠A+∠BCD=26°,又∵BC=CD,∴∠CBD=∠D=26°,∴∠BCD=180°﹣∠CBD﹣∠D=128°.故答案为:128.11.解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.12.解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为15,则2x+x=15,解得x=5,则x+y=18,解得y=13,所以2x=10;若AB+AD的长为18,则2x+x=18,解得x=6,则x+y=15,即6+y=15,解得y=9,所以2x=12,10、10、13和12、12、9均能构成三角形,所以等腰三角形的腰长为10或12.故答案为:10或12.13.解:(1)在Rt△ABC中,∠C=90°,∠A=35°,∴∠ABC=90°﹣∠A=90°﹣35°=55°,∵DE是边AB的垂直平分线,∴EA=EB∴∠ABE=∠A=35°,∴∠CBE=55°﹣35°=20°,故答案为:20;(2)∵AE=3,EC=1,∴AC=EC+EA=3+1=4,BE=AE=3,∴BC==2,∴S△ABC=×4×2=4,故答案为:4.14.解:∵△ABC为等边三角形,∴∠A=60°,∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED,∵∠A+∠AED+∠ADE=180°,∴∠1+∠2=60°+180°=240°,故答案为:240°.15.解:∵线段AC,AB的垂直平分线交于点O,∴OA=OC,OA=OB,∴OB=OC,∵OC=2cm,∴OB=2cm,故答案为:2.16.解:∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠FBD=25°,∵AB∥DF,∴∠DFC=∠ABC=50°,∠BDF=∠ABD=25°,∴∠BDF=∠FBD,∴BF=FD,∵BE=FC,∴△BEF≌△FCD(SAS),∴∠E=∠C=23°,∵AB∥DF,∴∠EFD=∠E=23°,∴∠OFC=∠EFD+∠DFC=73°,∴∠EOC=∠OFC+∠C=96°.故答案为:96°.三.解答题(共6小题,满分40分)17.(1)证明:∵AB=AC,∴∠ABC=∠C,∵BC平分∠ABD,∴∠ABC=∠1,∴∠C=∠1,∴AC∥BD;(2)解:∵AC∥BD,∠A=100°,∴∠ABD=180°﹣∠A=80°,∴∠1=40°.18.解:∵EF垂直平分AD,∴AF=DF,∴∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠B=∠CAF=50°,故∠B的度数是50°.19.解:(1)在△ABD中,∠B=∠C=30°,∠BAD=70°,∴∠ADB=180°﹣(∠B+∠BAD)=180°﹣100°=80°,∠BAC=180°﹣(∠B+∠C)=180°﹣60°=120°,∴∠DAE=∠BAC﹣∠BAD=120°﹣70°=50°,∵∠ADE=∠AED,∴∠ADE=×(180°﹣50°)=65°,∴∠EDC=65°﹣30°=35°;(2)∵∠ACB为△DCE的外角,∴∠ACB=∠AED+∠CDE,∵∠ABC=∠ACB=70°,∠CDE=15°,∴∠ADE=∠AED=55°,∴∠ADC=∠ADE﹣∠CDE=40°,∵∠ABC为△ABD的外角,∴∠ABC=∠ADC+∠BAD,∴∠BAD=30°;(3)∠CDE和∠BAD的数量关系是∠BAD=2∠CDE,理由如下:当点D在BC的延长线上时,设∠ABC=∠ACB=x,∠ADE=∠AED=y,∠CDE=α,∠BAD=β,则有∠ADC=x﹣α,根据题意得:,②﹣①得:2α﹣β=0,即2α=β,故∠BAD=2∠CDE.20.(1)证明:∵DE⊥AB,DF⊥AC,∴∠DEA=∠DF A=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD是∠BAC的角平分线,∴AG⊥EF,EG=FG,∴AD垂直平分EF;(2)解:∵AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∵DE=3,∴DF=3,∵AB+AC=10,∴△ABC的面积===15.21.解:(1)如图,△A1B1C1即为所求.(2)=3×3﹣﹣﹣=.∴△A1B1C1的面积为.22.解:图形如图所示:。
苏科版八年级上册第二章《轴对称图形》(难题)单元测试(含答案)
苏科版八年级上册第二章《轴对称图形》(难题)单元测试一、选择题1.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣传栏,使宣传栏到三个小区的距离相等,则宣传栏应建在()A.AC,BC两边中线的交点处B. AC,BC两边高线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处2.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个3.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④二、填空题9.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_____.12.已知等腰三角形的周长为10,从底边上的一个顶点引腰的中线,分三角形的周长为两部分,其中一部分比另一部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三角形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最小值是______________.三、解答题17.如图,和均为等腰直角三角形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作一点P,使得点P到∠AOB两边OA、OB的距离相等,且满足PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,▵ABC中,∠ABC=45∘,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的大小关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在网格中作出与△ABC成轴对称的格点三角形如下图所示:∴在此网格中与△ABC成对称的格点三角形一共有3个.3.D解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第二次折叠如图2,折痕为MN,由折叠得:BN=NC=12BC=12×3=32,MN⊥BC,∵∠ACB=90°,∴MN//AC,∴b=MN=12AC=12×4=2;第三次折叠如图3,折痕为GH,由勾股定理得:AB =√32+42=5, 由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH , ∴AC AG =BC GH, ∴452=3GH , ∴GH =158,即c =158.∵2>158>32, ∴b >c >a .4. D解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×6×AD =18,解得AD =6,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值, ∴△CDM 的周长最短=(CM +MD)+CD =AD +12BC =6+12×6=6+3=9.5. B解:∵点A ,C 分别在线段BE ,BD 的中垂线上,∴AE =AB ,BC =DC .∵∠A =58°,∠C =100°, ∴∠ABE =180°−58°2=61°,∠CBD =180°−100°2=40°.∵∠EBD =36°,∴∠ABC =∠ABE +∠EBD +∠CBD =61°+36°+40°=137°,∴∠ADC =360°−∠A −∠C −∠ABC =360°−58°−100°−137°=65°. 故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°−130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM−∠DBM =12(∠ACD−∠ABC)=12∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°−(∠CBQ+∠BCQ) =180°−12(∠CBN+∠BCN)=180°−12×(180°−∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP =∠BCP ,又PG//AD ,∴∠FPC =∠DCP ,∴FP =FC .故①②③④都正确.9. 35解:∵沿OC 折叠,B 和B′重合,∴△BOC≌△B′OC ,∴∠BOC =∠B′OC ,∵∠AOB′=110°,∴∠BOB′=180°−110°=70°, ∴∠B′OC =12×70°=35°,10. (1807)°解:∵AB =AC ,AP =PQ =QC =BC , ∴ABC =∠ACB ,∠A =∠AQP ,∠QPC =∠QCP ,∠BQC =∠B , 设∠A =x°,则∠AQP =x°,∴∠BQC =∠ACQ +∠A ,∴∠BQC =3x°,∴∠B =3x°,∵∠A +∠ABC +∠ACB =180°,∴x°+3x°+3x°=180°, 解得:x =1807.∴∠A =(1807)°.11. 6解:∵AD 平分∠BAC ,CD ⊥AC ,∴D 点到AB 的距离等于CD 长度2. 所以△ABD 面积=12×6×2=6.12. 4或83解:设腰长为x ,底长为y ,当腰比底长时有 {x −y =22x +y =10 解得{x =4y =2; 当底比腰长时有{y −x =22x +y =10解得{x=83y=143.∵0<2<4+4=8,0<143<83+83=163∴这两种情况都能构成三角形.13.30°解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°−∠DAE−∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA−∠EOF=140°−110°=30°.14.4解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴AP+BP的值最小值为4.15.5解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形;∠ABC=∠ACB=1800−3602=72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∠ABD=∠A=36º,∴△ABD是等腰三角形;∴∠BDC=180º−36º−72º=72º=∠C,∴△BDC是等腰三角形,∴BD=BC,∵BE=BC,∴BE=BD,∴△BDE是等腰三角形,∴∠ADE=∠BED−∠A=72º−36º=36º=∠A,∴△AED是等腰三角形;16.3解:作B关于AC的对称点E,过E作EN⊥AB于N,交AC于M,连接AE,BM,则此时BM+MN的值最小,∵B关于AC的对称点为E,∴AE=AB=6,BM=EM,∠EAC=∠CAB=15°,∴∠EAB=30°,BM+MN=EM+MN=EN,在Rt△ENA中,∠ENA=90°,∠EAB=30°,AE=6,∴EN=12AE=3,BM+MN=EN=3,17.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)解:BD=EC,BD⊥EC,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠4=90°,∠4=∠5,∴∠ACE+∠5=90°,∴∠BPC=90°,∴BD⊥EC;(3)解:作AM⊥BD于M,AN⊥EC于N,∵△ABD≌△ACE,∴S△ABD=S△ACE,又∵BD=EC,∴AM=AN,∵AM⊥BD,AN⊥EC,∴PA平分∠BPE,又∵BD⊥EC,∴∠BPE=90°,∴∠APB=45°.18.解:(1)如图所示;(2)过P作PC⊥OA,PD⊥OB,垂足分别为C,D,则∠PCO=∠PDB=90°,由(1)知,OP是∠AOB的平分线,∴PC=PD,由题可知PM=PN,∴△PCM≌△PDN(HL),∴∠CPM=∠DPN,∴∠MPN=∠MPD+∠CPN=∠MPD+∠DPN=∠CPD,∵∠CPD=360°−∠AOB−∠PCO−∠PDO=140°∴∠MPN=140°.19.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵{∠DBF=∠DCA BD=CD∠BDF=∠ADC,∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中{∠ABE=∠CBE BE=BE∠BEA=∠BEC,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=12AC.又由(1),知BF=AC,∴CE=12AC=12BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=12∠ABC=12×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=√2CE,∴BG>CE.20.解:(1)C;(2)220°;(3)∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°−2∠AFE,∠2=180°−2∠AEF,∴∠1+∠2=360°−2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°−∠A,∴∠1+∠2=360°−2(180°−∠A)=2∠A.解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°−(∠A+∠B)=360°−90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是220°;(3)∠1+∠2与∠A 的关系是:∠1+∠2=180°+∠A ;21. (1)120°;(2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中, {CG =CD ∠DCF =∠GCF CF =CF ,∴△CFG≌△CFD(SAS),∴DF =GF .∵∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =12∠BAC ,∠FCA =12∠ACB ,且∠EAF =∠GAF , ∴∠FAC +∠FCA =(∠BAC +∠ACB)=12(180°−∠B)=60°, ∴∠AFC =120°,∴∠CFD =60°=∠CFG ,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中, {∠AFE =∠AFG AF =AF ∠EAF =∠GAF ,∴△AFG≌△AFE(ASA),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE +CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA =∠GFA . 又由题可知,∠FAC =12∠BAC ,∠FCA =12∠ACB ,∴∠FAC+∠FCA=12(∠BAC+∠ACB)=12(180°−∠B)=60°,∴∠AFC=180°−(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°−120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°−60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°−(∠FAC+∠ACF)=120°故答案为120°;22.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△ABE中,∠BAE=180°−∠B−∠E=112.5°,∴∠DAE=∠BAE−∠BAD=112.5°−67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°−∠ACB=90°−2x,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=x+45°,在△ABE中,∠BAE=180°−∠B−∠E,=180°−(90°−2x)−x=90°+x,∴∠DAE=∠BAE−∠BAD,=(90°+x)−(x+45°)=45°;(3)∠DAE=12∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°−2y,∠E=∠CAE=x,∴∠BAE=180°−∠B−∠E=2y−x,∴∠DAE=∠BAE−∠BAD=2y−x−y=y−x,∠BAC=∠BAE−∠CAE=2y−x−x=2y−2x,∴∠DAE=12∠BAC.。
苏科版八年级上册数学第二章 轴对称图形 含答案
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )A. cmB. cmC. cmD. cm2、下列各图经过折叠不能围成一个正方体的是()A. B. C. D.3、以下国产新能源电动车的车标图案不是轴对称图形的是()A. B. C. D.4、如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB +OC=1,则OC=()A.2-B. -1C.6-D. -35、如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()A. B. C. D.6、如图,有一块Rt△ABC的纸片,∠ABC= ,AB=6,BC=8,将△ABC沿AD折叠,使点B落在AC上的E处,则BD的长为( )A.3B.4C.5D.67、在螳螂的示意图中,AB//DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠BCD=()A.16°B.28°C.44°D.45°8、如图,已知中,DE、FG分别是AB,AC边上的垂直平分线,,,则的度数是()A.10°B.20°C.30°D.40°9、将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,BE=1,折叠后,点C落在AD边上的C处,并且点B落在EC1边上的B1处.则1EC的长为()A. B.2 C.3 D.210、已知实数满足,则以的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对11、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.若∠BAC=45°,AM=4,DM=3,则BC 的长度为()A.8B.7C.6D.512、如图,AB是⊙O的直径,点E是AB上一点,过点E作CD⊥AB,交⊙O于点C,D,以下结论正确的是()A.若⊙O的半径是2,点E是OB的中点,则CD=B.若CD=,则⊙O的半径是1 C.若∠CAB=30°,则四边形OCBD是菱形 D.若四边形OCBD是平行四边形,则∠CAB=60°13、如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为()A.2B.6C.3或6D.2或3或614、如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A.△ADC∽△CFBB.AD=DFC. =D. =15、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形二、填空题(共10题,共计30分)16、如图,把一张上下两边平行的纸条沿EF折叠,若∠2=132°,则∠1=________.17、如图,等腰三角形中,,是底边上的高,则AD=________.18、若等腰三角形的底角等于15°,腰长为4cm,则等腰三角形的面积为________.19、如图,在△ABC中,,,AD是BC边上的中线,将△ACD沿AD折叠,使点C落在点F处,DF交AB于点E,则∠DEB=________.20、如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为________.21、如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,△BCN的周长是5cm,则BC的长等于________ cm.22、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.23、如图,在△ABC中,∠ACB=90°,CD是△ABC的中线,若∠DCB=40°,则∠A的度数为________ °.24、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△=3.其中正确结论的是________.AFG;②BG=GC;③AG∥CF;④S△FGC25、如图,将一张长方形的纸片ABCD沿AF折叠,点B到达点B′的位置.已知AB′∥BD,∠ADB=20°,则∠BAF=________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD:∠BAC=1:3,求∠B的度数.28、如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.29、如图,在等腰△ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH,求证:四边形EBFC是菱形.30、(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,求△BCD的周长为;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF 的周长等于AD的长.①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF的度数;③若,求的值参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、B5、B6、A7、A8、B9、B10、A11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
苏科版八年级上册数学第二章 轴对称图形含答案(满分必备)
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列命题是真命题的是().A.有两条边、一个角相等的两个三角形全等。
B.等腰三角形的对称轴是底边上的中线。
C.全等三角形对应边上的中线相等。
D.有一个角是60°的三角形是等边三角形。
2、如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°3、有一张平行四边形纸片ABCD,已知,按如图所示的方法折叠两次,则的度数等于()A.55°B.50°C.45°D.40°4、到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点5、在下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=7,AC=5,则△ACD的周长为()A.2B.12C.17D.197、剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B. C. D.8、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长9、如图,C、D在以线段AB为直径的⊙O上,若CA=CD,且∠ACD=40°,则∠CAB=()A.10°B.20°C.30°D.40°10、已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B 为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是()A.12cm 2B.24cm 2C.36cm 2D.48cm 211、如图,AB∥CD,AB=AC,∠1=40°,则∠ACE的度数为()A.80°B.100°C.120°D.160°12、如图,把一矩形纸片OABC放入平面直角坐标系xoy中,使OA,OC分别落在x轴、y轴上,现将纸片OABC沿OB折叠,折叠后点A落在点A'的位置,若OA=1,OB=2,则点A'的坐标为()A. B. C.() D.()13、将AD与BC两边平行的纸条ABCD按如图所示折叠,则∠1的度数为()A.72°B.45°C.56°D.60°14、如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个B.2个C.3个D.4个15、如图,等边的边长为3,点D在边上,,线段在边上运动,,有下列结论:① 与可能相等;② 与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为()A.①④B.②④C.①③D.②③二、填空题(共10题,共计30分)16、某同学从平面镜里看到镜子对面的电子钟的示数如图所示,这时的实际时间是________.17、如图,在△ABC中,已知∠B=∠C,则可判定AB=AC的依据是________;18、如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为________.19、在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则折痕CE的长为________.20、已知点在直线上,点在直线上,与关于y轴对称.则和的交点坐标为________.21、如图,矩形纸片ABCD,AD=2AB=4,点F在线段AD上,将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,点M,N分别是线段AD与线段BC上的点,将四边形CDMN沿MN向上翻折,点C恰好落在线段BF的中点C'处,则线段MN的长为________.22、如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.23、如图,△ABC中,已知AB=5,AC=4,AD平分∠BAC交BC于D,DE⊥AC交AC于点E,若DE=2,则△ABC的面积为________.24、如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=________.25、把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,在长方形ABCD中,已知AB=8cm,BC=10cm,将AD沿AF折叠,使点D落在BC上的点E处.求BE及CF的长.28、作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.29、如图,在中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.30、如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC =3AD.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、D5、A6、B7、D8、A9、B10、B11、B12、B13、C14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、。
苏科版数学八年级上第二单元《轴对称图形》单元考试(含答案解析)
苏科版数学八年级上第二单元《轴对称图形》单元考试一.选择题(共8小题)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°3.如图,已知四边形ABCD中,∠B=98°,∠D=62°,点E、F分别在边BC、CD上.将△CEF沿EF翻折得到△GEF,若GE∥AB,GF∥AD,则∠C的度数为()A.80°B.90°C.100°D.110°4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.25.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AB=AC,∠A=38°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.33°B.38°C.43°D.48°8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=28,DE=4,AB=8,则AC长是()A.8B.7C.6D.5二.填空题(共9小题)9.在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.10.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.题号一二三四五总分第分11.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF =AB;②∠BAF=∠CAF;③S四边形ADFE=AF×DE;④∠BDF+∠FEC=2∠BAC,正确的是(填序号)12.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.13.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.14.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=21,则DE=.15.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.16.若等腰三角形的一边是6,另一边是3,则此等腰三角形的周长是.17.如图,△ABC中,AB=AC,∠A=40°,DE垂直平分AC交AB于E,则∠BCE=三.解答题(共10小题)18.已知如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.19.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.20.如图,在△ABC 中,AB =AC ,作AB 边的垂直平分线交直线BC 于M ,交AB 于点N.(1)如图(1),若∠A =40°,则∠NMB =度;(2)如图(2),若∠A =70°,则∠NMB =度;(3)如图(3),若∠A =120,则∠NMB =度;(4)由(1)(2)(3)问,你能发现∠NMB 与∠A 有什么关系?写出猜想,并证明.21.如图所示,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、AC 延长线于点F 、E .求证:DF ∥AC .证明:∵AD 平分∠BAC ∴∠=∠(角平分线的定义)∵EF 垂直平分AD ∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD =∠ADF ()∴∠DAC =∠ADF (等量代换)∴DF ∥AC ()22.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠DCB 交AB 于点E .(1)求证:∠AEC =∠ACE ;(2)若∠AEC =2∠B ,AD =2,求AB的长.23.在△ABC 中,AD 是BC 边上的高,CE 是AB 边上的中线,且∠B =2∠BCE ,求证:DC =BE.24.等腰△ABC 中,AB =AC ,CE 为△ABC 的外角∠ACD 的平分线,∠ACB =2∠D ,BF ⊥AD .(1)求证:BF ∥CE ;(2)若∠BAC =40°,求∠ABF的度数.25.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.26.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)27.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A 、是轴对称图形,不合题意;B 、不是轴对称图形,符合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:B .【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【分析】连接AO 、BO .由题意EA =EB =EO ,推出∠AOB =90°,∠OAB +∠OBA =90°,由DO =DA ,FO =FB ,推出∠DAO =∠DOA ,∠FOB =∠FBO ,推出∠CDO =2∠DAO ,∠CFO =2∠FBO ,由∠CDO +∠CFO =106°,推出2∠DAO +2∠FBO =106°,推出∠DAO +∠FBO =53°,由此即可解决问题.【解答】解:如图,连接AO 、BO .由题意EA =EB =EO ,∴∠AOB =90°,∠OAB +∠OBA =90°,∵DO =DA ,FO =FB ,∴∠DAO =∠DOA ,∠FOB =∠FBO ,∴∠CDO =2∠DAO ,∠CFO =2∠FBO ,∵∠CDO +∠CFO =106°,∴2∠DAO +2∠FBO =106°,∴∠DAO +∠FBO =53°,∴∠CAB +∠CBA =∠DAO +∠OAB +∠OBA +∠FBO =143°,∴∠C =180°﹣(∠CAB +∠CBA )=180°﹣143°=37°,故选:B.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.3.【分析】依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE ∥AB ,GF ∥AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =(360°﹣98°﹣62°)=100°,故选:C .【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n 的最小值为3,故选:C .【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.【分析】先求出CD 的长,过点D 作DE ⊥AB 于点E ,根据角平分线上的点到角的两边的距离相等的性质可得DE =CD ,从而得解.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BC =12cm ,BD =8cm ,∴CD =BC ﹣BD =12﹣8=4cm ,∵∠C =90°,AD 平分∠CAB ,∴DE =CD =4cm ,即点D 到直线AB 的距离是4cm .故选:B .【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6.【分析】直接利用线段垂直平分线的性质得出AE =BE ,进而得出答案.【解答】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE =BE ,∵AC =8,BC =5,∴△BEC 的周长是:BE +EC +BC =AE +EC +BC =AC +BC =13.故选:B .【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.7.【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD =BD ,根据等边对等角的性质,可得∠ABD =∠A ,然后求∠DBC 的度数即可.【解答】解:∵AB =AC ,∠A =38°,∴∠ABC =(180°﹣∠A )=(180°﹣38°)=71°,∵MN 垂直平分线AB ,∴AD =BD ,∴∠ABD =∠A =38°,∴∠DBC =∠ABC ﹣∠ABD =71°﹣38°=33°.故选:A .【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.8.【分析】首先由角平分线的性质可知DF =DE =4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=×8×4+×AC ×4,∴AC =6.故选:C .【点评】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.二.填空题(共9小题)9.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.10.【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6,∴BD =BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故答案为:12.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【分析】根据翻折变换的性质可得AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,根据平行线的性质和等腰三角形三线合一的性质判断只有AB =AC 时①②正确;根据对角线互相垂直的四边形的面积等于对角线乘积的一半可得S 四边形ADFE =AF •DE ,判断出③正确;根据翻折的性质和平角的定义表示出∠ADE 和∠AED ,然后利用三角形的内角和定理列式整理即可得到∠BDF +∠FEC =2∠BAC ,判断出④正确.【解答】解:∵△ABC 沿DE 折叠点A 与BC 边的中点F 重合,∴AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,只有AB =AC 时,∠BAF =∠CAF =∠AFE ,EF ∥AB ,故①②错误;∵AF ⊥DE ,∴S 四边形ADFE =AF •DE ,故③正确;由翻折的性质得,∠ADE =(180°﹣∠BDF),∠AED =(180°﹣∠FEC),在△ADE中,∠ADE+∠AED+∠BAC=180°,∴(180°﹣∠BDF)+(180°﹣∠FEC)+∠BAC=180°,整理得,∠BDF+∠FEC=2∠BAC,故④正确.综上所述,正确的是③④共2个.故答案为:③④.【点评】本题考查了翻折变换的性质,主要利用了平行线判定,等腰三角形三线合一的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.12.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.【点评】本题主要考查的是利用轴对称的性质设计图案,掌握轴对称图形的性质是解题的关键.13.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【解答】解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点评】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.14.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,∴S△ABC=AB•DE +BC•DF =×6DE +×8DE=21,即3DE+4DE=21,解得DE=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.15.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【解答】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.【点评】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.16.【分析】根据等腰三角形的两腰相等,分①6是腰长,②3是腰长,两种情况讨论求解即可.【解答】解:①6是腰长,能够组成三角形,周长=6+6+3=15,②3是腰长,∵3+3=6,∴3、3、6不能组成三角形,∴三角形的周长为15.故答案为:15.【点评】本题考查了等腰三角形的性质,注意要分情况讨论并利用三角形的三边关系判断是否能够组成三角形,然后再求解.17.【分析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=40°,再由∠A=40°,AB=AC,根据三角形内角和定理可求∠ACB的度数,即可解答.【解答】解:∵DE垂直平分AC,∠A=40°,∴AE=CE,∴∠ACE=∠A=40°,∵∠A=40°,AB=AC,∴∠ACB=70°,∴∠BCE=∠ACB﹣∠ACE=70°﹣40°=30°.故∠BCE的度数是30°.故答案为:30°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,熟记性质是解题的关键.三.解答题(共10小题)18.【分析】分别作出点B与点C关于直线l的对称点,然后连接AB′,AC′,B′C′.即可得到△ABC关于对称轴l的轴对称图形△A′B′C′.【解答】解:【点评】作一个图形的对称图形就是作各个顶点关于对称轴的对称点,把作对称图形的问题可以转化为作点的对称点的问题.19.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.20.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【解答】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB =(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(3)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.【点评】本题考查线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】根据角平分线的定义,线段垂直平分线的性质,等边对等角解决问题即可.【解答】证明:∵AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)∵EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF∥AC(内错角相等两直线平行).故答案为:BAD,DAC,FD,FA,等边对等角,内错角相等两直线平行.【点评】本题考查线段的垂直平分线的性质,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE;(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=30°,进而得出Rt△ACD中,AC=2AD =4,Rt△ABC中,AB=2AC=8.【解答】解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=4,∴Rt△ABC中,AB=2AC=8.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.23.【分析】连接DE.想办法证明∠BCE=∠DEC即可解决问题.【解答】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,AE=BE,∴BE=AE=DE,∴∠EBD=∠BDE,∵∠B=2∠BCE,∴∠BDE=2∠BCE,∵∠BDE=∠BCE+∠DEC,∴∠BCE=∠DEC,∴BE=DC.【点评】本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【分析】(1)根据三角形外角的性质可得∠DAC=∠D,可得CA=CD,再根据等腰三角形的性质和平行线的判定即可求解;(2)根据等腰三角形的性质可求∠ACB,再根据三角形外角的性质可得∠CAD,再根据三角形内角和为180°即可求解.【解答】(1)证明:∵∠ACB=2∠D,∴∠DAC=∠D,∴CA=CD,∵CE为△ABC的外角∠ACD的平分线,∴CE⊥AD,∵BF⊥AD,∴BF∥CE;(2)解:∵∠BAC=40°,∴∠ACB=70°,∴∠DAC=35°,∴∠ABF=180°﹣90°﹣(40°+35°)=15°.【点评】考查了等腰三角形的性质,平行线的判定,三角形外角的性质,关键是得到CA=CD.25.【分析】(1)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA =∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA =∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB =∠YBA ﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C =×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.26.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE =∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.27.【分析】(1)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(2)利用等腰三角形的性质和三角形的内角和即可得出结论;(3)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.【点评】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.第13页(共13页)。
苏科版八年级上册数学第2章《轴对称图形》同步练习(7份)(全章含答案)初二数学试题.doc
2.5等腰三角形的轴对称性(3)【基础训练】在AABC 中,ZA=100° , ZB=40° ,则ZXABC 是 如图,求证:AE=AF. 6. 如图,在厶ABC 中,ZABC 和ZACB 的平分线相交于 点F,过点F 作DE 〃BC,交AB 于点D,交AC 于点E.若BD + CE=2013,则线段DE 的长为( ).A. 2014B. 2011C. 2012D. 20131.2. 三角形. CD 是 RtAABC 斜边 AB±的中线,CD=1006,贝ij AB= _______3・ 4. 长.如图, 如图, ZC=36° ZB = 72° 在ZXABC 中, 点D 、(第3题)找出图中所有的等腰三角形 ______ .cm,求Z\ADE 的周 E 在 BC 上,且Z1 = ZB, Z2=ZC, BC=10 5.如图,在AABC 中,AD 平分ZBAC, E 是CA 延长线上的一点,EG 〃AD, ,ZBAD=36° , DB交AB 于点F.7.如图,ZDAC是厶ABC的一个外角,AE平分ZDAC,且AE〃B(么?8.如图,在四边形ABCD中,ZABC=ZADC=90° , M. N分别是AC、BD的中点,试说明:(1)MD = MB:(2)M N 丄BD・【提优拔尖】9.已知:在RtAABC中,AB = BC;在RtAADE中,AD = DE;连接EC,取EC的中点M,连接DM 和BM.(1)若点D在边AC上,点E在边AB±且与点B不重合,如图(1),求证:BM = DM,且BM丄DM;(2)如果将图⑴中的AADE绕点A逆时针旋转小于45°的角,如图(2),那么⑴中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给出证明.(第9题)10.如图,在AABC屮,作ZABC的平分线BD,交AC于点D,作线段BD的垂直平分线EF, 分别交AB 于点E,交BC于点F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)11.⑴如图⑴,O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求ZAEB的大小;(2)如图(2), AOAB固定不动,保持AOCD的形状和大小不变,将AOCD绕着点O旋转(△ OAB 和AOCD不能重叠).求ZAEB的大小.12・如图,在AABC 中,AB = AC=10, BC = 8, AD 平分ZBAC交 BC 于点 D,点,连接DE,则ACDE 的周长为().4. 10cm5. 略6. D7. AB = AC8. 略9. ⑴略(2)当AADE 绕点A 逆时针旋转小于45°的角时,⑴中的结论仍成立. 10.13. A. 20 B. 12C ・14 如图,己知AC 丄BC, BD 丄AD, D. 13AC 与BD 交于点O, AC=BD ・求证:(1) B C = AD :(2) A OAB 是等腰三角形.参考答案1.等腰2. 20123. AABD, AABC, AADC 点E 为AC 的中△BOFMABOF、ABOF^ADOF 等,证明略.11.(l)ZAEB=60°(2)2AEB = 60° .12. C13.略我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
八年级上册数学单元测试卷-第二章 轴对称图形-苏科版(含答案)
八年级上册数学单元测试卷-第二章轴对称图形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE2、如图,∠MON=90°,已知△ABC中,AC=BC=13,AB=10,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为()A.5B.7C.12D.3、在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF 翻折,点B落在CD边上的点E处,折痕AF交BC下边于点F;②把△ADH翻折,点D落在AE边上的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则的值是( )A. B. C. D.4、如图,AD是△ABC的角平分线,DE⊥AB,AB=6cm,DE=4cm,S△ABC=30cm2,则AC的长为( )A.10cmB.9cmC.4.5cmD.3cm5、若等腰三角形的周长是,其中一边长为,则腰长是()A. B. C. 或 D.无法确定6、直线与坐标轴交于、两点,点在坐标轴上,为等腰三角形,则满足条件的点最多有()个A.8;B.4;C.5;D.7.7、下列说法正确的是()A.角是轴对称图形,它的平分线就是它的对称轴B.等腰三角形的内角平分线,中线和高三线合一C.直角三角形不是轴对称图形D.等边三角形有三条对称轴8、如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D .若AC=8,BC=6,则△DBC的周长为()A.12B.14C.16D.无法计算9、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD =110°,则∠ACB的度数为( )A.40°B.35°C.60°D.70°11、已知等腰三角形的一个外角等于100°,则它的顶角是( )A.80°B.20°C.80°或20°D.不能确定12、如图,在△ABC中,AB=AC=6,点D在边AC上,AD的中垂线交BC于点E.若∠AED=∠B,CE=3BE,则CD等于()A. B.2 C. D.313、大自然中存在很多对称现象,下列植物叶子的图案中不是轴对称图形的是()A. B. C. D.14、如图,△ABC中,AB=AC,BD=CE,BF=CD,若∠A=50°,则∠EDF的度数是()A.75°B.70°C.65°D.60°15、将一个正方形和两个正三角形按如图摆放,则∠1+∠2+∠3=( )A.360°B.180°C.270°D.150°二、填空题(共10题,共计30分)16、若等腰三角形的一个内角为,则它的底角的度数为________.17、在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是________18、如图,在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为________.19、腰长为5,高为4的等腰三角形的底边长为________.20、如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB延AE折叠到AF,延长EF交DC于G,连接AG,现在有如下结论:①∠EAG = 45°;②CG=CF;③FC∥AG;④S△GFC=14.4。
(黄金题型)苏科版八年级上册数学第二章 轴对称图形含答案
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、若线段AD,AE分别是△ABC的BC边上的中线和高线,则()A.AD≥AEB.AD>AEC.AD≤AED.AD<AE2、如图,正三角形ABC的边长为3+ ,在三角形中放入正方形DEMN和正方形EFPH,使得D,E,F在边AB上,点P、N分别在边CB、CA上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为()A. B. C.3 D.3、下列图形“线段、角、等腰三角形、平行四边形、圆”,其中既是轴对称图形,又是中心对称图形的有()A.2个B.3个C.4个D.5个4、下列篆字中,轴对称图形的个数有()A.1个B.2个C.3个D.4个5、如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.2B.4C.D.56、如图,Rt△ABC中,∠ABC的平分线交于,若,则点到的距离是()A.5cmB.4cmC.3cmD.2cm7、如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,∠CAD=30°,CD=4,则线段BF的长度为()A.6B.7C.8D.98、如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2mB.a-mC.aD.a+m9、等腰三角形的周长为,其中一边长为,则该等腰三角形的底边长为()A. 或B. 或C.D.10、如图,在中,,为的平分线,,则等于()A. B. C. D.11、如图,矩形中,,,将此矩形折叠,使点B与点D 重合,折痕为,则的面积为()A.12B.10C.8D.612、如图,△A BC是等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,若等边三角形的高为4,则DE+DF=()A.1B.2C.3D.413、如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE、CF相交于点D,则①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A.①B.②C.①②D.①②③14、下列图形中是轴对称图形,又是中心对称图形的是()A. B. C. D.15、如图,在△ABC中,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于点E,F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系为()A.EF>BE+CFB.EF=BE+CFC.EF<BE+CFD.不能确定二、填空题(共10题,共计30分)16、如图△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为3,则△ACD 的面积为________.17、如图,三角形纸片ABC中,AB=AC,∠BAC=120°,BC=14cm,折叠纸片,使点C和点A重合,折痕与AC,BC交于点D和点E;则折痕DE的长为________.18、如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,以点B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=4;③∠AOB=150°;=6+4 .④S四边形AOBO′其中正确的结论是________.19、如图,△ABC与△A'B'C'关于直线l对称,且∠A=105°,∠C'=30°,则∠B的度数为________20、如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作:然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,①第七次操作共得到________个三角形;②若要得到220个小三角形,则需要操作的次数是________.21、如图,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.运动时间t 为________秒时,△PQB成为以PQ为腰的等腰三角形.22、如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,,得到,若厘米,则的边的长为________厘米.23、已知,如图 AB=AC,∠BAC=40°,D 为 AB 边上的一点,过 D 作DF⊥AB,交 AC 于 E,交 BC 延长线于点 F 则∠F=________°.24、若二次函数的图像经过(2,0),且其对称轴为直线x=-1,则当函数值y>0成立时,x的取值范围是________.25、如图所示,在△ABC中,∠C = 90°,边AB的垂直平分线分别交AB,AC 边于点D,E,连结BE.若AB = 10,BC = 6,则△ACE的周长是 ________ .三、解答题(共5题,共计25分)26、如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.27、已知,如图,BC>AB,AD=DC,BD平分∠ABC,求证:∠ A+∠ C=180°28、如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.29、在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E,若∠CAE=∠B+30°,求∠AEC的度数。
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)【14份】
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)第1课时轴对称与轴对称图形1.下列图形中,对称轴的数量小于3的是( )n 且n为整数).如图,请你2.已知各边相等,各角也相等的多边形叫做正多边形,也称为正n边形(这里3(1)边形有条对称轴(2)当n越来越大时,正多边形接近于,该图形有条对称轴.3.小明学习了轴对称知识后,忽然想起了参加数学兴趣小组时老师布置的一道题,当时小明没做出来,题目是这样的:有一组数据排列成方阵,如图.试用简便方法计算这组数据的和.小明想:不考虑每个数据的大小,只考虑每个数据的位置,这个图形是个轴对称图形,能不能用轴对称思想来解决这个问题呢?小明顺着这个思路很快解决了这个题目,请你写出他的解题过程.第2课时 轴对称的性质(1)1.如图,把一张长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若240∠=︒,则1∠的度数为( )A. 115°B. 120°C. 130°D. 140°2.如图,点P 关于,OA OB 的对称点分别是12,P P ,12PP 分别交,OA OB 于点,D C ,12P P =16 cm ,则PCD ∆的周长为 cm.3.如图,O 为ABC ∆内部一点, 132OB =.(1)分别画出点O 关于直线,AB BC 的对称点,P Q ;(2)请指出当ABC ∠的度数为多少时,PQ =7,并说明理由;(3)请判断当ABC ∠的度数不是(2)中的度数时,PQ 的长度是小于7还是大于7,并说明你的判断的理由.第3课时 轴对称的性质(2)1.如图,点,A B 在方格纸的格点位置上,若要再找一个格点C ,使它们所构成的三角形为轴对称图形,则这样的格点C 在图中共有( )A. 4个B. 6个C. 8个D. 10个2.如图,在2×2的正方形网格纸中,有一个以格点为顶点的ABC ∆.请你找出网格纸中所有与ABC ∆成轴对称且也以格点为顶点的三角形,这样的不角形共有 个.3.如图,在由边长为1的正方形组成的6×5方格中,点,A B 都在格点上.(1)在给定的方格中将线段AB 平移到CD ,使得四边形ABDC 是长方形,且点,C D 都落在格点上.画出四边形ABDC ,并叙述线段AB 的平移过程.(2)在方格中画出ACD ∆关于直线AD 对称的AED ∆.(3)求五边形AEBDC 的面积.第4课时 轴对称的性质—习题课7.如图,线段AB 在直线l 的一侧,请在直线l 上找一点P ,使PAB ∆的周长最短.画出图形,保留画图痕迹,不写画法.2.如图,在直线l 上找一点Q ,使得,QA QB 与直线l 的夹角相等.画出图形,保留画图痕迹,不写画法.3. (1)如图①, P 是AOB ∠内一点,在,OA OB 上分别找点,C D ,使得PCD ∆的周长最短.画出图形,保留画图痕迹,不写画法.(2)如图②, ,P Q 是AOB ∠内的两点,在,OA OB 上分别找点,C D ,使得以,,,P Q C D 为顶点的四边形的周长最短.画出图形,保留画图痕迹,不写画法.第5课时 设计轴对称图案1.在一次数学活动课上,小颖将一个四边形纸片依次按如图①②所示的方式对折,然后按图③中的虚线裁剪成图④样式,将纸片展开铺平,所得到的图形是( )2.在4×4的方格中,有五个同样大小的正方形按如图所示的方式摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.3.在3×3的正方形网格图中,有格点三角形ABC 和格点三角形DEF ,且ABC ∆和DEF ∆ 关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的DEF ∆.(每种方案均不相同)第6课时 线段、角的轴对称性(1)1.如图,在ABC ∆中,AC 的垂直平分线分别交,AC BC 于点,,E D EC = 4 , ABC ∆的周长为23,则ABD ∆的周长为( )A. 13B. 15C. 17D. 192.如图,在ABC ∆中,AB 的垂直平分线分别交,AB BC 于点,,D E AC 的垂直平分线分别交,AC BC 于点,F G .若AEG ∆的周长为2018,则线段BC 的长为 .3.如图,在ABC ∆中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点,F D 为线段CE 的中点,且18,72CAD ACB ∠=︒∠=︒.求证: BE AC =.第7课时 线段、角的轴对称性(2)1.设P 是ABC ∆内一点,满足PA PB PC ==,则P 是ABC ∆ ( )A.三条内角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若EDC ∆的周长为24, ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .3.在ABC ∆中,,AB AC O =为平面上一点,且OB OC =.点A 到BC 的距离为8,点O 到BC 的距离为3.求AO 的长.第8课时 线段、角的轴对称性(3)1.如图,ABC ∆的面积为6,AC =3,现将ABC ∆沿AB 所在直线翻折,使点C 落在直线AD 上的点C '处,P 为直线AD 上的一点,则线段BP 的长不可能是( )A. 3B. 4C. 5. 5D. 102.如图,//,,AB CD BP CP 分别平分,,ABC DCB AD ∠∠过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离为 .3.如图,MN 为ABC ∆的边AC 的垂直平分线,过点M 作ABC ∆另外两边,AB BC 所在直线的垂线,垂足分别为,D E ,且AD CE =,作射线BM .求证: BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.如图,,ABC EAC ∠∠的平分线,BP AP 交于点P ,过点P 作,PM BE PN BF ⊥⊥,垂足分别为,M N .下列结论:①CP 平分ACF ∠;②180ABC APC ∠+∠=︒;③AM CN AC +=;④2BAC BPC ∠=∠.其中正确的是( )A. ①②③B. ①③④C. ②③④D.①③2.如图,AD 是ABC ∆的角平分线,,DE DF 分别是ABD ∆和ACD ∆的高,连接EF ,交AD 于点O .下列结论:①DE DF =;②OA OD =;③AD EF ⊥;④AE DF AF DE +=+; ⑤AD 垂直平分EF .其中一定正确的是 .(填序号)3.如图.在ABC ∆中,AB AC >,边BC 的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.第10课时 等腰三角形的轴对称性(1)1.如图,在ABC ∆中,55,30B C ∠=︒∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65°B. 60°C. 55°D. 45°2.如图,在ABC ∆中,D 为AB 上一点,E 为BC 上一点,且,50AC CD BD BE A ===∠=︒,则CDE ∠的度数为 .3.如图,在ACB ∆中,90ACB ∠=︒, ,D E 为斜边AB 上的两点,且,BD BC AE AC ==,求DCE ∠的度数.第11课时 等腰三角形的轴对称性(1)—习题课1.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的底角的度数为( )A. 30°B. 75°C. 15°或30°D. 75°或15°2.如图,在ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,在边AC 所在的直线上找一点P ,使ABP ∆是等腰三角形,此时APB ∠的度数为 .3.在ABC ∆中,,AB AC AB =的垂直平分线DE 与AC 所在的直线相交所成的锐角为40°,求B ∠的度数.第12课时 等腰三角形的轴对称性(2)1.如图,在ABC ∆中,,36,,AB AC A BD CE =∠=︒分别是,ABC ACB ∠∠的平分线,且相交于点F ,则图中的等腰三角形有( )A. 5个B. 6个C. 7个D. 8个2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3.如图①,在ABC ∆中,,,AB AC ABC ACB =∠∠的平分线交于点O ,过点O 作//EF BC 交,AB AC 于点,E F .(1)图中有几个等腰三角形?猜想EF 与,BE CF 之间有怎样的数量关系,并说明理由.(2)如图②,若AB AC ≠,其他条件不变,则图中还有等腰三角形吗?如果有,分别写出来;另外在(1)中EF 与,BE CF 之间的数量关系还存在吗?(3)如图③,若在ABC ∆中, ABC ∠的平分线BO 与ABC ∆的外角平分线交于点O ,过点O 作//OE BC 交AB 于点E 、交AC 于点F .这时图中还有等腰三角形吗?EF 与,BE CF 之间的数量关系又如何?并说明你的理由.第13课时 等腰三角形的轴对称性(2)—习题课1.如图,120AOB ∠=︒,OP 平分AOB ∠,且OP =2.若点,M N 分别在,OA OB 上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A. 1个B. 2个C. 3个D. 3个以上2.如图,在等边三角形ABC 中,,,AE CD AD BE =相交于点,P BQ AD ⊥于点Q ,则线段,BP PQ 的数量关系为 .3.如图,C 为线段AB 上一点,ACM ∆,CBN ∆是等边三角形.,AN BM 相交于点,,O AN CM 交于点P , ,BM CN 交于点Q ,连接PQ .(1)求证: AN MB =;(2)求AOB ∠的度数;(3)求证: //PQ AB .第14课时 等腰三角形的轴对称性(3)1.如图,在ABC ∆中,,BE AC CF AB ⊥⊥ ,垂足分别为,E F .若M 是BC 的中点,则图中等腰三角形有( )A. 1个B. 3个C. 4个D. 5个2.如图,在四边形ABCD 中,90BCD BAD ∠=∠=︒ , ,AC BD 相交于点,,E G H 分别是,AC BD 的中点.如果80BEC ∠=︒,那么GHE ∠的度数为 .3.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 在边AC 上(不与点,A C 重合), DE AB ⊥于点E ,连接,BD F 为BD 的中点.试猜想A ∠与CEF ∠的关系并证明.第2章 轴对称图形第1课时 轴对称与轴对称图形1.D2. 3 4 5 6 7 8(1) n(2)圆 无数3. 从方阵的数据看出,正方形的一条对角线上的数据都是10.若把这条对角线所在的直线作为对称轴,把这个方阵对折,对称轴两侧重合的小正方形内的数据之和都是10,相加后如图所示,这样方阵中的所有数据之和为1010100⨯=第2课时 轴对称的性质(1)1.A2. 163. (1)如图,过点O 画OH AB ⊥,垂足为H ,在垂线段OH 的延长线上取一点P ,使得PH OH =P ,此时点P 就是点O 关于直线AB 的对称点,同理画出点Q .(2)当90ABC ∠=︒时,7PQ =理由:如图,连接BP 、BQ∵点O 、P 关于直线AB 对称∴直线AB 垂直平分OP∴90BHO BHP ∠=∠=︒,PH OH =∵BH BH =∴BHO BHP ∆≅∆ ∴132OB PB ==,OBH PBH ∠=∠ 同理132OB QB ==,OBC QBC ∠=∠∴1133722PB QB +=+= 若7PQ =,则PB QB PQ +=,此时P 、B 、Q 三点共线∴180PBQ ∠=︒ ∴1902ABC OBH OBC PBQ ∠=∠+∠=∠=︒ (3)当90ABC ∠≠︒时,7PQ <理由:∵90ABC ∠≠︒∴P 、B 、Q 三点不在同一直线上,此时构成PBQ ∆∴PB BQ PQ +>.由(2),得7PB BQ +=∴7PQ <第3课时 轴对称的性质(2)1.D2. 53.(1)如图,将线段AB 先向右平移1个单位长,再向上平移2个单位长度,得线段CD (平移过程不唯一).(2)如图,画点C 关于直线AD 的对称点E ,连接AE 、DE ,则AED ∆即为所求. ( 3)1152(35)21322ACD AEBDC AEBD S S S ∆=+=⨯⨯+⨯+⨯=五边形梯形第4课时 轴对称的性质—习题课1. 由干线段AB 的长度是固定的,要使PAB ∆的周长最短,只要PA PB +最短即可.如图,过点A 作它关于直线l 的对称点'A ,连接'A B 交直线l 于点P ,连接PA 、PB ,此时PAB ∆就是周长最短的三角形,∴点P 即为所求.2.如图,过点A 作它关干直线l 的对称点'A ,连接'A B 交直线l 于点Q .连接QA 、QB ,此时AQH BQD ∠=∠,∴点Q 即为所求.3. (1)如图①,过点P 分别作关于射线OA 、OB 的对称点1P 、2P ,连接12P P ,分别交OA 、OB 于点C 、D ,连接PC 、PD 、CD ,此时PCD ∆的周长最短,∴点C 、D 和PCD ∆即为所求.(2)如图②.过点P 、Q 分别作射线OA 、OB 的对称点1P 、1Q ,连接11PQ ,分别交OA 、OB 于点C 、D ,连接PC 、PQ 、QD 、CD ,此时四边形PCDQ 的周长最短,∴点C 、D 和四边形PCDQ 即为所求.第5课时 设计轴对称图案1.A2. 133.要使DEF ∆和ABC ∆于某条直线成轴对称,关键是确定适当的对称轴.再根据轴对称的性质画出符合条件的图案,可以以33⨯的正方形网格图的对称轴为对称轴画出所求的DEF ∆,有四个不同位置的三角形;也可以以ABC ∆的边AC 、BC 的中点连线所在的直线为对称轴画出所求的DEF ∆,有一个三角形;还可以把过ABC ∆的顶点C 与边AB 平行的直线作为对称轴画出所求的DEF ∆,也有一个三角形.如图①~⑥中的DEF ∆即为所求第6课时 线段、角的轴对称性(1)1.B2. 20183. 连接AE ,∵EF 是AB 的垂直平分线∴AE BE =∵在ADC ∆中.,18CAD ∠=︒,72ACB ∠=︒∴18090ADC CAD ACB ∠=︒-∠-∠=︒即AD EC ⊥∵D 为线段CE 的中点∴ED CD =∴AD 垂直平分EC∴AE AC =∴BE AC =第7课时 线段、角的轴对称性(2)1.D2. 63.∵AB AC =∴点A 在线段BC 的垂直平分线上∵OB OC =∴点O 也在线段BC 的垂直平分线上∴AO 所在的直线即为线段BC 的垂直平分线.设直线AO 与BC 交于点M .由题意,得8,3AM OM ==如图①.当点A 、O 在BC 的同侧时,835AO AM OM =-=-=;如图②,当点A 、O 在BC 的异侧时,8311AO AM OM =+=+=第8课时 线段、角的轴对称性(3)1.A2. 43.连接MA 、MC∵点M 在AC 的垂直平分线上∴MA MC =∵,MD AB ME BC ⊥⊥∴90ADM CEM ∠=∠=︒在Rt MAD ∆和Rt MCE ∆中MA MC AD CE=⎧⎨=⎩ ∴Rt MAD Rt MCE ∆≅∆∴点M 在ABC ∠的平分线上,即BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.B2. ①③④⑤3.如图.在ABC ∆中,AB AC >,边的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.3.过点D 作DN MC ⊥,垂足为N ,连接DB 、DC .∵DN MC ⊥,DF AB ⊥∴90AND AFD ∠=∠=︒∵AD 平分BAM ∠∴NAD FAD ∠=∠在DNA ∆和DNA ∆中,AND AFD NAD FAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DNA DFA ∆≅∆∴,AN AF DN DF ==∵DE 是边BC 的垂直平分线 ∴DB DC =∵DN MC ⊥,DF AB ⊥ ∴90DNC DFB ∠=∠=︒在Rt DFB ∆和Rt DNC ∆中DB DC DF DN =⎧⎨=⎩∴Rt DFB Rt DNC ∆≅∆∴BF CN =∵CN AC AN AC AF =+=+∴BF AC AF =+第10课时 等腰三角形的轴对称性(1)1.A2. 52.5°3.设,BDC x AEC y ∠=∠=∵BD BC =∴BDC BCD x ∠=∠=∵BDC ∆的内角和为180°∴1802B x ∠=︒-同理可求1802A y ∠=︒-∵在ACB ∆中,90ACB ∠=︒∴90A B ∠+∠=︒即1802180290x y ︒-+︒-=︒整理,得135x y +=︒∵DEC ∆的内角和为180°第11课时 等腰三角形的轴对称性(1)—习题课1.D2. 15°或30°或75°或120°3.分三种情况讨论:①当顶角BAC ∠为锐角时,如图①.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,904050A ∠=︒-︒=︒∵AB AC = ∴1(18050)652B C ∠=∠=︒-︒=︒ ②当顶角BAC ∠为直角时,BA AC ⊥,此时//DE AC ,不合题意,舍去.③当顶角BAC ∠为钝角时,如图②.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,50BAE ∠=︒∵BAE B C ∠=∠+∠∴50B C ∠+∠==︒∵AB AC = ∴150252B C ∠=∠=⨯︒=︒ 综上所述,B ∠的度数为65︒或25︒第12课时 等腰三角形的轴对称性(2)1.D2. 50°或80°或65°2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3. (1)图中有5个等腰三角形:ABC ∆、AEF ∆、OBC ∆、EBO ∆、FOC ∆EF 与BE 、CF 之间的数量关系是EF BE CF =+理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =+=+(2)若AB AC ≠,则图中仍旧存在2个等腰三角形:EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =+仍旧存在.(3)图中存在等腰三角形EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =- 理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =-=-第13课时 等腰三角形的轴对称性(2)—习题课1.D2.2BP PQ =3. (1)如图,∵ACM ∆,CBN ∆都是等边三角形∴6160∠=∠=︒,,AC CM CN BC ==∵180ACB ∠=︒∴360∠=︒,120ACN MCB ∠=∠=︒在ACN ∆和MCB ∆中AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩∴ACN MCB ∆≅∆∴AN MB =(2)如图,由(1),知ACN MCB ∆≅∆∴54∠=∠∵OQN ∆与CQB ∆的内角和均为180°,且OQN CQB ∠=∠∴160NOQ ∠=∠=︒∵180AOB NOQ ∠+∠=︒∴120AOB ∠=︒(3)如图,∵160∠=︒,360∠=︒∴31∠=∠在PCN ∆和QCB ∆中3154CN CB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴PCN QCB ∆≅∆∴PC QC =又360∠=︒∴PCQ ∆为等边三角形∴260∠=︒∴21∠=∠∴//PQ AB第14课时 等腰三角形的轴对称性(3)1.D2. 10°3. A CEF ∠=∠ 证明:,EBF x CBF y ∠=∠=∵在Rt ABC ∆中,90ACB ∠=︒∴1809090A x y x y ∠=︒-︒--=︒--∵90ACB ∠=︒,F 为BD 的中点 ∴12CF BD BF == ∴FCB FBC y ∠=∠=∴2DFC FCB FBC y ∠=∠+∠=∵DE AB ⊥,F 为BD 的中点 ∴12EF BD BF == ∴FEB FBE x ∠=∠=∴2DFE FEB FBE x ∠=∠+∠=∴22EFC DFE DFC x y ∠=∠+∠=+ 又∵12CF BD =,12EF BD = ∴CF EF =∴CEF ECF ∠=∠∵CEF ∆的内角和为180° ∴11(180)(18022)9022CEF EFC x y x y ∠=︒-∠=︒--=︒-- ∴A CEF ∠=∠。
苏科版八年级上册数学第二章 轴对称图形 含答案
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、已知二次函数y=-x2+x+6及一次函数y=-x+m,将该二次函数在x轴上方的图像沿x轴翻折到x轴的下方,图像的其余部分不变,得到一个新图像(如图所示).当直线y=-x+m与新图像有4个交点时,m的取值范围是()A. B. C. D.2、已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°3、如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5B.6C.4D.54、如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60°B.45°C.30°D.20°5、已知坐标平面内一点A(2,1),O为原点,B是x轴上一个动点,如果以点B,O,A为顶点的三角形是等腰三角形,那么符合条件的动点B的个数为()A.2个B.3个C.4个D.5个6、如图,把一个长方形的纸片对折两次(折痕互相垂直),然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角的度数应为()A.30°B.60°C.120°D.30°或60°7、观察下列图案,是轴对称而不是中心对称的是()A. B. C. D.8、已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x ﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个9、如图,在△ABC中,AB=CB,∠B=120°,AC=8,AB边的垂直平分线交AB于D,交AC于E,BC边的垂直平分线交BC于F,交AC于G,则EG的长是()A.8B.C.4D.10、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.11、如图,在△ABC中,BD是角平分线,∠A=∠CBD36°,则图中有等腰三角形()A.3个B.2个C.1个D.0个12、下列图形中不是轴对称图形的是()A. B. C. D.13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,2 ),将菱形绕点O旋转,当点A落在x轴上时,点C的对应点的坐标为()A. 或B.C.D.或15、腰长为10,一条中线长为6的等腰三角形的底边长为()A.16B.8C.8或D.16或二、填空题(共10题,共计30分)16、如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=________cm.17、一个等腰三角形的两边长分别为3和7,这个三角形的周长是________.18、若(a﹣5)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为________.19、已知等腰三角形的一个外角为130°,则它的顶角的度数为________.20、如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为________.21、等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的底角度数为________.22、如图,是斜边上的高,将沿折叠,点恰好落在边的中点处,则等于________.23、如图,在中,,,的垂直平分线分别交,于,,,则的长为________.24、如图,将长方形ABCD沿着对角线BD折叠,点C落在C'处,BC′交AD于点E.若AB=4cm,AD=8cm,则△BDE的面积等于________.25、在四边形ABCD中,∠A=∠ABC=90°,△BCD为等边三角形,且AD=2,则四边形ABCD的周长为________三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图,在△ABC中,点D,E,F在边BC上,点P在线段AD上,若PE ∥AB,∠PFD=∠C,点D到AB和AC的距离相等.求证:点D到PE和PF的距离相等.28、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,求△BCE的面积.29、(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,求△BCD的周长为;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF 的周长等于AD的长.①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF的度数;③若,求的值30、已知如图,四边形中,,,求证:.参考答案一、单选题(共15题,共计45分)1、D2、A3、C5、C6、D7、A8、A9、D10、C11、A12、D13、B14、D15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
苏科新版八年级上册数学《第2章 轴对称图形》单元测试卷【含答案】
苏科新版八年级上册数学《第2章轴对称图形》单元测试卷一.选择题1.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=4cm,则点D到AB的距离DE是( )A.5cm B.4cm C.3cm D.2cm2.若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或123.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.2条B.3条C.4条D.5条4.下列判断错误的是( )A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合5.△ABC是等边三角形,D,E,F为各边中点,则图中共有正三角形( )A.2个B.3个C.4个D.5个6.在△ABC中,∠A=90°,∠C=30°,AB=4,则BC等于( )A.2B.C.D.87.如图,在△ABC中,AB=5,BC=6,AC的垂直平分线分别交BC、AC于点D、E,则△ABD的周长为( )A.8B.11C.16D.178.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为( )A.3B.4C.5D.69.如图,在△ABC中,AB=AC,AD平分∠BAC,E为AC的中点,DE=3,则AB等于( )A.4B.5C.5.5D.610.一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B 地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距( )A.100海里B.80海里C.60海里D.40海里二.填空题11.如果一个等腰三角形的两边长分别为4cm和9cm,则此等腰三角形的周长 cm.12.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 秒.13.已知等边三角形的边长是2,则这个三角形的面积是 .(保留准确值)14.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为 .15.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为 .16.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=10,则DF等于 .17.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为 .18.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有 (填序号).19.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB= cm.20.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB= .三.解答题21.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.22.如图,AD是等边△ABC的中线,AE=AD,求∠EDC的度数.23.已知:如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.24.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.25.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.26.如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.27.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE(要求:不用三角形全等的方法)参考答案与试题解析一.选择题1.解:∵∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴DE=CD,∵CD=4cm,∴点D到AB的距离DE是4cm.故选:B.2.解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.3.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.4.解:A、等腰三角形是轴对称图形,正确;B、两条边相等的三角形叫做等腰三角形,正确;C、等腰三角形的两腰相等,两个底角相等,正确;D、等腰三角形顶角的角平分线与底边上的中线、底边上的高线互相重合,故本选项错误;故选:D.5.因为△ABC为等边三角形,所以AB=BC=AC,又因为D,E,F为各边中点,所以AE=EB=BF=FC=CD=DA;又因为DE,DF,EF分别为中位线,所以DE=BC,EF=AC,DF=AB,即DE=EF=DF.所以AE=EB=BF=FC=CD=DA=DE=EF=FD.所以此图中所有的三角形均为等边三角形.因此应选择5个,故选:D.6.解:根据含30度角的直角三角形的性质可知:BC=2AB=8.故选:D.7.解:∵DE是线段AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=11,故选:B.8.解:∵在等边△ABC中,D是AB的中点,AB=8,∴AD=4,AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故选:C.9.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=AC=3,∴AB=AC=6,故选:D.10.解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠CBA=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.二.填空题11.解:当腰长为4cm时,则三边分别为4cm,4cm,9cm,因为4+4<9,所以不能构成直角三角形;当腰长为9cm时,三边长分别为4cm,9cm,9cm,符合三角形三边关系,此时其周长=4+9+9=22cm.故答案为22.12.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.13.解:如图,过点A作AD⊥BC于点D,∵等边三角形的边长是2,∴BD=BC=×2=1,在Rt△ABD中,AD==,所以,三角形的面积=×2×=.故答案为:.14.解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.15.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.16.解:过D作DM⊥AC,∵∠DAE=∠ADE=15°,∴∠DEC=30°,AE=DE,∵AE=10,∴DE=10,∴DM=5,∵DE∥AB,∴∠BAD=∠ADE=15°,∴∠BAD=∠DAC,∵DF⊥AB,DM⊥AC,∴DF=DM=5.故答案为:5.17.解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF=BE=x,BD=DF=2﹣x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2﹣x)2,解得x1=﹣2﹣2(负值舍去),x2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.18.解:①有两个角等于60°的三角形是等边三角形.②有一个角等于60°的等腰三角形是等边三角形.③三个角都相等的三角形是等边三角形④三边都相等的三角形是等边三角形,故答案为①②③④.19.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.20.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.三.解答题21.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.22.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.23.证明:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL),∴OD=OE,∵OC是∠AOB的平分线,∴∠DOF=∠EOF,在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.24.解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16﹣(BE+AE)=16﹣9=7cm.25.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;∵BE=BE,∠ABE=∠DEB,∴△ABE≌△DBE(SAS),∴AB=BD,∴△ABD和△ADE均为等腰三角形;∵∠C=45°,ED⊥DC,∴△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:∵△ABE≌△DBE(SAS),∴BA=BD,EA=EC,∴BE垂直平分相等AD,即AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.26.证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,27.证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,BD=CD,∴BE=CE.。
苏科版八年级上册数学第二章 轴对称图形含答案
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为()A.3B.C.6D.2、如图,将△ABC沿DE翻折,折痕DE∥BC,DB=2AD,DE=4,则BC等于()A.6B.8C.10D.123、如图,将矩形纸片ABCD沿EF折叠(E,F分别是AD、BC上的点),使点B 与四边形CDEF内一点重合,若°,则等于()A.110°B.115°C.120°D.130°4、已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③5、如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°6、下列图形中,为轴对称图形的是()A. B. C. D.7、顺次连接正六边形的三个不相邻的顶点.得到如图所示的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形8、下列图案中不是轴对称图形的是()A. B. C. D.9、如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°10、如图,点、、…在射线上,点、、…在射线上,、、…为等边三角形,若,则的边长为()A.32B.56C.64D.12811、如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是()A.30°B.35°C.40°D.50°12、如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为()A.50°B.55°C.65°D.75°13、如图,在中,,以点为旋转中心,把顺时针旋转得,记旋转角为, 为,当旋转后满足时,与之间的数量关系为()A. B. C. D.14、已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为().A.9B.3C.D.15、如图,△ABC中,DC=2BD=2,连接AD,∠ADC=60°.E为AD上一点,若△BDE和△BEC都是等腰三角形,且AD= ,则∠ACB=()A.60°B.70°C.55°D.75°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB和AC的垂直平分线分别交BC于E、F,若∠BAC=130°,则∠EAF=________.17、如图,点A1, A2, A3…,An在x轴正半轴上,点C1, C2,C 3,…,在y轴正半轴上,点B1, B2, B3,…,Bn在第一象限角平分线OM上,OB1=B1B2=B1B3=…=Bn﹣1Bn=a,A1B1⊥B1C1, A2B2⊥B2C2, A3B3⊥B3C3,…,,…,则第n个四边形的面积是________.18、如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB.已知∠ADE=40°,则∠DBC=________度.19、如图,在△中,,,斜边上的垂直平分线交,于点,,则________度.20、将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F,则∠DFC的度数为________.21、如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为________ cm.22、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC 交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90º+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半=mn;④EF是△ABC的中位径的圆外切;③设OD=m,AE+AF=n,则S△AEF线.其中正确的结论是________.23、如图,在中,,、是内两点,平分,,若,,则的长为________.24、一个等腰三角形一腰上的中线将周长分成15和9两个部分,则该三角形的底边长为________ .25、已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求证:DE=DF.28、如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,F是BE,CD的交点.请写出图中两对全等的三角形,并选出其中一对加以证明.29、边中,点是边上的两个动点(不与点重合),点在点的左侧,且,点关于直线的的对称点为,连接求证:.30、在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,BD=1,求BC的长.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、A5、B6、D7、B8、B9、C10、C11、B12、C13、B14、D15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章轴对称图形单元测试
一、选择题
1.今年实施的新交规让人们的出行更具安全性,以下交通标志中不是是轴对称图形的
是()
A. B. C. D.
2.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,
使点B与点D重合,折痕为EF,则△ABE的面积为( )
A. 6
B. 8
C. 10
D. 12
3.下列语句中,正确的有( )
①关于一条直线对称的两个图形一定能重合;
②两个能重合的图形一定关于某条直线对称;
③一个轴对称图形不一定只有一条对称轴;
④两个轴对称图形的对应点一定在对称轴的两侧.
⑤角平分线上任意一点到角的两边的线段长相等.
A. 1个
B. 2个
C. 3个
D. 4个
4.小明是我校手工社团的一员,他在做折纸手工,如图所示在
矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F
是边CD上的任意一点,△AEF的周长最小时,则DF的长为
( )
A. 1
B. 2
C. 3
D. 4
5.下列图形中对称轴只有两条的是()
A. 圆
B. 等边三角形
C. 矩形
D. 等腰梯形
6.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()
A. B.
C. D.
7.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②
中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是( )
A. B. C. D.
8.下列图形不是轴对称图形的是( )
第2页,共7页
A. B. C. D.
9.若∠AOB=45∘,P是∠AOB内一点,分别作点P关于直线OA、
OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是
( )
A. OP1⊥OP2
B. OP1=OP2
C. OP1≠OP2
D. OP1⊥OP2且OP1=OP2
10.四边形ABCD中,∠BAD=130∘,∠B=∠D=90∘,在BC、
CD上分别找一点M、N,使三角形AMN周长最小时,则
∠AMN+∠ANM的度数为( )
A. 80∘
B. 90∘
C. 100∘
D. 130∘
二、填空题
11.如图,在边长为6的正方形ABCD中,E是边CD的中点,
将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.则
sin∠BAG=______ .
12.轴对称是指______ 个图形的位置关系,轴对称图形是指______ 个具有特殊形状的
图形.
13.黑体汉字中的“中”,“田”,“日”等都是轴对称图形,请至少再写出两个具有
这种特征的汉字:______ .
14.如图所示,已知O是∠APB内的一点,点M,N分别是O点关
于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已
知MN=5cm,则△OEF的周长______ cm.
15.如图,在五边形ABCDE中,∠BAE=120∘,∠B=∠E=90∘,AB=BC=1,AE=
DE=2,在BC,DE上分别找一点M,N,使△AMN的周
长最小,则△AMN的最小周长为______ .
三、解答题
16.操作题:如图,在3×3网格中,已知线段AB、CD,以格点为
端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有
可能)
17.如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个
有阴影的小正方形,使补画后的图形为轴对称图形.
18.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.
第4页,共7页
19.已知:如图,∠AOB内有一点P,作点P关于直线
OA的对称点P1,再作点P关于直线OB的对称点P2.
试探索∠POP2与∠AOB的大小关系并说明理由.
20.如图,草原上,一牧童在A处放马,牧童家在B处,
A、B处距河岸的距离AC,BD的长分别为500m和
700m,且CD=500m,天黑前牧童从A点将马牵到河
边去饮水后,再赶回家,牧童将马牵到河边什么地方饮水,才能使走过的路程最短?
牧童最少要走多少m?
参考答案
1. D
2. A
3. B
4. D
5. C
6. D
7. A
8. D
9. D10. C
11. √10
10
12. 两;一
13. “木”,“古”
14. 5
15. 2√7
16. 解:如图所示:
17. 解:所补画的图形如下所示:
18. 解:如下图所示:
(答案不唯一).
19. 解:∵点P关于直线OA的对称点P1,点P关于直线OB的对称点P2,
∴∠1=∠2,∠3=∠4,
第6页,共7页
∴∠P1OP2=∠1+∠2+∠3+∠4=2(∠2+∠3)=2∠AOB.
20. 解:作A点关于河岸的对称点A′,连接BA′交河岸与P,
则PB+PA=PB+PA′=BA′最短,故牧童应将马赶到河边的P地点.作DB′=CA′,且DB′⊥CD,
∵DB′=CA′,DB′⊥CD,BB′//A′A,
∴四边形A′B′BA是矩形,
,
在Rt△BB′A′中,
连接A′B′,则BB′=BD+DB′=1200,
BA′=√12002+5002=1300(m).
故牧童至少要走1300米.。