最小公倍数问题奥数题及答案
小学奥数题100道及答案
小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,吃掉了3个,还剩几个?答案:7个10. 应用题:小红有5个橘子,妈妈又买了8个,现在一共有多少个橘子?答案:13个11. 逻辑推理题:小华比小刚高,小刚比小明高,请问谁最高?答案:小华12. 逻辑推理题:小猫比小狗轻,小狗比小猪轻,请问谁最重?答案:小猪答案:选项A答案:选项B15. 数字排列题:将1、2、3、4四个数字排列,使它们组成的四位数最小。
答案:16. 数字排列题:将5、6、7、8四个数字排列,使它们组成的四位数最大。
答案:876517. 数字推理题:1、3、5、7、(),请填写下一个数字。
答案:918. 数字推理题:2、4、8、16、(),请填写下一个数字。
答案:3219. 时间计算题:如果现在是上午9点,再过3小时是几点?答案:中午12点20. 时间计算题:如果现在是下午3点,2小时前是几点?答案:下午1点答案:一组是水果(苹果、橘子),另一组是学习用品和体育用品(书本、铅笔、篮球)。
22. 重量比较题:一个西瓜重5千克,一个菠萝重2千克,哪个更重?答案:西瓜更重。
23. 长度比较题:一根绳子长10米,另一根绳子长15米,哪根绳子更长?答案:15米长的绳子更长。
答案:选项C25. 速度计算题:小明骑自行车,每小时行驶15公里,2小时能行驶多远?答案:30公里26. 温度转换题:摄氏度0度等于华氏度多少度?答案:32度27. 面积计算题:一个长方形的长是8厘米,宽是4厘米,它的面积是多少?答案:32平方厘米28. 体积计算题:一个正方体的边长是3厘米,它的体积是多少?答案:27立方厘米29. 平均数计算题:小明、小红、小华的年龄分别是8岁、10岁、12岁,他们的平均年龄是多少?答案:10岁答案:731. 因数分解题:将数字24分解成两个因数的乘积。
小升初奥数题大全100道附答案(完整版)
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小学五年级奥数题100道及答案(完整版)
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
五年级奥数-最大公因数和最小公倍数
五年级奥数-最大公因数和最小公倍数大,问最大能剪成多大的正方形?基本概念公约数和最大公约数是数学中常见的概念。
几个数公有的约数称为这几个数的公约数,其中最大的一个称为这几个数的最大公约数。
同样地,几个数公有的倍数称为这几个数的公倍数,其中最小的一个称为这几个数的最小公倍数。
如果两个数的最大公约数是1,那么这两个数就是互质数。
例题分析例1:求能整除30、60、75的最大正整数。
解:30=2×3×5,60=2×2×3×5,75=3×5×5,这三个数的公约数是3和5,所以它们的最大公约数是15.例2:求能被3、4、5整除的最小正整数。
解:3、4、5的最小公倍数是60,所以这个数是60的倍数,且它还要被3、4、5整除,所以这个数是120.例3:将120厘米、180厘米和300厘米的铁丝截成相等的小段,每根铁丝都不能有剩余,每小段最长多少厘米?一共可以截成多少段?解:这三根铁丝的最大公约数是60,所以每小段最长的长度是60厘米。
将每根铁丝都截成长度为60厘米的小段,可以得到2段、3段和5段,一共可以截成10段。
例4:加工某种机器零件需要三道工序,第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个零件,第三道工序每个工人每小时可完成5个零件,要使加工生产均衡,三道工序至少各分配几个工人?解:设第一道工序分配的工人数为x,第二道工序分配的工人数为y,第三道工序分配的工人数为z,则有3x=10y=5z。
因为要使加工生产均衡,所以x、y、z都要是正整数,且它们的比值要尽可能接近,所以x:y:z=10:3:6,所以至少要分配10个工人。
例5:一次会餐供有三种饮料,餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料。
问参加会餐的人数是多少人?解:设A、B、C饮料分别用了a、b、c瓶,则有a+b+c=65.由题意可知,A饮料每2人饮用1瓶,所以a=2x;B饮料每3人饮用1瓶,所以b=3y;C饮料每4人饮用1瓶,所以c=4z。
(完整)小学四年级奥数题100道带答案有解题过程
(完整)小学四年级奥数题100道带答案有解题过程姓名:__________ 班级:__________ 学号:__________1.甲、乙两人同时从相距36千米的A、B两地相向而行,4小时后相遇。
已知甲每小时行5千米,乙每小时行多少千米?解:先根据“速度和=路程÷相遇时间”,求出甲、乙的速度和为36÷4=9(千米/小时)。
再用速度和减去甲的速度,即9-5=4(千米/小时),所以乙每小时行4千米。
2.有一堆苹果,平均分给5个小朋友余2个,平均分给7个小朋友也余2个,这堆苹果最少有多少个?解:先求出5和7的最小公倍数,5×7=35。
再加上余数2,35+2=37(个),所以这堆苹果最少有37个。
3.一个长方形的周长是24厘米,长是宽的2倍,求这个长方形的面积。
解:设宽为x厘米,则长为2x厘米。
根据“长方形周长=(长+宽)×2”,可列出方程:(x+2x)×2=24,3x×2=24,6x=24,x=4。
那么长为2×4=8(厘米),面积=长×宽=8×4=32(平方厘米)。
4.在一个除法算式中,被除数、除数、商和余数的和是100,已知商是8,余数是3,求被除数和除数各是多少?解:设除数为x,则被除数为8x+3。
根据题意可列出方程:(8x+3)+x+8+3=100,9x+14=100,9x=86,x=9.56(此处若考虑除数应为整数,则需要检查题目数据是否有误,但按照题目要求继续计算)。
被除数为8×9.56+3=79.48(同样,此处数据也因除数非整数而带有小数)。
5.小明有一些邮票,他送给小红12张后,还比小红多8张,原来小明比小红多多少张邮票?解:小明送给小红12张后还多8张,那么原来多的数量是12×2+8=32(张)。
6.有一个等差数列:3,8,13,18,…,这个数列的第20项是多少?解:先求公差为8-3=5。
最小公倍数奥数题目
最小公倍数奥数题目
最小公倍数(LCM)是指两个或多个整数共有的倍数中最小的一个数。
下面我将给出一道关于最小公倍数的奥数题目,并从多个角度进行解答。
题目,小明和小红同时从家出发,小明每隔5分钟走一次路,小红每隔8分钟走一次路。
问他们第一次同时走过家门口的时间是多久?
解答:
从小明和小红的行走规律来看,我们可以通过计算它们走过的路程来确定它们第一次同时走过家门口的时间。
方法一,列出小明和小红的走路时间表。
小明的走路时间表,5,10,15,20,25,...
小红的走路时间表,8,16,24,32,40,...
我们可以观察到,小明的走路时间表是5的倍数,小红的走路时间表是8的倍数。
因此,我们可以找到它们的公倍数来确定它们第一次同时走过家门口的时间。
方法二,使用最小公倍数求解。
最小公倍数(LCM)是确定两个或多个数的公倍数中最小的一个数。
对于本题中的5和8,它们的最小公倍数即为小明和小红第一次同时走过家门口的时间。
计算最小公倍数的方法可以使用质因数分解法:
5 = 5。
8 = 2 × 2 × 2。
将5和8进行质因数分解后,我们取两个数的最高次幂相乘,即2 × 2 × 2 × 5 = 40。
所以,小明和小红第一次同时走过家门口的时间是40分钟。
从以上两种方法可以看出,小明和小红第一次同时走过家门口
的时间是40分钟。
综上所述,根据题目要求,小明和小红第一次同时走过家门口的时间是40分钟。
小学五年级数学奥数题100道附完整答案
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
经典奥数题
经典奥数题
1. 有一艘船,只能承受60公斤的重量,现在只有50公斤的重量需要空运过河,但船只有另外一个人可以划。
这个人要携带10公斤重的箱子才能划船。
怎样才能将物品过河?
答案:两个人一起坐在船上并携带10公斤重的箱子过河。
2. 如果1升水的重量是1千克,那么体积是多少?
答案:1升水的体积为1000立方厘米或1立方分米。
3. 如果一个鸡蛋每19天可以搬一个鸡蛋,50个鸡蛋需要多少天才能全部搬完?
答案:50个鸡蛋只需要19天才能全部搬完。
4. 如果5个翁、6个婆、7个吾一共迎来了70个寿客,那么有多少个翁、婆、吾?
答案:由于5、6、7三个数的最小公倍数是210,因此可以得到规律:翁的个数为14n-4,婆的个数为12n-2,吾的个数为10n+2(n为正整数)。
由此,可以计算出可能的翁、婆、吾的组合,满足条件的是12个翁、10个婆和8个
吾。
5. 一个正方形的侧长为2,另一个正方形的面积是前一个正方形的两倍,则另一个正方形的边长是多少?
答案:另一个正方形的面积是4,因此其边长为2。
这些问题都是经典的数学问题,考察了学生们的逻辑思维、数学运算能力和解题能力。
通过解决这些问题,学生们可以培养独立思考和创新精神,提高数学素养和实际问题解决能力。
小学六年级奥数题公约数与最小公倍数、逻辑推理、牛吃草问题
小学六年级奥数题公约数与最小公倍数、逻辑推理、牛吃草问题1.小学六年级奥数题公约数与最小公倍数篇一(1)两个数的公约数是1,最小公倍数是221,这两个数是()或()。
答案:1和221或13和17。
(2)有一个数,用它去除18,36,42,正好都能整除,这个数是()。
答案:6(3)()与60的公约数是60,最小公倍数是120。
答案:答案:120(4)如果A=2×2×3×3×5,B=2×3×3×7,C=2×3×11,那么A、B、C三个数的公约数是();A、B两个数的最小公倍数是();B、C两个数的最小公倍数是()。
答案:6、1260、1386。
(5)三个数的和等于63,甲数比乙数少3,丙数是甲数的2倍,这三个数的公约数是(),最小公倍数是()。
答案:3、180。
2.小学六年级奥数题公约数与最小公倍数篇二1、两个数的最大公因数是6,最小公倍数是126,其中一个数是18,另一个数是多少?分析:我们知道两个数的最大公因数和最小公倍数的乘积等于这两个数的乘积。
所以另外一个数是:6×126÷18=42。
解:6×126÷18=42答:另一个数是42。
2、已知两个自然数的差为2,它们的最小公倍数与最大公因数之差为142,求这两个自然数。
解:(1)当两个自然数互质时,1×(1+142)=1×143=11×13;(2)当两个自然数最大公因数为2时,2×(2+142)=2×144=16×18;答:这两个数是11和13,或者16和18。
3.小学六年级奥数题逻辑推理篇三数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌。
"结果王老师只猜对了一个。
小升初奥数题及答案五篇
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)
五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)一、约数1. 根据题目选择合适的公因数问题:小明有23个同色气球和46个不同色气球,他想将这些气球分成若干组,每组要求气球个数相同且同组的气球颜色必须不同。
那小明可以将这些气球分成几个组?解答:首先,我们需要找出23和46的约数。
23的约数是1和23,46的约数是1、2、23和46。
根据题目要求,分组时气球的个数相同,且颜色不同。
如果每组的气球个数为1个,则颜色相同的气球只能分到同一组,显然不符合题意。
如果每组的气球个数为23个,则颜色相同的气球必然可以分到不同的组中,符合题意。
因此,小明可以将这些气球分成$ \frac{46}{23} = 2 $个组。
2. 利用最大公约数求解问题:小明有36个草莓和30个樱桃,他想将这些水果放在盘子里,每个盘子里的水果个数要相同且相同类别的水果只能放在同一个盘子里。
那小明可以将这些水果放在几个盘子里?解答:首先,我们需要找出36和30的最大公约数。
36和30的最大公约数是6。
根据题目要求,每个盘子里的水果个数要相同,且相同类别的水果只能放在同一个盘子里。
因此,小明可以将这些水果放在$ \frac{36}{6} = 6 $个盘子里。
二、倍数1. 确定最小公倍数问题:电车每隔15分钟经过一次车站,公交车每隔12分钟经过一次车站,那么电车和公交车将同时经过这个车站的最早的时间点是什么时候?解答:我们首先找出电车和公交车的最小公倍数。
15和12的最小公倍数是60。
根据题目,我们只需要找出电车和公交车同时经过这个车站的最早的时间点,即找出60分钟的整数倍。
因此,电车和公交车将同时经过这个车站的最早的时间点是60分钟后,即1小时后。
2. 判断是否满足给定条件问题:某工厂的产品每7天生产一批,每21天进行一次质检。
那么多少天后他们会同时发生?解答:我们首先分别找出产品生产和质检的最小公倍数。
7和21的最小公倍数是21。
小学因数与倍数奥数题100道及答案(完整版)
小学因数与倍数奥数题100道及答案(完整版)题目1:一个数既是12 的倍数,又是48 的因数,这个数可能是多少?答案:这个数可能是12、24 或48。
题目2:两个数的最大公因数是6,最小公倍数是36,其中一个数是12,另一个数是多少?答案:另一个数是18。
因为最小公倍数乘以最大公因数等于两个数的乘积,所以另一个数为36×6÷12 = 18 。
题目3:有一个自然数,除以5 余3,除以7 余4,这个数最小是多少?答案:23 。
从除以7 余4 的数中找除以5 余3 的数,最小为23 。
题目4:已知A = 2×3×5,B = 2×5×7,A 和 B 的最大公因数和最小公倍数分别是多少?答案:最大公因数是10,最小公倍数是210 。
题目5:一个数在80 到100 之间,既是6 的倍数,又是9 的倍数,这个数是多少?答案:90 。
6 和9 的最小公倍数是18 ,在80 到100 之间18 的倍数是90 。
题目6:两个自然数的积是360,最小公倍数是120,这两个数分别是多少?答案:3 和120 或15 和24 。
题目7:有一个数,它的最大因数和最小倍数之和是60,这个数是多少?答案:30 。
一个数的最大因数和最小倍数都是它本身,所以这个数是30 。
题目8:把48 块糖和38 块巧克力分别分给同一组同学,结果糖剩3 块,巧克力少了2 块,这个组最多有几名同学?答案:5 名。
48 - 3 = 45 ,38 + 2 = 40 ,45 和40 的最大公因数是5 。
题目9:一个数除以4 余1,除以5 余2,除以6 余3,这个数最小是多少?答案:57 。
这个数加上3 就能被4、5、6 整除,4、5、6 的最小公倍数是60 ,所以这个数最小是57 。
题目10:甲、乙两数的最大公因数是8,最小公倍数是48,甲数是24,乙数是多少?答案:16 。
乙数= 8×48÷24 = 16 。
50道奥数题及参考答案
50道奥数题及参考答案50道奥数题及参考答案1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288(10-1)=32(元)一张桌子的价钱:3210=320(元)答:一张桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:45+53=45+15=60(千克)答:3箱梨重60千克。
3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走42千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:424=84=2(千米)答:甲每小时比乙快2千米。
4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6[13-(13+7)2]=0.6[13-202]=0.63=0.2(元)答:每支铅笔0.2元。
5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)两地间路程:(40+45)62=8562=255(千米)答:两地相距255千米。
6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5(4.5-3.5)=2.51=2.5(小时)答:第一组2.5小时能追上第二小组。
7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。
四年级小学生奥数题及答案
四年级小学生奥数题及答案1.四年级小学生奥数题及答案篇一1、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
分析:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。
也就是它们的最小公倍数。
解:12和18的最小公倍数是366时+36分=6时36分答:下次同时发车时间是上午6时36分。
2、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?分析:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。
根据路程、速度和时间的关系,就可求得所需时间。
解:(240+264)÷¢20+16)=504÷36=14(秒)答:从两车头相遇到两车尾相离,需要14秒。
2.四年级小学生奥数题及答案篇二1、学校举办歌舞晚会,共有80人参加了表演。
其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?分析:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。
解:70+30-80=100-80=20(人)答:既唱歌又跳舞的有20人。
2、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?解析:把一根木料锯成3段,只锯出了(3T)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。
解:9÷(3-1)×(5-1)=18(分)答:锯成5段需要18分钟。
3.四年级小学生奥数题及答案篇三1、某种商品的价格是:每1个1分钱,每5个4分钱,每9个7分钱。
小赵的钱最多恰好能买50个,小李的钱最多恰好能买500个,问小李的钱比小赵的钱多多少分?答案:350分。
最小公倍数奥数题
最小公倍数奥数题
最小公倍数(LCM)是指两个或多个整数的公共倍数中最小的那个数。
在解决奥数问题中,求最小公倍数是一个常见的问题。
假设我们要求解两个数a 和b 的最小公倍数,我们可以采用如下方法:
1. 分解质因数:将a 和b 分别分解质因数,例如a = 2^3 ×3^2 ×5 和b = 2^2 ×3 ×7。
2. 找出所有因数:将a 和b 的质因数分别列出来,列出它们的交集和并集,例如:
* 交集:2^2 ×3
* 并集:2^3 ×3^2 ×5 ×7
3. 求最小公倍数:将并集中包含的所有质因数乘起来,得到最小公倍数,即2^3 ×3^2 ×5 ×7 = 2520。
因此,数a 和b 的最小公倍数为2520。
在实际应用中,当需要求解多个数的最小公倍数时,也可以采用类似的方法,即
先将所有数分解质因数,找出它们的公共因数和非公共因数,最后将公共因数和所有非公共因数的乘积即为所求的最小公倍数。
总之,求解最小公倍数的方法可以通过分解质因数和找出公共因数来实现,是解决奥数问题中经常用到的技巧。
五年级下册奥数题 -最小公倍数的应用 (含答案) 全国通用
精品人教五下数学重难点强化练习最小公倍数的应用奥数题重点公式:最大公因数×最小公倍数=这两个数的积1、两个数的最大公因数是15,最小公倍数是90.求这两个数分别是多少?90÷15=6=1×6=2×3这两个数分别为1×15=15,90÷1=90即15和90或2×15=30,90÷2=45即30和45答:这两个数是15和90或30和452、两个数的最大公因数是12,最小公倍数是60.求这两个数的和是多少?60÷12=5=1×5这两个数分别为1×12=12,60÷1=60即12和6012+60=72答:这两个数的和是72.3、两个数的和是52,它们的最大公因数是4,最小公倍数是144.求这两个数分别是多少?144÷4=36=1×36=2×18=3×12=4×9=6×6这两个数分别为1×4=4,144÷1=144即4和144或2×4=8,144÷2=72即8和72或3×4=12,144÷3=48即12和48或4×4=16,144÷4=36即16和36或6×4=24,144÷6=24即24和24因为这两个数的和是52所以这两个数是16和36答:这两个数是16和36。
4、两个数的积是360,最小公倍数是120.求这两个数分别是多少?360÷120=3,120÷3=40=1×40=2×20=4×10=5×8这两个数分别为1×3=3,120÷1=120即3和120或2×3=6,120÷2=60即6和60最大公因数不是3或4×3=12,120÷4=30即12和30最大公因数不是3或5×3=15,120÷5=24即15和24所以这两个数是3和120或15和24答:这两个数是3和120或15和24。
小学奥数题100道及答案
小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,给了小红3个,还剩多少个?答案:7个10. 应用题:小华买了5支铅笔,每支铅笔2元,一共花了多少钱?答案:10元11. 逻辑推理题:有三个房间,分别放着苹果、香蕉和橘子。
苹果在香蕉左边,橘子在苹果右边,请问哪个房间放着香蕉?答案:中间的房间12. 图形题:请在下面的方框里画出一个正方形。
(此处省略图形)13. 图形题:请在下面的方框里画出一个长方形。
(此处省略图形)14. 图形题:请在下面的方框里画出一个三角形。
(此处省略图形)15. 图形题:请在下面的方框里画出一个圆形。
(此处省略图形)16. 日期计算题:今天是星期二,100天后是星期几?答案:星期五17. 时间计算题:小刚下午2点出发,经过3小时到达目的地,到达时是几点?答案:下午5点18. 年龄问题:小红的年龄是小华年龄的2倍,小华8岁,请问小红几岁?答案:16岁19. 平均数问题:一组数据的平均数是10,其中有两个数分别是8和12,请问第三个数是多少?答案:1020. 排列组合题:从A、B、C三个字母中,任选两个字母组成一个两位数,共有几种可能?答案:6种(AB、AC、BA、BC、CA、CB)答案:一组是水果(苹果、橘子),另一组是非水果(书本、铅笔、汽车、飞机)。
22. 重量比较题:如果一个苹果重100克,一个橘子重80克,那么3个苹果和4个橘子哪个更重?答案:3个苹果重300克,4个橘子重320克,所以4个橘子更重。
小升初奥数题
1.两个自然数的最小公倍数与最大公因数之差等于这两个自然数之和,且这两个自然数之和为40,则这两个自然数分别是多少?(一)从最小公倍数是最大公因数的倍数关系入手思考,变成了两数乘积比两数和多1,如果小的数为1,乘积<和,如果小的数为3。
乘积与和之间的差距超过1,小的数为2,2,2相等,2,3恰好,所以这两个数是16,24。
(二)先找到2和3,然后翻倍得到的结果,2,3,8,最后16,24,2,3互质,最大公因数是8。
2.一个圆周长90厘米,三个点把这个圆周分成三等份,三只爬虫A、B、C分别在这 3个点上.它们同时出发,按顺时针方向沿着圆周爬行,速度分别是10厘米/秒,5 厘米/秒、3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?(一)A、B第一次相遇需要6s,以后每相遇一次要9sB、C第一次相遇要15s,以后每相遇一次要45s只需要让AB相遇的时候BC相遇即可列方程t=6+9X=15+45Y其中,X、Y∈N*可得X=1+5Y当Y=1时,X最小为6t=6+9*6=60s先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米。
30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,60,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,60,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.(二)3:5:10=6:10:20 6×30÷3=60 段数差都是除以3余1速度比3:5:10,路程比也是3:5:10,追上时,相差的段数都是整数,以一周的段数作为3段,追上时相差的段数除以3都余1,所以6:10:20相差的4,10除以3都余1,就是C走6段,每段30,路程是180,时间是180/3=60秒,例如B追C,第一次多行一段,以后再追上就要多行3段,A追B道理相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小公倍数问题奥数题及答案
最小公倍数问题奥数题及答案
插一排红旗共26面,原来每两面之间的距离是4米,现在改为
5米.如果起点一面不移动,还可以有()不移动.
考点:求几个数的最小公倍数的方法.
分析:根据“插一排红旗共26面,原来每两面之间的`距离是4米”,用(26-1)×4=100米可求出需要插红旗的总距离是多少米;再根据“原来每两面之间的距离是4米,现在改为5米”,可知如果
起点一面不动,那么4和5米的公倍数也就是公共点的旗就不需要动;4和5的最小公倍数是20,用100÷20即可得出除了起点一面不移动外,还可以有5面不需移动.
解答:解:总距离:(26-1)×4=100(米),
4和5的最小公倍数是20,
答:如果起点一面不移动,还可以有5面不移动.
故答案为:5面.
点评:解答此题关键是把要求的问题转化成是求4和5的最小公倍数的倍数;在解答时,要注意插26面红旗,中间就有26-1个间隔.。