苏教版八年级数学上册知识点总结(苏科版)
苏教版八年级数学上册知识点总结(苏科版)
知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。
苏教版八年级数学知识点总结
苏教版八年级数学知识点总结八年级数学是初中数学中的一项重要内容,对于学生的数学思维能力的培养和数学基础的奠定有着至关重要的作用。
而苏教版八年级数学则是较为常见并被广泛使用的一套教材。
本文将对苏教版八年级数学的知识点进行综述和总结。
一、代数代数是八年级数学的核心内容之一,主要包括:一元一次方程与等式,二元一次方程组,根式与分式,整式,一次函数及其应用等知识点。
1. 一元一次方程与等式一元一次方程指一个未知数为一次的方程,可以表示为ax+b=0 (a≠0),如2x+3=7。
对于一元一次方程,我们需要掌握基本的方程变形、用加减乘除消元、移项变号、去分母等方法来解方程。
同时,还需要理解为什么一元一次方程只有一个解或没有解。
在实际应用中,我们可以将问题转化为一元一次方程,进而解决问题。
比如有一道题目:“一堆苹果,分给a,b,c三人,分完后c 多得a,b两人分的各一半,若原来有21个苹果,则c得到多少个苹果?” 我们根据题意可以写出方程。
设a,b,c三人分别得到x,y,z个苹果,则有:x+y+z = 21;z = (x+y)/2;整理得:x + y - 2z = 0;插入第一个公式可得:x+y = 2z;代入第一个公式得:3z = 21,解得z=7。
所以c得到的苹果数是7个。
2. 二元一次方程组二元一次方程组由两个未知数的一次方程组成,一般写成:ax+by=c;dx+ey=f;我们需要掌握用消元法和代入法解二元一次方程组的基本方法和步骤。
同时还需要理解解出的解集的含义,如有唯一解、无解、无穷解等情况。
在实际应用中,二元一次方程组也有广泛的应用,如数学建模、物理力学等。
例如有一道题目:“使用8个10W和4个20W的灯泡,排成两排,第一排4个,第二排8个,第一排亮的灯泡功率大于等于第二排。
求每只灯有几瓦?” 我们根据题意可以写出方程组。
设第一排4个灯泡中有x个10W的和y个20W的,第二排8个灯泡中有m个10W的和n个20W的,则有:x+y = 4;m+n = 8;10x+20y >= 10m+20n;代入第三个方程可以得到: y>=n;n>=x;m>=y;插入第一个公式可得:n+m = 8-x;插入第二个公式可得:x+2y <= 4;整理可得:5y-2n >=2,解得y=2,n=1。
(完整版)苏教版初中数学知识点总结(适合打印)
1.分式的加、减、乘、除、乘方、开方法则2.分式的性质
⑴基本性质: = (m≠0) ⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;
⑤ 技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法
7.角的平分线及其表示8.对顶角及性质
9.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
1.配料问题:溶质=溶液×浓度2.溶液=溶质+溶剂3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
苏教版数学八年级上册全册教案-苏教版八年级数学上册教案
苏教版数学八年级上册全册教案-苏教版八年级数学上册教案第一章矩形和平行四边形第一节课前热身知识点1. 四边形既有不等边的叫做梯形。
2. 梯形的面积=上底+下底 ×高 ÷ 2。
教学目标1. 能识别矩形和平行四边形。
2. 理解平行四边形和矩形的性质和定义。
3. 掌握平行四边形和矩形的周长和面积公式。
4. 能灵活解决与矩形和平行四边形相关的问题。
第二节矩形知识点1. 矩形的特点是四条边相互平行,四个角都是直角。
2. 特殊矩形:正方形,长方形。
教学目标1. 掌握矩形的定义和基本性质。
2. 能计算矩形的周长和面积。
3. 能够解决与矩形相关的问题。
第三节平行四边形知识点1. 平行四边形的特点是对边平行,对角线互相平分。
2. 特殊平行四边形:菱形。
教学目标1. 理解平行四边形的定义和基本性质,能够正确的画出平行四边形。
2. 掌握平行四边形的周长和面积计算公式,能够灵活运用解决问题。
3. 能够分辨平行四边形和其他的四边形。
4. 能够解决与平行四边形相关的问题。
第二章比例和单位换算第一节倍数和倍数的性质知识点1. 倍数:一个数是另一个数的几倍,这个数就是另一个数的倍数。
2. 倍数性质:(1) 两个数的比例相等,其中一个数是另一个的倍数;(2) 若a, b与c成比例,则它们的倍数也成比例。
3. 倍数应用:量的倍数、面积倍数、体积倍数。
教学目标1. 能够理解倍数的含义和性质。
2. 掌握计算倍数以及倍数的应用。
第二节均分知识点1. 如何将一个数分成几等份称为均分。
2. 两个数分别和它们的平均数的关系。
3. 三个或三个以上数和它们的平均数的关系。
教学目标1. 能够理解均分的概念。
2. 掌握均分的计算方法。
3. 能够解决与均分相关的问题。
第三节比例知识点1. 比例的概念。
2. 比例的四种关系:等比、比例、反比、无关。
3. 比例的计算和综合应用。
4. 度量单位换算。
教学目标1. 能够理解比例的概念。
2. 掌握比例的计算方法和应用。
苏教版八年级上册数学知识点汇总
苏教版八年级上册数学知识点汇总第一章三角形的初步知识•三角形的概念与分类:理解三角形的定义,掌握按边和角对三角形进行分类(如等边三角形、等腰三角形、直角三角形等)。
•三角形的三边关系:理解并应用三角形的三边关系定理(任意两边之和大于第三边)进行边长判断。
•三角形的高、中线、角平分线、中位线:了解并掌握这些线段的概念、性质及画法,特别是中位线的性质(平行于第三边且等于第三边的一半)。
•三角形的稳定性:理解三角形在结构中的稳定性作用。
第二章全等三角形•全等三角形的概念与性质:理解全等三角形的定义,掌握全等三角形的对应边相等、对应角相等的性质。
•全等三角形的判定:掌握全等三角形的几种判定方法,包括SSS、SAS、ASA、AAS、HL(直角三角形专用)。
•全等三角形的应用:运用全等三角形的性质解决实际问题,如测量、作图等。
第三章轴对称与中心对称•轴对称图形与轴对称变换:理解轴对称图形的概念,掌握轴对称变换的性质,能识别并作出轴对称图形。
•中心对称图形与中心对称变换:了解中心对称图形的概念,掌握中心对称变换的性质,能识别并作出中心对称图形。
•设计轴对称或中心对称图案:通过实践活动,设计并制作轴对称或中心对称的图案。
第四章勾股定理•勾股定理的内容:理解并掌握勾股定理(直角三角形两直角边的平方和等于斜边的平方)及其逆定理。
•勾股定理的证明:了解勾股定理的多种证明方法,如赵爽弦图、欧几里得证明等。
•勾股定理的应用:运用勾股定理解决直角三角形中的边长计算问题,以及涉及勾股定理的实际问题。
第五章数据的收集、整理与描述•数据的收集:了解数据收集的方法(如调查、实验等),掌握数据收集过程中的注意事项。
•数据的整理:学习数据的分类、排序、分组等整理方法,掌握频数分布表、频数分布直方图的绘制方法。
•数据的描述:理解平均数、中位数、众数等统计量的概念、意义及计算方法,能选择合适的统计量描述数据特征。
•数据的波动:了解极差、方差等描述数据波动程度的统计量,掌握其计算方法及意义。
苏科版初中八年级上册数学:3.1 勾股定理
学以致用
一架消防队的梯子长25m,在一次
火灾中, 梯子的底部离建筑物15m,此
时,梯子最高能到多少米?
D
如果每层楼高4m,要想救上
A
一层的人,梯子的底部要向楼的
方向推进多少米?
B
E
C
知识象一艘船 让它载着我们
驶向理想的……
敬 请 指 导
再 见
Q
探究活动二
在方格纸上, 画一个顶点都在格 点上的直角三角形; 并分别以这个直角 三角形的各边为一 边向三角形外作正 方形,仿照上面的方 法计算以直角边、 斜边为一边的正方 形的面积.
边为c,那么
a2 + b2 = c2
a
c
b
即直角三角形两直角边的平方和等于斜边的平方.
苏教版八年级数学 勾股定理
苏州市相城区东桥中学 宋明康
邮票赏 析
这是1955年希腊曾经发 行的纪念邮票,邮票上的图 案是根据一个著名的数学定 理设计的。
探究活动一
将每个小正方形的面积看作1,△ABC是以格点为 顶点的直角三角形,分别以三边向外作正方形。
你能计算以 AB为边的正方 形的面积吗?
R P
勾股定理揭示了直角三角形三边之间的关系.
弦 勾
在西方又称毕 达哥拉斯定理
股
例题精选 例1 求下列图中表示边的未知数x、y、z的值.
81 144
①
144 169 ②
z
625 576
③
例题精选
例2 求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁 算
①
20
苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥是a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0 ||00a aa aa a>⎧⎪===⎨⎪-<⎩()()20a a a =≥ 知识点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】 类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________.【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2016春•庐江县期末)已知()22230x y x y ++++=,求2x y -的平方根.【答案】解:, 解得,∴ 2x y -=1﹣2×(﹣2)=5,∴5的平方根是±.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。
(完整版)苏教版八年级数学知识点总结
苏教版八年级数学知识点总结第一章全等三角形1.1 全等图形能够完全重合的图形叫做全等图形1.2 全等三角形两个能完全重合的三角形叫做全等三角形当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角全等三角形的对应边相等、对应角相等1.3 探索三角形全等的条件两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)第二章轴对称图形2.1 轴对称与轴对称图形把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么成这个图形是轴对称图形,这条直线就是对称轴。
2.2 轴对称的性质垂直并且平分一条线段的直线,叫做这条线段的垂直平分线成轴对称的两个图形中,对应点的连线被对称轴垂直平分2.3 设计轴对称图形2.4 线段、角的轴对称性线段垂直平分线上的点到线段两端的距离相等到线段两端距离相等的点在线段的垂直平分线上角平分线上的点到角两边的距离相等角的内部到角两边距离相等的点在角的平分线上2.5 等腰三角形的轴对称性等腰三角形的两底角相等(简称“等边对等角”)等腰三角形底边上的高线、中线及顶角平分线重合有两个角相等的三角形是等腰三角形(简称“等角对等边”)三边都相等的三角形叫做等边三角形或正三角形等边三角形的各角都等于60º三个角都相等的三角形是等边三角形有一个角是60º的等腰三角形是等边三角形直角三角形斜边上的中线等于斜边的一半等腰梯形是轴对称图形,过两底中点的直线是它的对称轴等腰梯形在同一底上的两个角相等等腰梯形的对角线相等在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形第三章 勾股定理3.1 勾股定理直角三角形两条直角边的平方和等于斜边的平方3.2 勾股定理的逆定理如果三角形的三边长分别为a 、b 、c ,且222c b a =+,那么这个三角形是直角三角形3.3 勾股定理的简单运用第四章 实数4.1 平方根如果()02>=a a x ,那么x 叫做a 的平方根,也称为二次方根。
苏教版八年级上册数学知识点归纳及总结
苏教版八年级上册数学知识点归纳及总结本文档旨在对苏教版八年级上册数学课程的知识点进行归纳和总结,帮助学生更好地掌握和复相关内容。
一、代数与函数- 代数运算:四则运算,整式的加减乘除等。
- 一元一次方程:解一次方程的基本方法,应用题的解法。
- 一元一次不等式:求解不等式,应用题的解法。
- 函数概念:自变量和因变量,函数的图象。
- 一元一次函数:函数的定义,函数图象的性质,函数与方程的联系。
- 一元一次函数图象的绘制与应用:确定函数的部分特征,应用题的解法。
二、图形的认识与运用- 点和线:点的名称与判定,线的名称与判定。
- 图形的基本性质:图形的名称与判定,图形基本性质的应用。
- 直线与角:直线的性质,角的性质,角的名称与判定。
- 三角形:三角形的性质,三角形判定,三角形的分类。
- 四边形:四边形的性质,四边形的分类,四边形的判定。
- 一般平行四边形:平行四边形的性质,平行四边形的判定。
- 圆及其部分:圆的性质,圆的判定,圆内角的性质。
三、空间与形体- 空间中的位置与方向:空间中点的坐标,方向的判定与计算。
- 空间中直线、平面与图形:直线与平面的判定,平行与垂直的判定。
- 空间中三视图与展开图:图形的三视图,平面图形的展开图。
四、数据统计- 统计与统计分布:数据的统计指标,数据的统计分布。
- 直方图与折线图:直方图的绘制与解读,折线图的绘制与解读。
五、平面向量- 平面向量的表示与运算:平面向量的表示方法,向量的运算。
以上是苏教版八年级上册数学课程的主要知识点归纳和总结。
希望本文档对学生理解和掌握相关知识有所帮助。
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习全等三角形全章复习与巩固(基础)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1. 证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2. 证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3. 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4. 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△A BE和△ADG中,,∴△ABE≌△A DG(SAS),∴A E=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90°∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是( ) A.1 <x < 6 B.5 <x < 7 C.2 <x < 12 D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB +∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∴∠PAE=∠PCB ,∵∠BAP +∠PAE=180°,∴∠PCB +∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB -MC <AB -AC .【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:∵AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
苏教版八年级数学全册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
05全等三角形判定二(SSS,AAS)(基础)知识讲解--苏教版苏科版初二数学八年级数学上册
05 全等三角形的判定二(SSS ,AAS )(基础篇)-知识讲解+答案【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). 要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件 可选择的判定方法一边一角对应相SAS AAS ASA等两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、(2016•蓝田县一模)如图,在四边形ABCD中,E是BC的中点,连接AC,AE,若AB=AC,AE=CD,AD=CE,则图中的全等三角形有()A.0对B.1对C.2对D.3对【思路点拨】首先证明△ABE≌△AEC,再证明△AEC≌△ADC,△ABE≌△ADC.【答案与解析】解:在△ABE和△AEC中,,∴△ABE≌△AEC(SSS),在△AEC和△ADC中,,∴△ABO≌△ADO(SSS),∴△ABE≌△ADC,故选D【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【高清课堂:379109 全等三角形的判定(一) 同步练习6】【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”【高清课堂:379110 全等三角形的判定二,例6】2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、(2015春•雅安期末)如图:AB=A ′B ′,∠A=∠A′,若△ABC≌△A′B′C ′,则还需添加的一个条件有( )种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC ≌△ A ′B ′C ′,已知了AB=A ′B ′,∠ A=∠ A ′,可用的判别方法有ASA ,AAS ,及SAS ,所以可添加一对角∠B=∠B ′,或∠C=∠C ′,或一对边AC=A ′C ′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A ′C ′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B ′C ′(ASA );若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS );若添加AC=A ′C ′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C ′(SAS ).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】(2014秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE与△AOF中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.。
初中数学苏教版数学八年级初二上册课件_5.1物体位置的确定
也是用一对数来表示。 不一样.
两个数字是有顺序的。
列排
(2 , 4) (4 , 2)
…… ……
(2,4)和(4,2)表示位置一样吗?
议一议
2个
在平面内,确定一个位置 需要几个数据?
找找你的位置
第7排 第6排 第5排
第4排 第3排
第2排 第1排
第1列
第2列 第3列 第4列 第5列 第6列 第7列
讲台
2个数据
确定位置的基本方法与联系: 经纬定位 交叉定位
角距定位
引起
位置的变化
数量的变化表示ຫໍສະໝຸດ 1.依据下列表述,能确定位置的是( C ) A.北偏东30° B.某电影院3排 C.东经92°,北纬45° D.距学校500米的某建筑
2.如图是小军家与周围地区的行走路线示意图,
相对小军家来说:
①小
军家北偏东30°的方向上有 2 个商店,分别 是照相馆、超市 ;
中心位置在北纬 31°9 ' ,东经103°22 '
议一议:
A:在以下地方,你会选标志物法、经 纬度法中的哪一种来描述位置?
城市、海洋、沙漠、草原
地你球发上现任了意什一么点? 的位置都可以用经纬 度来描述.在有标志物的地方,用标志 物法更方便.
如果A,B两人各拿到一张电影票,如下
电 A 影 6排
苏科八年级 上册
5.1 物体位置的确定
现实生活中,人们既关心事物的数量的 变化,也关心事物的位置变化.
想一想:
如果你是棋手,你会如何记录每个棋子的位置呢?
你会下围棋吗?想一想:围棋手是如何记录每一步棋的位置的?
一般地,我们常用确定的标志来 描述运动物体位置的变化.
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。
要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。
要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。
要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。
要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。
XXX∠FAE。
又∠EAG+∠XXX∠BAG=180°。
AEF≌△AGF(AAS)。
XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。
又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。
AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。
BAD=∠CAD。
又∠ABD=∠ACD。
ABD≌△ACD(AAS)。
BD=CD。
又∠BDA=∠CDA。
BDA≌△CDA(SAS)。
B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。
证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。
苏教版八年级上册数学提纲
苏教版八年级上册数学提纲数学基础学问薄弱的学生,当下最主要的目标就是从头梳理学问框架,查缺补漏,构建更为系统、完好的学问体系。
以下是我给大家整理的苏教版〔八年级〕上册数学提纲,希望对大家有所关怀,欢迎阅读!苏教版八年级上册数学提纲三角形学问概念1、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的样子是固定的,三角形的这独特质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。
苏教版初中数学重难点
苏教版初中数学重难点篇一:苏教版初中数学知识点初中数学知识点1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r 122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r) 136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形篇二:苏教版教材初中数学内容梳理苏教版初中数学教学内容一览表篇三:苏科版初中数学知识点总结知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。
苏教版数学八上第一、第二章知识点总结(完整版)
全等三角形一、关系图⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
苏教版八年级上册数学[直角三角形全等判定(提高)知识点整理及重点题型梳理]
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】【379111 直角三角形全等的判定,知识点讲解】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【379111 直角三角形全等的判定,例2】【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,【379111 直角三角形全等的判定,巩固练习3】2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF.【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF∴AB ∥DC.【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、(2016春•苏仙区期末)如图,∠A=∠B=90°,E 是AB 上的一点,且AE=BC ,∠1=∠2.(1)Rt △ADE 与Rt △BEC 全等吗?并说明理由;(2)△CDE 是不是直角三角形?并说明理由.A B CE【思路点拨】(1)根据∠1=∠2,得DE=CE ,利用“HL ”可证明Rt △ADE ≌Rt △BEC ;(2)是直角三角形,由Rt △ADE ≌Rt △BEC 得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE 是直角三角形.【答案与解析】 解:(1)全等,理由是: ∵∠1=∠2,∴DE=CE , ∵∠A=∠B=90°,AE=BC , ∴Rt △ADE ≌Rt △BEC(HL); (2)是直角三角形,理由是: ∵Rt △ADE ≌Rt △BEC ,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE 是直角三角形.【总结升华】考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.举一反三:【变式】(2015春•澧县校级期中)如图,在△ABC 和△DCB 中,∠A=∠D=90°,AC=BD ,AC 与BD 相交于点O .(1)求证:△ABC≌△DCB;(2)△OBC 是何种三角形?证明你的结论.A BC E【答案】证明:(1)因为∠A=∠D=90°,所以△ABC 和△DCB 都是直角三角形,在Rt △ABC 和Rt △DCB 中,,.AC BD BC BC =⎧⎨=⎩ ∴Rt△ABC≌Rt△DCB(HL );(2)△OBC 是等腰三角形. 理由如下:∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DCB,∴OB=OC∴△OBC 是等腰三角形.4、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D.(1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.【答案与解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL )∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结
第一章三角形全等
一、全等三角形的定义
1、全等三角形:
能够完全重合的两个三角形叫做全等三角形。
2、理解:
(1)全等三角形形状与大小完全相等,与位置无关;
(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;
(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质
1、全等三角形的对应边相等、对应角相等。
理解:
(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定
1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路
1、已知两边:
(1)找第三边(SSS);
(2)找夹角(SAS);
(3)找是否有直角(HL)。
2、已知一边一角:
(1)找一角(AAS或ASA);
(2)找夹边(SAS)。
3、已知两角:
(1)找夹边(ASA);
(2)找其它边(AAS)。
第二章轴对称
一、轴对称图形
相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质
1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线
1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
四、角的角平分线
1、性质定理:角平分线上的点到角两边的距离相等。
2、判定定理:到角两个边距离相等的点在这个角的角平分线上。
3、拓展:三角形三个角的角平分线的交点到三条边的距离相等。
五、等腰三角形
1、性质定理:
(1)等腰三角形的两个底角相等(等边对等角)。
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。
2、判断定理:
一个三角形的两个相等的角所对的边也相等。
(等角对等边)。
六、等边三角形
1、性质定理:
(1)等边三角形的三条边都相等。
(2)等边三角形的三个内角都相等,都等于60°。
2、拓展:等边三角形每条边都能运用三线合一这性质。
3、判断定理:
(1)三条边都相等的三角形是等边三角形。
(2)三个角都相等的三角形是等边三角形。
(3)有两个角是60°的三角形是等边三角形。
(4)有一个角是60°的等腰三角形是等边三角形。
七、直角三角形推论
1、直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。
2、直角三角形中,斜边上的中线等于斜边的一半。
3、拓展:直角三角形常用面积法求斜边上的高。
第三章勾股定理
一、基本定义
1、勾:直角三角形较短的直角边
2、股:直角三角形较长的直角边
3、弦:斜边
二、勾股定理
1、定理:
直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
三、勾股定理的逆定理
1、定理:
如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。
三、勾股数
1、定义:
满足a2+b2=c2的三个正整数,称为勾股数。
2、常见勾股数:
3,4,5;6,8,10; 9,12,15;5,12,13。
四、简单运用
1、勾股定理——常用于求边长、周长、面积:
理解:
(1)已知直角三角形的两边求第三边,并能求出周长、面积。
(2)用于证明线段平方关系的问题。
(3)利用勾股定理,作出长为的线段。
2、勾股定理的逆定理——常用于判断三角形的形状:
理解:
(1)确定最大边(不妨设为c)。
(2)若c 2
=a
2
+b
2
,则△ABC是以∠C为直角的三角形。
(3)若a 2
+b
2
<c
2
,则此三角形为钝角三角形(其中c为最大边)。
(4)若a 2
+b
2
>c
2
,则此三角形为锐角三角形(其中c为最大
边)。
(5)难点:运用勾股定理立方程解决问题。
第四章实数
一、平方根
1、定义:一般地,如果x 2
=a(a≥0),那么这个数x就叫做a的平方根
(或二次方根)。
2、表示方法:正数a的平方根记做,读作“正、负根号a”。
3、性质:
(1)一个正数有两个平方根,它们互为相反数。
(2)零的平方根是零。
(3)负数没有平方根。
二、开平方
1、定义:求一个数a的平方根的运算,叫做开平方。
三、算术平方根
1、定义:
一般地,如果x 2
=a(a≥0),那么这个正数x就叫做a的算术平方根。
特
别地,0的算术平方根是0。
2、表示方法:
记作,读作“根号a”。
3、性质:
①一个正数只有一个算术平方根。
②零的算术平方根是零。
③负数没有算术平方根。
4、注意的双重非负性:
四、立方根
1、定义:
一般地,如果x 3
=a那么这个数x就叫做a 的立方根(或三次方根)。
2、表示方法:
记作,读作“三次根号a”。
3、性质:
(1)一个正数有一个正的立方根。
(2)一个负数有一个负的立方根。
(3)零的立方根是零。
4、注意:
,这说明三次根号内的负号可以移到根号外面。
5、
五、开立方
1、定义:
求一个数a的立方根的运算,叫做开立方。
六、实数定义与分类
1、无理数:无限不循环小数叫做无理数。
理解:常见类型有三类
(1)开方开不尽的数:如等。
(2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8等。
(3)有特定结构的数:如0.1010010001……等;(注意省略号)。
2、实数:
有理数和无理数统称为实数。
3、实数的分类:
(1)按定义来分
(2)按符号性质来分
七、实数比较大小法理解
1、正数大于零,负数小于零,正数大于一切负数。
2、数轴比较:数轴上的两个点所表示的数,右边的总比左边的大。
3、绝对值比较法:两个负数,绝对值大的反而小。
4、平方法:a、b是两负实数,若a2>b2,则a<b。
八、实数的运算
1、六种运算:加、减、乘、除、乘方、开方。
2、实数的运算顺序:
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
3、实数的运算律:
加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律。
九、近似数
1、定义:
由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数。
2、四舍五入法:
取近似值的方法——四舍五入法。
十、科学记数法
1、定义:
把一个数记为科学计数法。
十一、实数和数轴
1、每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。
2、实数与数轴上的点是一一对应的关系。