东北大学数值分析2014-2015试卷手抄版

合集下载

东北大学数值分析 总复习+习题21页文档

东北大学数值分析 总复习+习题21页文档
东北大学数值分析 总复习+习题
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!
36、自己的鞋子,自己一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

2012数值分析试题及答案

2012数值分析试题及答案


aii
(bi

n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6



9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx

四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I

S2

1 [cos0 6
cos2

2014_2015学年第一学期末数值分析考试试题A

2014_2015学年第一学期末数值分析考试试题A

中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统。

(2)试题类别指A卷或B卷。

(3)试题印制手续命题教师到院教务科办理。

2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u=%作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩L 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。

5. 取权函数()x ρ=,在区间[-1,1]上计算函数()1f x =与()221g x x =-的积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+=L ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。

东北大学数值分析考试题解析

东北大学数值分析考试题解析

数值分析提供了许多实用的算法, 这些算法可以解决各种实际问题, 如线性方程组、微分方程、积分 方程等。这些算法在科学计算、 工程仿真、数据分析等领域都有 广泛的应用。
数值分析在解决实际问题时具有 高效、精确和可靠的特点。通过 数值分析,我们可以快速地得到 问题的近似解,并且可以通过误 差分析来控制解的精度。这使得 数值分析成为解决实际问题的重 要工具。
详细描述
数值分析是一门应用广泛的学科,它通过数学方法将实际问题转 化为可计算的数学模型,并寻求高效的数值计算方法来求解这些 问题。数值分析在科学计算、工程、经济、金融等领域中发挥着 重要的作用,为实际问题的解决提供了有效的工具。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程、经济、金融等。
非线性方程组的求解精度和速 度取决于所选择的方法和初值 条件。
非线性方程组的求解在科学计 算、工程技术和计算机图形学 等领域有广泛应用。
最优化方法
最优化方法是寻找使某个 函数达到最小或最大的参 数值的方法。
最优化方法的效率和精度 取决于所选择的算法和初 始参数值。
常用的最优化方法包括梯 度下降法、牛顿法和拟牛 顿法等。
数值分析在人工智能领域的应用
总结词
数值分析在人工智能领域的应用关键,涉及深度学习、神经 网络等领域。
详细描述
数值分析为人工智能提供了理论基础和算法支持,特别是在 深度学习和神经网络方面。通过数值分析的方法,可以优化 神经网络的参数和结构,提高人工智能的性能和准确性。
数值分析在金融领域的应用
总结词
常见的迭代法有雅可比迭代法 、高斯-赛德尔迭代法等。
牛顿法
牛顿法是一种基于泰勒级数 的迭代方法,用于求解非线 性方程的根。

数值分析实验2014

数值分析实验2014

数值分析实验(2014,9,16~10,28)信计1201班,人数34人数学系机房数值分析计算实习报告册专业__________________学号_______________姓名_______________2014~2015年第一学期实验一数值计算的工具Matlab1. 解释下MATLABS序的输出结果程序:t=0.1n=1:10e=n/10-n*te 的结果:0 0 -5.5511e-017 0 0-1.1102e-016 -1.1102e-016 0 0 02. 下面MATLABS序的的功能是什么?程序:x=1;while 1+x>1,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值x=1;while x+x>x,x=2*x,pause(0.02),e nd用迭代法求出x=2*x,的值,使得2x>Xx=1;while x+x>x,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值,使得2x>X3. 考虑下面二次代数方程的求解问题2ax bx c = 0公式x=电上4ac是熟知的,与之等价地有_____________________________ ,对于2a-b ■ b -4aca =1,b =100000000,c =1,应当如何选择算法。

b ~4ac计算,因为b与b2— 4ac相近,两个相加减不宜应该用2a u做分母3 5 74. 函数sin(x)有幂级数展开sin x = x - x - - ■■3! 5! 7!利用幕级数计算sinx的MATLAB程序为fun cti on s=powers in(x)s=0;t=x;n=1;while s+t~=s;s=s+t ;t=-x A2/ ((n+1)*(n+2) ) *t ;n=n+2 ;endt仁cputime;pause(10);t2=cputime;t0=t2-t1(a) 解释上述程序的终止准则。

东北大学数值分析-总复习+习题

东北大学数值分析-总复习+习题
解 由2=b+c+1,5=6+2b+c,8=12+2b,可得
二、(13分)设函数(x)=x2-sinx-1 (1)试证方程(x)=0有唯一正根; (2)构造一种收敛的迭代格式xk+1=(xk),k=0,1,2,…计算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之.
解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)仅在(1,2)内有零点,而当1<x<2 时,(x)>0,故(x)单调.因此方程(x)=0有唯一正根,且在区间(1,2)内.
(1) xkp阶收敛于是指: (2) 若()0,则迭代法线性收敛.
lim xk1 C k xk p
4.会建立Newton迭代格式;知道Newton迭代法的优缺点.了解Newton迭代法的变形.
xk 1
xk
f (xk ) f (xk )
局部平方收敛.
五、矩阵特征值问题
1. 了解Gerschgorin圆盘定理, 会估计特征值. 2. 了解乘幂法、反幂法的思想及加速技巧. 3. 了解Jacobi方法的思想以及平面旋转矩阵的构造.
总复习
一、绪论
1.掌握绝对误差、绝对误差限、相对误差、相对误差限及有效数字的概念。掌握误差 限和有效数字之间的关系。会计算误差限和有效数字。
一般地,凡是由精确值经过四舍五入得到的近似值,其绝对误差限等于该近似值末位的 半个单位。
定义1 设数x是数x*的近似值,如果x的绝对误差限是它的某一数位的半个单位,并 且从x左起第一个非零数字到该数位共有n位,则称这n个数字为x的有效数字,也 称用x近 似x*时具有n位有效数字。
是不是一种向量范数_____. 是

东北大学秦皇岛分校(14-15)2015年1月高数A试题

东北大学秦皇岛分校(14-15)2015年1月高数A试题

东 北 大 学秦 皇 岛 分 校课程名称: 高等数学(一) 试卷: A 考试形式:闭卷授课专业:相关专业 考试日期:2015年1 月 9 日 试卷:共2页一、填空题(每小题3分,共18分)1. 201sin3coslimln(1)x x x x x →+=+ 。

2. 设()f x 在点1x =处可导,且满足条件14)1()1(lim-=--→xf x f x ,则曲线()y f x =在(1,(1))f 处的切线斜率为 。

3. 设函数()y y x =由方程1y y xe =-确定,则x dydx== 。

4. =-)d(arctane x x -e d 。

5.32222(sin )cos x x xdx ππ-+=⎰。

6. 曲线0=tan (0)4x y tdt x π≤≤⎰的弧长s = 。

二、选择题 (每小题3分,共18分)1. [ ] 设212,1()2,1x x x f x x ⎧-+≠⎪=⎨=⎪⎩,则在点1=x 处函数)(x fA .不连续B .连续但不可导C .可导,但导数不连续D .可导且导数连续2. [ ] 已知极限0arctan limkx x xc x→-=,其中,k c 为常数,且0c ≠,则下列说法正确的是A .13,3k c ==B .13,3k c ==-C .12,2k c ==-D .12,2k c ==3. [ ] 曲线122+=x x y 渐近线的条数是A . 0B .1C .2D .3 4. [ ] 设()f x 在[0, 1]有二阶连续导数,且(0)1,(2)3,(2)5,f f f '=== 则10(2)x f x dx ''⎰等于A .0B .1C .2D .4 5. [ ] 下列反常积分中收敛的是A .22(1)dxx -⎰B . 1+∞⎰C .422(2)dx x -⎰D .33()dxx lnx +∞⎰ 6. [ ] 曲线)4(3-=x x y 在区间[)∞+,3上是A .上升且凹的B . 下降且凹的C .上升且凸的D .下降且凸的三、计算题 (每小题8分,共32分)1. 求20tan limsin x x xx x→-装订线装 订 线 内 不 要 答 题学 号姓 名班 级2. 设2203t u x e du y t -⎧=⎪⎨⎪=⎩⎰,求212d d t y x =。

2015-同济大学数值分析-参考答案

2015-同济大学数值分析-参考答案
3
1

1
ex
2
1
1 x
2
dx
34 0 34 e e e 5.481
3
将 f ( x) =x 代入,左边 = 将 f ( x) =x 4 代入, 左边 =
1
1
3 3 3 3 3 dx sin d 0 0 2 右边 3 2 1 x2 2
(10 分)
l1 0 0 y1 5 Ly = 1 l2 0 y2 = 3.25 0 2.5 l y -29 3 3
追:
l1 4 l2 5.25 1 u1 5 l3 10.5 2.5 u2 10
x
y
0
2
2
1

1
3 2
2 (10 分)
基函数: 0 ( x) 1, 1 ( x) cos x, 2 ( x) sin x
(0 , 0 ) (0 , 1 ) (0 , 2 ) a (0 , f ) 法方程: (1 , 1 ) (1 , 2 ) b (0 , f ) sym (2 , 2 ) c (0 , f )
xk
4.5 4.766 4 4.789 6 4.790 6 4.790 6
3/4
k 0 1 2 3 4
4.5
Ans Ans cos( Ans) Ans 1 cos( Ans) Ans sin( Ans) 1
= = =
2014-2015 数值分析试卷
维基解密
x3

2
3

数值分析考试及答案

数值分析考试及答案

数值分析考试及答案作者:日期:班级• • •• • •• • •• • • o • • •学号• • •• • •姓名密• • •• • •o• • •• • •东北大学研究生院考试试卷2011 —2012 学年第一学期课程名称:数值分析(共3页)一、解答下列各题:(每题5分,共30分)1.设近似值x具有5位有效数字,则x的相对误差限为多少? 解:记x* 0.吋2…10m,则x的相对误差为:0.5 10m 50.a1a2... 10m0.5 10 50.10.5 10即,相对误差限为:0.5 102.问a, b满足什么条件时,矩阵Ao • • •• • •• • •线总分一——二三四五4 2 02 5a有分解式A GG T,并求a b 2时0 b 54 2 0 2 1 0解:由于A 2 5 a 1 2 a/2 (A对称正定时)0 b 5 0 b/2 5 ab/4所以,当2 .5 a b 2 5时有分解式 A GG T,a b 2 时有:4 2 0 2 0 0 2 1 0A 2 5 2 1 2 0 0 2 10 2 5 0 1 2 0 0 23.解线性方程组X1 2x2 2 的Jacobi 迭代法是否收敛,为什么?2x19x2 3的分解式(其中G是对角线元素大于零的下三角形矩阵)解:Jacobi迭代矩阵为:B2/92,所以,(B) 2/3 1所以,Jacobi迭代法是否收敛.4.对方程f (x) (x3 a)20建立敛?若收敛,收敛阶是多少?解:Newton迭代格式为:X k 1 X kf(xk)f (X k)由于迭代函数为:(x)?X ka6x2所以,此迭代格式收敛,收敛阶是Newton迭代格式,并说明此迭代格式是否收3X k a2~ ,x k6X k,方程根为:1.56k 6:k2, k 012-3 a,所以,5.设f (x) 4x3 3x 5,求差商f[0,1], f[1,2,3,4]和f [1,2,3,4,5]。

(完整word版)数值分析考试试卷和答案(word文档良心出品)

(完整word版)数值分析考试试卷和答案(word文档良心出品)

线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。

n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。

( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。

( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。

5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。

2014级硕士研究生数值分析期末考试试卷A卷

2014级硕士研究生数值分析期末考试试卷A卷

时间t 浓度y
35
40
45
50
55
4.37
4.51
4.58
4.62
4.64
1.474763 1.506297 1.521698 1.530394 1.534714
用最小二乘法求。
三、证明题(共8分)
1. 设在区间上二阶导数连续,证明: ,其中。
值范围

6. 设,,则 ,= , = 。
7.设,的Gauss-Seidel迭代的矩阵形式,其迭代矩阵为

该迭代格式收敛的充要条件__________________。
8.求解一阶常微分方程初值问题,取步长的Euler法公式为
,其截断误差的首项为

二、计算题(第4题12分,其余各题10分,共62 分)
1. 求次数小于等于3的多项式P(x), 使其满足条件: ,,,。
2. 解线性方程组, 其中,。 (a) 作Doolittle分解。 (b) 通过求解解线性方程组,其中。
3. 写出雅可比迭代法求解线性方程组的分量迭代格式和矩阵迭代格 式,并判断该迭代格式是否收敛?
4. 设区间为[-1,1], 权函数。 (a) 求由作施密特正交化得到的多项式。 (b) 设,函数是在区间[-1,1]上的二次最佳平方逼近,求。 (c) 确定求积公式 。
位有效数字,近似值的相
对误差为

2.函数过点(0,1), (1,3)和(2,9),对应的基函数分别为,过这三个节点的
二次拉格朗日插值多项式为
,余项为

3. 已知,二阶均差=

4.方程在附近有个根,构造不动点迭代收敛的格式

,若用牛顿法迭代求根,其收敛阶是

数值分析考试卷及详细答案解答

数值分析考试卷及详细答案解答

数值分析考试卷及详细答案解答姓名班级学号一、选择题1.()2534F,,,-表示多少个机器数(C ).A 64B 129C 257D 2562. 以下误差公式不正确的是( D)A .()()()1212x *x *x *x *εεε-≈+B .()()()1212x *x *x *x *εεε+≈+C .()()()122112x *x *x *x *x x *εεε?≈+ D .()()()1212x */x *x *x *εεε≈-3. 设)61a =, 从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出a 较好的近似值?(D )A6)12(1+ B 27099- C 3)223(- D3)223(1+4. 一个30阶线性方程组, 若用Crammer 法则来求解, 则有多少次乘法? ( A )A 31×29×30!B 30×30×30!C 31×30×31!D 31×29×29!5. 用一把有毫米的刻度的米尺来测量桌子的长度, 读出的长度1235mm, 桌子的精确长度记为( D )A 1235mmB 1235-0.5mmC 1235+0.5mmD 1235±0.5mm二、填空1.构造数值算法的基本思想是近似替代、离散化、递推化。

2.十进制123.3转换成二进制为1111011.01001。

3.二进制110010.1001转换成十进制为 50.5625 。

4. 二进制0101.转换成十进制为57。

5.已知近似数x*有两位有效数字,则其相对误差限5% 。

6. ln2=0.69314718…,精确到310-的近似值是 0.693 。

7.31415926x .π==,则131416*x .=,23141*x .=的有效数位分别为5 和3 。

8.设200108030x*.,y*.==-是由精确值x y 和经四舍五入得到的近似值,则x*y*+的误差限0.55×10-3 。

东北大学-数值分析-课后习题详细解析

东北大学-数值分析-课后习题详细解析

1.01
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
解 a.x=-1/-0.99=1.010101,y=-0.98/-0.99=0.989899
b.用Gauss消元法
7
10 2 x y 1
x
y
2
回代得解: y=1, x=0.
再用列主元Gauss消元法
10 2 x y 1
100 y 100
10 2 x y 1
x
y
2
回代得解: y=1, x=1.
x(k 1
x(k 2
1) 1)
3
2
x(k 2
)
2 1.5x1(k1)
G-S法x1(k)
1.01 0.98 1.94 4.82 13.46 39.38 117.14
G-S法x2(k)
1.01 0.53 -0.91 -5.23 -18.19 -57.07 17 -173.71
可见,J迭代法和G-S迭代法均不收敛. 实际上, (B)=31/2>1 ,(G)=3>1.
10
2-11.设•为一向量范数,P为非奇异矩阵,定义xp= Px, 证明xp 也是一种向量范数.
证明 (1)xp=Px0,而且Px=0Px=0x=0 (2)xp=P(x)=Px=||Px=||xp (3)x+yp=P(x+y)=Px+PyPx+Py=xp+yp 所以xp是一种向量范数. 2-12.设A为对称正定矩,阵证,明定义•Ax是A一= 种向x量T A范x数.

(汇总)东北大学-数值分析--考试题解析.ppt

(汇总)东北大学-数值分析--考试题解析.ppt

构造函数(t)=(t)-H3(t)-C(x)t(t-1)2(t-2) 于是,存在x,使(4)(x)=0,即(4)(x)-4!C(x)=0
R(x) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是
Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=1精0品/文9档,B=16/9,=(12/5)1/2 7
令2(x)=cx(x-1)2,可得2(x)=0.5x(x-1)2;
令1(x)=cx(x-1)(x-2),可得1(x)=-x(x-1)(x-2),
于是
H3(x)==-x(3x--21.)5x2(2x+-22.)5-x3+x2(精x品-2文)档+2.5x(x-1)2
–0.5x(x-1)(x-2) 6
由于,R(0)=R(1)=R(2)=R(1)=0, 故可设 R(x)=C(x)x(x-1)2(x-2)
(3)因为0<</2,所以() cos / 2 1 sin 0
故,此迭代法线性收敛(收敛阶为1).
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式);
(2)讨论这两种迭代法的收敛性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档