高中生物遗传知识点总结(精选.)
高中生物遗传学知识点归纳总结
高中生物遗传学知识点归纳总结遗传学是生物学的一个重要分支,研究生物个体间遗传信息的传递和变异规律。
在高中生物学习中,遗传学是一个重要的模块,掌握遗传学的基础知识对理解生物的生命现象和科学发展具有重要意义。
下面将对高中生物遗传学的知识点进行归纳总结。
1. 遗传物质的基本结构遗传物质指的是DNA,即脱氧核糖核酸。
DNA是由核苷酸组成的长链状分子,每个核苷酸由糖、磷酸和一种碱基组成。
碱基包括腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶。
DNA的双螺旋结构由两个互补的链组成,链上的碱基通过氢键相互配对(腺嘌呤和胸腺嘧啶之间有两个氢键,鸟嘌呤和胞嘧啶之间有三个氢键),形成DNA的空间结构。
DNA是生物遗传信息的载体,通过遗传物质的复制和转录翻译等过程,完成遗传信息的传递和表达。
2. 遗传规律(1)孟德尔遗传规律孟德尔是遗传学的奠基人,他通过对豌豆杂交的观察,总结出了遗传的基本规律。
这些规律包括:单因素遗传定律(即一个性状受一个基因控制)、分离规律(即经过自交或杂交后,基因在后代中按一定比例分离)、自由组合规律(即不同基因的互不干扰地组合遗传)。
(2)连锁不连锁和重组连锁是指两个或多个基因位点位于同一染色体上,通过连锁的遗传方式传递给后代。
连锁的存在会影响基因之间的自由组合,导致某些特定的基因组合频率高于预期。
然而,通过重组(染色体的交换)可以改变连锁基因之间的组合,增加基因重新组合的可能性。
(3)多基因遗传多基因遗传是指一个性状受多个基因控制的遗传方式。
在多基因遗传中,基因的组合和互作产生丰富的表型变异。
常见的多基因遗传的例子包括人类血型、皮肤颜色等。
3. 遗传的分子基础遗传的分子基础主要是DNA和RNA。
其中,DNA负责储存和传递遗传信息,RNA则负责将DNA上的遗传信息转录为蛋白质。
这个过程称为基因表达。
(1)转录转录是指RNA分子根据DNA模板合成RNA的过程。
在细胞核中,RNA聚合酶能够将DNA模板上的一段特定序列转录为对应的mRNA (信使RNA)。
高中生物遗传学知识点归纳
高中生物遗传学知识点归纳一、基因的概念及结构1. 基因是指控制遗传性状的遗传物质单位,在染色体上位于特定位置。
2. 基因由DNA分子组成,包括编码区和非编码区。
3. 编码区决定了基因所编码的蛋白质的氨基酸序列,非编码区在转录和调控过程中发挥重要作用。
二、基因的遗传方式1. 纯合子:同一基因的两个等位基因相同。
2. 杂合子:同一基因的两个等位基因不同。
3. 隐性遗传:杂合子的一种情况,表现为隐藏的性状。
4. 显性遗传:杂合子的一种情况,表现为明显的性状。
5. 基因座:基因在染色体上的位置。
6. 纯合子和杂合子的配子组合可以产生不同的基因型。
三、遗传规律1. 孟德尔遗传规律:a. 单因素遗传:一个性状仅由一个基因控制。
b. 随机分离:杂合子在生殖细胞分裂过程中随机分离。
c. 独立分离:不同基因座的遗传是相互独立的。
2. 染色体遗传规律:a. 染色体是基因的携带者,基因位于染色体上。
b. 父母染色体通过染色体交换和随机分离,决定了子代的基因组合。
c. 染色体遗传规律支持了孟德尔遗传规律。
四、基因突变1. 点突变:基因序列中的一个碱基发生变化,可能会导致蛋白质编码发生错误。
2. 缺失突变:基因序列中的一部分缺失,造成蛋白质功能缺失。
3. 插入突变:基因序列中插入了额外的碱基,导致蛋白质编码发生错误。
4. 转座子:可移动的DNA片段,可以插入到基因中引起突变。
5. 染色体重排:染色体的片段发生重组或重排,导致染色体上基因的位置发生改变。
五、性连锁遗传1. 性染色体:决定生物性别的染色体,如人类的X和Y染色体。
2. 雌性为XX,雄性为XY,雄性为XY,因此雌性基因在染色体上有两个拷贝,雄性只有一个。
3. 性连锁遗传:位于性染色体上的基因遗传方式,通常只影响雄性。
4. 雌性携带的性连锁基因会以杂合子的形式传给子女,雄性携带的性连锁基因会以纯合子的形式传给子女。
六、多基因遗传1. 多基因遗传是指一个性状受多个基因的共同作用决定。
高中生物遗传的知识点总结
高中生物遗传的知识点总结高中生物遗传的知识1基因的分离定律相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。
显性基因:控制显性性状的基因,叫做显性基因。
一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因,叫做隐性基因。
一般用小写字母表示,豌豆矮茎基因用d表示。
等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
纯合体:由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
杂合体:由含有不同基因的配子结合成的合子发育而成的个体。
不能稳定遗传,后代会发生性状分离。
高中生物遗传的知识2基因的自由组合定律基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。
对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr→F2:1YyRr:1Yyrr:1yyRr:1yyrr。
基因自由组合定律在实践中的应用:基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种孟德尔获得成功的原因①正确地选择了实验材料。
高中生物遗传与进化知识点总结
高中生物遗传与进化知识点总结一、遗传的基本原理1. 遗传物质:DNA是生物遗传的基础,它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的双螺旋结构,通过不同的排列组合编码生物体的遗传信息。
2. 遗传的基本单位:基因是DNA上特定的DNA片段,携带着控制特定遗传特征的信息。
基因通过转录和翻译过程表达为蛋白质,进而决定生物体的性状。
3. 遗传的规律:孟德尔遗传定律包括分离定律、自由组合定律和配对定律。
它们揭示了基因在遗传中的传递和表现规律,为遗传学的发展奠定了基础。
二、遗传的表现形式1. 基因型和表现型:基因型是个体基因的组合,它决定了个体的遗传特征;表现型是基因型在外部环境作用下的表现,是个体可观察到的性状。
2. 隐性和显性:隐性基因是指在杂合子中不表现出来的基因,只有在纯合子中才能表现出来;显性基因是指在杂合子和纯合子中都能表现出来的基因。
3. 顺式和杂合性:顺式是指同一基因对的两个等位基因相同,杂合是指同一基因对的两个等位基因不同。
杂合性体现在个体表现型的变异程度上,可以为进化提供变异的基础。
三、遗传的模式1. 基因的多态性:同一位点上存在不同等位基因的现象称为基因的多态性,是种群遗传变异的基础。
2. 基因的突变:基因突变是指遗传物质发生永久性的变异,包括点突变、插入突变、缺失突变等。
突变是进化的基础,通过不断积累和选择,种群可以适应环境的变化。
3. 染色体的遗传:染色体是基因的载体,它通过减数分裂和有丝分裂保证基因在细胞分裂过程中的传递。
染色体的结构变异和数目变异都会影响遗传信息的传递和表达。
4. 遗传的性别差异:性别是由性染色体决定的,人类的性别决定机制为XY型。
性染色体上的基因决定了个体的性别和性状的遗传方式。
四、进化的基本概念1. 进化的概念:进化是指生物种群在长时间内适应环境变化而产生的遗传和形态上的变化。
进化是生物多样性的产生和演化的根本原因。
2. 适应和选择:自然选择是进化的主要驱动力之一,它通过选择适应环境的个体和基因,推动物种朝着适应性更强的方向演化。
(完整版)高中生物遗传学知识点总结
高中生物遗传学知识点总结高中生物遗传学知识点—伴性遗传高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。
判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。
以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。
高中生物遗传学知识点—遗传病常见遗传病的遗传方式有以下这几种:(1)单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3)染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。
单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。
根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1/2。
此种患者的异常性状表达程度可不尽相同。
在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。
由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。
还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。
常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。
临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。
2024年高中生物遗传的知识总结(2篇)
2024年高中生物遗传的知识总结____年的高中生物遗传学知识总结遗传学是生物学的一个重要分支,研究的是物种中性状传递给下一代的规律。
在____年,遗传学方面的研究取得了许多重要的突破,下面将以____字的篇幅进行知识总结。
第一部分:基础概念1.1 遗传物质在之前,人们对遗传物质的了解主要局限在DNA(去氧核糖核酸)上,但在____年,对RNA(核糖核酸)和蛋白质等遗传物质的研究也取得重要进展。
目前已经确定DNA是生物体内遗传信息的储存库,并通过转录过程将部分信息转录成RNA,进而合成蛋白质。
1.2 基因基因是指控制生物个体性状的片段,它位于染色体上。
在____年,基因的概念不再局限于DNA序列,还包括对基因的表达的控制。
人们通过进一步的研究发现,基因对个体性状的决定不仅仅取决于其本身序列的差异,还受到环境因素的影响。
1.3 染色体染色体是细胞中遗传信息的载体,它们位于细胞核内。
____年,人们对染色体的研究取得了突破性进展,发现了更多与染色体有关的遗传现象。
例如,人们发现有些疾病是由于染色体上的某些部分重排或缺失引起的。
1.4 群体遗传学群体遗传学是研究群体中基因传递规律的科学。
____年,随着人类对群体基因组的研究越来越深入,人们对群体遗传学的认识逐渐深入。
人们发现,不同群体的基因多样性存在显著差异,这些差异在一定程度上可以解释人类种群之间的差异。
第二部分:遗传现象2.1 孟德尔遗传规律孟德尔遗传规律是19世纪末由奥地利博物学家孟德尔提出的一套描述性的遗传规律。
____年,虽然关于孟德尔遗传规律的基本概念没有太大变化,但人们通过更加精确的实验和统计方法,对这一规律的解释和应用有了更深入的认识。
2.2 多基因遗传在过去几十年中,一些复杂性状如身高、体重、智力等的研究表明,多基因遗传起到了重要作用。
____年,通过大规模基因组关联研究(GWAS)和全基因组测序技术的不断进步,人们已经鉴定出了大量与复杂性状相关的基因,进一步揭示了多基因遗传的复杂性。
高中生物遗传学知识点总结
高中生物遗传学知识点总结遗传学是生物学的一个重要分支,研究遗传物质的传递与变化规律,揭示生物种群和个体之间的遗传关系。
在高中生物教学中,遗传学是重要的内容之一,下面将对高中生物中遗传学的知识点进行总结。
1. 基本概念遗传学研究的对象是基因和基因组。
基因是决定个体遗传特征的基本单位,是由DNA分子编码的遗传信息。
基因组是一个物种所有基因的集合。
2. 一对基因的表现个体某一性状的表现受到与该性状相关的一对基因的影响。
一个基因的两个等位基因分别来自父母亲,在个体的基因型中存在显性与隐性关系,显性基因表现在个体外部形态上,而隐性基因则不表现。
3. 遗传物质的载体DNA是遗传物质的载体,它存在于细胞的染色体上。
染色体是由DNA和蛋白质组成的复杂结构,不同物种具有不同数量的染色体。
人类每个细胞核中有23对染色体。
4. 遗传现象遗传现象包括基因的自由组合与分离、基因的互作关系、基因突变以及DNA复制和基因重组等。
这些现象决定了个体遗传特征的变化和传递规律。
5. 孟德尔遗传定律孟德尔遗传定律是遗传学的基础定律,包括隐性-显性定律、分离定律和自由组合定律。
这些定律揭示了个体基因传递规律。
6. 遗传的形式遗传的形式包括纯合子和杂合子。
纯合子指的是个体两个等位基因相同,杂合子指的是个体两个等位基因不同。
7. 基因型与表现型个体的基因型与表现型之间存在一定的关系。
个体的基因型决定了其表现型,不同的基因型可能导致不同的表现型。
8. 遗传性状的分离与连锁遗传性状可以在后代中分离或连锁传递。
分离指的是一个基因的不同等位基因在后代中的分开传递,连锁指的是两个位于同一个染色体上的基因在后代中的同时传递。
9. 基因突变基因突变是遗传学中一种重要的遗传现象。
突变分为点突变和染色体结构变异两种形式,它们都能够对个体的遗传特征产生重要影响。
10. 基因工程和基因治疗基因工程和基因治疗是遗传学应用于实践的重要领域。
基因工程可以通过改变一个个体的基因组来改变其遗传特征,基因治疗是通过修改个体的基因来治疗遗传性疾病。
高中遗传学知识点总结
高中遗传学知识点总结高中遗传学是生命科学中非常重要的一个领域,主要研究生物的遗传变异、遗传基因的控制和遗传疾病的预防和治疗。
以下是高中遗传学的一些重要知识点总结。
1. 遗传基因遗传基因是生物体内遗传信息的载体,是 DNA 或 RNA 分子上的一段序列。
遗传基因控制着生物的性状表现,包括形态、生理和生化等方面。
遗传基因可以通过突变、重组和传递等途径进行变异,从而导致生物的遗传变异。
2. 遗传变异遗传变异是指生物体基因组中的变异,包括基因突变和染色体变异。
基因突变是指 DNA 碱基对的替换、增添或缺失,从而导致生物体的性状改变。
染色体变异是指染色体结构的变异,如缺失、增加或易位等,也会导致生物体的性状改变。
3. 遗传疾病遗传疾病是指由遗传基因变异引起的疾病,通常表现为家族性或遗传性。
常见的遗传疾病包括自闭症、先天性失聪、地中海贫血症等。
4. 遗传传递遗传传递是指遗传基因从亲代向子代的传递过程。
遗传传递可以通过自然传递和人工传递两种方式进行。
自然传递是指亲代将遗传基因传递给子代,通常是通过生殖细胞来实现的。
人工传递是指通过人工操作将遗传基因传递给子代,如基因编辑和基因转移等。
5. 遗传基因控制遗传基因控制是指通过遗传基因来控制生物的性状表现。
遗传基因可以通过调节蛋白质的表达来控制生物的生理和生化反应,从而实现对生物性状的控制。
6. 遗传图谱遗传图谱是指通过绘制遗传图谱来研究遗传基因控制的研究方法。
遗传图谱可以通过连锁分析和遗传标记等方法来研究遗传基因的位置和连锁关系,从而揭示遗传基因控制生物性状的机制。
以上是高中遗传学的一些重要知识点总结。
在学习遗传学时,需要注意遗传学的基本概念、变异和遗传的原理,以及遗传疾病和遗传图谱的研究方法。
同时,还需要结合实际情况进行思考,理解遗传学在实际生活中的应用。
高中生物:遗传学知识点总结
高中生物:遗传学知识点总结
1. 遗传学的基本概念
遗传学是生物学的一个重要分支,研究物质的遗传传递和变异。
它研究了物种的遗传特征如何从一代传递到下一代,并探索了基因
在这个过程中的作用。
2. 孟德尔遗传定律
约翰·孟德尔是遗传学的奠基人,他通过对豌豆的研究提出了
三个重要的遗传定律:
- 第一法则,也称为分离规律:当纯合的个体(纯合子)自交
或互交时,后代的表型和等位基因的比例符合一定的规律。
- 第二法则,也称为自由组合规律:基因分离和分布是独立进
行的,一个基因的表现不受其他基因的影响。
- 第三法则,也称为隔离规律:同源染色体上的基因在两性生
殖细胞的形成过程中会分离。
3. 基因和染色体
基因是生物体内的遗传物质,是生物性状的载体。
基因通过遗
传物质DNA存在于染色体上。
人类的大部分细胞都有46条染色体,其中23对是由父母分别传递的。
4. 遗传的方式
遗传传递主要有两种方式:显性遗传和隐性遗传。
显性遗传是
指某个性状在基因上表现为显性的,即只需有一个显性基因即可表
现出来。
隐性遗传是指某个性状在基因上表现为隐性的,需要两个
隐性基因才能表现出来。
5. 基因突变
基因突变是指基因发生了改变,导致个体的基因型发生变异。
基因突变可能是由于DNA复制时的错误或外界环境因素引起的,
它是遗传变异的重要原因。
以上是关于高中生物遗传学的一些基本知识点总结。
掌握这些
知识,有助于我们理解物种的遗传特征传递和变异的规律,以及基
因在这个过程中的作用。
高中生物遗传学基础知识点
高中生物遗传学基础知识点遗传学是高中生物的重要组成部分,它研究的是生物遗传和变异的规律。
掌握好遗传学的基础知识,对于理解生命的奥秘和解决相关的生物学问题具有重要意义。
接下来,让我们一起深入了解高中生物遗传学的基础知识点。
一、遗传物质1、 DNA 是主要的遗传物质大多数生物的遗传物质是 DNA(脱氧核糖核酸),少数病毒的遗传物质是 RNA(核糖核酸)。
DNA 具有独特的双螺旋结构,由两条反向平行的脱氧核苷酸链组成,通过碱基互补配对原则(A 与 T 配对,G 与 C 配对)连接。
2、基因基因是具有遗传效应的 DNA 片段,它控制着生物的性状。
基因通过转录和翻译过程控制蛋白质的合成,从而实现对生物性状的表达。
二、孟德尔遗传定律1、分离定律孟德尔通过豌豆杂交实验提出了分离定律。
该定律指出,在生物体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
例如,对于豌豆的高茎和矮茎这一对相对性状,假设控制高茎的基因是 D,控制矮茎的基因是 d。
纯合高茎(DD)和纯合矮茎(dd)杂交,F1 代均为高茎(Dd)。
F1 自交产生 F2 代,F2 代中高茎(DD、Dd):矮茎(dd)= 3:1。
2、自由组合定律孟德尔还提出了自由组合定律。
该定律指出,控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
例如,豌豆的黄色圆粒和绿色皱粒杂交。
黄色(Y)对绿色(y)为显性,圆粒(R)对皱粒(r)为显性。
纯合的黄色圆粒(YYRR)和绿色皱粒(yyrr)杂交,F1 代均为黄色圆粒(YyRr)。
F1 自交产生 F2 代,F2 代中表现型的比例为 9:3:3:1。
三、减数分裂1、过程减数分裂是有性生殖生物在形成配子时发生的特殊分裂方式。
它包括减数第一次分裂和减数第二次分裂两个阶段。
高中生物遗传与变异知识点
高中生物遗传与变异知识点1.遗传与遗传物质:(1)遗传是指生物个体或种群在后代间传递性状的现象。
(2)传递性状的遗传物质是基因。
2.染色体与基因:(1)染色体是生物细胞中可见的染色质聚集物,携带了遗传信息。
(2)基因是染色体上的功能单位,是操纵个体性状的遗传物质。
3.遗传的分类:(1)单基因遗传:受一个基因控制的性状,可分为显性遗传和隐性遗传。
(2)多基因遗传:受多个基因共同控制的性状,呈连续分布的现象。
4.遗传的规律:(1)孟德尔遗传定律:-第一定律:同一性法则,同一种纯合子的后代性状相同。
-第二定律:分离法则,同一杂合子的后代存在隐性性状。
-第三定律:再组合法则,两个基因的组合方式影响后代性状。
(2)随意分离定律:杂合子在减数分裂时配子的分离是随意的。
5.基因型与表型:(1)基因型是一个个体所拥有的基因种类及其组合方式。
(2)表型是基因型在外部环境作用下所表现出来的形态、结构、功能等。
6.基因突变与变异:(1)基因突变是指基因发生变异,可分为点突变、插入突变、缺失突变等。
(2)变异是指个体或种群表型的差异,包括遗传变异和环境变异。
7.自由联会和连锁不平衡:(1)自由联会是指处于同一染色体上的基因在减数分裂过程中以非孟德尔方式联合遗传。
(2)连锁不平衡是指处于同一染色体上的基因由于自由联会而不平衡地遗传。
8.性别遗传:(1)人类的性别遗传是由X和Y染色体决定的,男性为XY型,女性为XX型。
(2)X染色体和Y染色体携带了不同的性别决定基因,决定了个体的性别。
9.染色体与基因工程:(1)染色体工程是通过改变个体或种群的染色体结构来实现其中一种目的的技术。
10.生物技术与遗传病:(1)生物技术包括基因工程技术、细胞工程技术等,对生物遗传病的预防和治疗具有重要意义。
(2)遗传病是由基因突变引起的疾病,可遗传给后代。
以上是高中生物遗传与变异的主要知识点,理解和掌握这些知识点对于加深对遗传与变异的理解、提高综合应用能力以及解决遗传病等问题具有重要意义。
高中生物遗传学知识点总结
高中生物遗传学知识点总结高中生物遗传学知识1一、显、隐性的判断:①性状分离,分离出的性状为隐性性状;②杂交:两相对性状的个体杂交;③随机交配的群体中,显性性状》隐性性状;④假设推导:假设某表型为显性,按题干的给出的杂交组合逐代推导,看是否符合;再设该表型为隐性,推导,看是否符合;最后做出判断;二、纯合子杂合子的判断:①测交:若只有一种表型出现,则为纯合子(体);若出现两种比例相同的表现型,则为杂合体;②自交:若出现性状分离,则为杂合子;不出现(或者稳定遗传),则为纯合子;注意:若是动物实验材料,材料适合的时候选择测交;若是植物实验材料,适合的是测交和自交,但是最简单的方法为自交;三、基因分离定律和自由组合定律的验证:①测交:选择杂合(或者双杂合)的个体与隐性个体杂交,若子代出现1:1(或者1:1:1:1),则符合;反之,不符合;②自交:杂合(或者双杂合)的个体自交,若子代出现3:1(1:2:1)或者9:3:3:1(其他的变式也可),则符合;否则,不符合;③通过鉴定配子的种类也可以;如:花粉鉴定;再如:通过观察雄峰的表型及比例推测蜂王产生的卵细胞的种类进而验证是否符合分离定律。
高中生物遗传学知识2一、自交和自由(随机)交配的相关计算:①自交:只要确定一方的基因型,另一方的出现概率为“1”(只要带一个系数即可);②自由交配:推荐使用分别求出双亲产生的配子的种类及比例,再进行雌雄配子的自由结合得出子代(若双亲都有多种可能的基因型,要讲各自的系数相乘)。
注意:若对自交或者自由交配的后代进行了相应表型的选择之后,注意子代相应比例的改变。
二、遗传现象中的“特殊遗传”:①不完全显性:如Aa表型介于AA和aa之间的现象。
判断的依据可以根据分离比1:2:1变化推导得知;②复等位基因:一对相对性状受受两个以上的等位基因控制(但每个个体依然只含其中的两个)的现象,先根据题干给出的信息确定出不同表型的基因型,再答题。
③一对相对性状受两对或者多对等位基因控制的现象;⑤致死现象,如某基因纯合时胚胎致死,可以根据子代的分离比的偏离情况分析得出,注意该种情况下得到的子代比例的变化。
高中生物遗传学知识点归纳
高中生物遗传学知识点归纳一、遗传学基本概念1. 遗传学:研究生物遗传现象的学科,包括遗传物质的传递和变异、遗传规律的发现和解释等。
2. 基因:生物遗传信息的基本单位,位于染色体上,控制着生物的性状和遗传特征。
3. 染色体:细胞核中的遗传物质,由DNA和蛋白质组成,携带着遗传信息。
4. DNA:脱氧核糖核酸,是构成染色体的主要成分,存储了生物体的遗传信息。
5. 基因型和表型:基因型是指个体基因的组合,表型是指个体在外部表现出的性状。
二、遗传规律1. 孟德尔遗传规律:包括单因素遗传规律和双因素遗传规律,提出了显性和隐性等遗传概念。
2. 随机分离定律:当两个对立的纯合子杂交时,子代的基因型和表型将呈现随机分离的现象。
3. 自由组合规律:在同一染色体上的基因在配子形成过程中独立地进行自由组合,产生不同的基因组合。
4. 联锁性遗传:染色体上的基因有时会以不独立的方式遗传,这种现象称为联锁性遗传。
5. 基因突变:指基因发生突变或突变位点的变异,是遗传变异的重要原因。
三、遗传的分子机制1. DNA复制:在细胞分裂过程中,DNA需要复制自身,确保每个细胞都能获得完整的遗传信息。
2. RNA转录:在DNA模板上进行的过程,将DNA的信息转录成RNA,为蛋白质合成提供模板。
3. 蛋白质合成:根据RNA的信息,通过翻译过程合成具有特定功能的蛋白质。
4. 突变:DNA复制或转录过程中,可能会产生突变,导致遗传信息的改变。
四、遗传变异与进化1. 基因突变:是遗传变异的主要原因,揭示了生物多样性和进化的基础。
2. 染色体重组:染色体的交叉互换和随机分离,使得基因在种群中重新组合,进一步增加了遗传变异。
3. 自然选择:适应环境的个体更有可能生存和繁殖,使有利基因逐渐在种群中累积,驱动进化的方向。
五、遗传工程与生物技术1. 基因工程:通过改变生物体的遗传信息,使其具有新的性状或功能,广泛应用于农业、医学等领域。
2. 克隆技术:通过体细胞核移植等方法,复制生物体,实现基因的精确复制和传递。
高中生物遗传学知识点总结
高中生物遗传学知识点总结
遗传学是生物学的一个重要分支,研究的是遗传信息在个体和
群体中的传递、表达和变异。
在高中生物学课程中,遗传学是一个
重要的考点,了解和掌握遗传学的基本概念和知识点对于学生学习
生物学以及应对考试都是非常重要的。
本文将对高中生物遗传学知
识点进行总结。
一、基因
1. 基因是DNA上的一个功能单位,负责遗传信息的传递和表达。
2. 基因由一段DNA序列编码,可以编码蛋白质或RNA分子。
3. 基因位于染色体上,不同基因位于不同染色体上。
二、遗传物质
1. 遗传物质是指携带和传递遗传信息的物质,包括DNA和RNA。
2. DNA是双链结构,在细胞核中存在,负责存储和传递遗传信息。
3. RNA是单链结构,在细胞核和细胞质中存在,起着信息传递和蛋白质合成的作用。
三、遗传变异
1. 遗传变异是指在遗传过程中产生的基因、染色体或基因组的变化。
2. 基因突变是指基因序列发生突变,可能导致蛋白质结构和功能的改变。
3. 染色体变异是指染色体的数量或结构发生变化,如染色体丢失、重复、倒位等。
四、遗传方式
1. 确定性遗传是指基因按照一定规律传递,可分为隐性遗传和显性遗传。
2. 隐性遗传是指表现在个体外部的性状是由隐性基因决定的,需要两个隐性基因才能表现。
3. 显性遗传是指表现在个体外部的性状是由显性基因决定的,一个显性基因就能表现。
有关遗传的知识点总结
有关遗传的知识点总结遗传学的基本概念1. 基因:是控制遗传信息传递和表达的基本单位。
基因由DNA组成,是细胞内的功能性DNA片段,负责编码生物个体的遗传特征。
2. 染色体:染色体是基因的携带者,由DNA和蛋白质组成。
人类细胞中有23对染色体,其中一对是性染色体,决定性别的遗传信息。
3. 遗传物质:指DNA和RNA,是生命体遗传信息的传递者。
遗传规律1. 孟德尔遗传规律:孟德尔通过豌豆杂交实验,提出了基因的分离定律、自由组合定律和统计定律,奠定了现代遗传学的基础。
2. 确定遗传规律:染色体对基因的定位和分离规律。
例如,性连锁遗传,杂合子的分离和重组等规律。
3. 随机性:遗传过程中会有一定的随机性,例如基因重组的概率,基因突变的出现等。
遗传变异1. 突变:指染色体结构或基因序列的突然改变,是生物进化和遗传变异的主要原因。
2. 重组:在减数分裂过程中,染色体的交叉互换导致新的基因组合产生。
3. 杂合子形成:由两个不同亲本的基因组合而成的个体称为杂合子,杂合子的出现增加了遗传物质的多样性。
应用遗传学的领域1. 生物育种:利用遗传学的知识进行植物和动物的育种,提高产量和品质。
2. 医学遗传学:研究人类基因的结构和功能,分析基因与疾病的关系,进行遗传病的诊断和预防。
3. 法医遗传学:利用DNA鉴定技术对犯罪嫌疑人进行身份鉴定,进行亲子关系的鉴定等。
4. 进化遗传学:研究物种的起源和进化过程,揭示生物多样性的形成机制。
遗传学的发展趋势1. 基因工程:利用分子生物学技术进行基因的修饰和操纵,生产优良的转基因生物。
2. 基因组学:研究生物的全基因组结构和功能,揭示基因组的结构和组织特征。
3. 个性化医学:根据个体的基因信息制定个性化的治疗方案,提高疾病治疗的效果。
4. 环境遗传学:研究环境因素对遗传变异的影响,揭示环境和遗传因素的相互作用关系。
总之,遗传学是生命科学中一个重要的研究领域,随着科学技术的不断发展,遗传学将为人类生活和健康带来更多好处。
高中生物遗传知识点大全
高中生物遗传知识点大全高中生物遗传知识点(一)ABO血型的遗传规律不包括基因自由组合定律吗?为什么?1、ABO血型的遗传规律不包括基因自由组合定律,因为ABO血型是由复等位基因IA、IB、i控制的,只是分离定律。
2、如果包括其它血型,因血型有关的基因有几十对,所以可以包括基因自由组合定律。
请问氨基酸合成蛋白质的过程是否需要酶的催化?如需要,需哪种酶?蛋白质合成过程需酶。
主要有:解旋酶(转录),RNA聚合酶(转录),氨基酸缩合酶(翻译)等两对相对性状的基因自由组合,如果F2的分离比分别为9:7,9:6:1和15:1,那么F1与双隐性个体测交,得到的分离比分别是( ) 答案1:3, 1:2:1和3:1如果F2为9:7,则表示只有含有两个AB时才表现为显性,因此测交之后比值为1:3 如果F2为9:6:1,则表示只有含有1个A或B时才表现为中性,因此测交之后比值为1:2:1 如果F2为15:1,则表示只要含有1个A或B时才表现为显性,因此测交之后比值为3:1 因此答案是1:3, 1:2:1和3:1不遵循孟德尔性状分离比的因素有哪些?1.孟德尔遗传定律只适用于有性生殖,若是无性生殖一定不遵循 2.对于一些特殊情况,例如某种生物有高中生物遗传知识点基因,而后代中隐形纯合子(或显性或杂合)会出现死亡现象导致不遵循定律 3.细胞质遗传由于只与母方有关并且不具有等概率性,也不遵循 4.理想值总是于实际有些差距,这也是原因遗传,怎样做这类遗传题?尤其是遗传图谱的还有推断的?有无口决?中华考试网先判断显性还是隐性:无中生有是隐形;生女患病是常隐。
有中生无是显性,生女正常是常显伴X显父患女必患子患母必患; 伴X隐母患子必患女患父必患为什么说减数分裂中染色体行为变化是三大遗传规律的细胞学基础?如何理解?1)减Ⅰ后期:同源染色体分离是基因分离规律的细胞学基础; 2)减Ⅰ后期:非同源染色体自由组合是基因自由组合规律的细胞学基础; 3)减Ⅰ四分体时期:同源染色体间的非姐妹染色单体可能发生交叉互换是基因连锁互换规律的细胞学基础。
高中生物遗传史知识点总结
高中生物遗传史知识点总结一、孟德尔的豌豆实验1. 孟德尔的豌豆杂交实验是遗传学的开端,他通过对豌豆植物的性状进行观察和实验,发现了遗传的基本规律。
2. 孟德尔提出了三个基本遗传原则:分离定律、组合定律和独立分配定律。
3. 分离定律指的是在形成配子时,一个体细胞中的两个等位基因分离,每个配子只含有一个等位基因。
4. 组合定律指的是不同性状的基因在形成配子时,其组合方式是自由的。
5. 独立分配定律指出不同性状的基因在形成配子时,彼此独立,互不干扰。
二、染色体的发现与遗传机制1. 染色体的发现是遗传学发展的重要里程碑,科学家通过显微镜观察到细胞分裂过程中染色体的行为。
2. 萨顿提出了基因位于染色体上的假说,并通过实验证实了染色体与遗传的关系。
3. 摩尔根通过果蝇实验,证明了基因位于染色体上,并发现了染色体上的基因连锁和重组现象。
三、DNA的发现与结构1. 沃森和克里克发现了DNA的双螺旋结构,这是现代遗传学的基础。
2. DNA的双螺旋结构由两条互补的链组成,通过碱基对之间的氢键相互结合。
3. 四种碱基分别是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G),它们按照特定的配对规则结合:A与T配对,C与G配对。
四、遗传密码与蛋白质合成1. 遗传密码是指DNA序列中的三个连续的碱基(一个密码子)决定一个特定的氨基酸。
2. 蛋白质合成包括转录和翻译两个过程,转录是DNA序列转化为RNA的过程,翻译是RNA指导蛋白质的合成。
3. mRNA、tRNA和rRNA在蛋白质合成中扮演重要角色,mRNA携带遗传信息,tRNA携带氨基酸,rRNA是构成核糖体的组成部分。
五、基因突变与修复1. 基因突变是指DNA序列发生改变的现象,包括点突变、插入、缺失等。
2. 基因突变可能导致遗传病或生物的进化。
3. 细胞具有DNA修复机制,能够修复突变的DNA,保持遗传信息的稳定。
六、遗传与环境的相互作用1. 遗传决定了生物的潜能和限制,但环境因素可以影响基因的表达。
高中生物遗传的知识点总结
高中生物遗传的知识点总结遗传学是高中生物课程中的一个重要组成部分,它涉及生物体性状的传递和变异规律。
以下是高中生物遗传的知识点总结:1. 遗传的物质基础- DNA是主要的遗传物质,它的结构为双螺旋。
- 基因是DNA分子上的一段特定序列,负责编码生物体的特定性状。
- 染色体是DNA和相关蛋白质的复合体,存在于细胞的核中。
2. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,提出了遗传的两个基本定律:分离定律和自由组合定律。
- 分离定律:在有性生殖过程中,一个性状的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
- 自由组合定律:不同性状的基因在形成配子时,它们的分离和组合是相互独立的。
3. 遗传的模式- 显性和隐性:显性基因在杂合子中能够表现出来,而隐性基因则不能。
- 等位基因:控制同一性状的不同形式的基因。
- 纯合子和杂合子:纯合子指两个等位基因相同的个体,杂合子则是指两个等位基因不同的个体。
4. 性别遗传- 性染色体:决定性别的染色体,人类中女性为XX,男性为XY。
- 性别连锁遗传:某些基因位于性染色体上,因此其遗传与性别相关联。
5. 遗传变异- 基因突变:基因序列发生改变,可能导致新的性状出现。
- 基因重组:在有性生殖过程中,父母的基因重新组合,产生新的基因型。
6. 人类遗传病- 单基因遗传病:由单个基因突变引起的遗传病,如遗传性肌营养不良。
- 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病,如高血压、糖尿病。
- 染色体异常遗传病:由染色体数目或结构异常引起的遗传病,如唐氏综合症。
7. 遗传学的应用- 基因治疗:通过改变或替换异常基因来治疗遗传病。
- 遗传工程:通过人工手段改变生物体的遗传特性,如转基因技术。
8. 遗传咨询- 遗传咨询旨在帮助个体和家庭了解遗传病的风险,并提供相关的预防和治疗建议。
9. 遗传学实验技术- PCR技术:用于快速复制特定DNA片段的技术。
- DNA测序:确定DNA分子中精确的核苷酸序列。
高中生物——遗传学知识整理
高中生物——遗传学知识整理1、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。
观察染色体组型最好的时期是有丝分裂的中期。
2、性别决定:一般是指雌雄异体的生物决定性别的方式。
3、性染色体:决定性别的染色体叫做性染色体。
4、常染色体:与决定性别无关的染色体叫做常染色体。
5、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。
语句:1、染色体的四种类型:中着丝粒染色体,亚中着丝粒染色体,近端着丝粒染色体,端着丝粒染色体。
2、性别决定的类型:(1)XY型:雄性个体的体细胞中含有两个异型的性染色体(XY),雌性个体含有两个同型的性染色体(XX)的性别决定类型。
(2)ZW型:与XY型相反,同型性染色体的个体是雄性,而异型性染色体的个体是雌性。
蛾类、蝶类、鸟类(鸡、鸭、鹅)的性别决定属于“ZW”型。
3、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。
其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。
色盲基因(b)以及它的等位基因——正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。
4、色盲的遗传特点:男性多于女性一般地说,色盲这种病是由男性通过他的女儿(不病)遗传给他的外孙子(隔代遗传、交叉遗传)。
色盲基因不能由男性传给男性)。
5、血友病简介:症状——血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴X隐性遗传病,其遗传特点与色盲完全一样。
DNA是主要的遗传物质1.19世纪末叶,生物学家通过对细胞的有丝分裂、减数分裂和受精过程的研究,认识到染色体在生物的遗传中具有重要的作用。
染色体的化学组成如何?到底哪种成分才是遗传物质? 染色体主要由DNA和蛋白质组成,还含有少量的RNA。
由于染色体不是单一物质组成,因而,遗传物质到底是DNA,还是蛋白质的争论相当激烈,随着噬菌体侵染大肠杆菌实验的进行,使人们普遍接受了DNA才是遗传物质的结论。
高中生物遗传知识点总结
高中生物遗传知识点总结遗传的知识点是高中生物教学中的一个难点,学生具体需要掌握哪些遗传知识点呢?下面是店铺给大家带来的高中生物遗传知识点,希望对你有帮助。
高中生物遗传知识点(1)基因的分离定律①豌豆做材料的优点:(1)豌豆能够严格进行自花授粉,而且是闭花授粉,自然条件下能保持纯种.(2)品种之间具有易区分的性状.②人工杂交试验过程:去雄(留下雌蕊)→套袋(防干扰)→人工传粉③一对相对性状的遗传现象:具有一对相对性状的纯合亲本杂交,后代表现为一种表现型,F1代自交,F2代中出现性状分离,分离比为3:1.④基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂时,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代.(2)基因的自由组合定律①两对等位基因控制的两对相对性状的遗传现象:具有两对相对性状的纯合子亲本杂交后,产生的F1自交,后代出现四种表现型,比例为9:3:3:1.四种表现型中各有一种纯合子,分别在子二代占1/16,共占4/16;双显性个体比例占9/16;双隐性个体比例占1/16;单杂合子占2/16×4=8/16;双杂合子占4/16;亲本类型比例各占9/16、1/16;重组类型比例各占3/16、3/16②基因的自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的.在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。
③运用基因的自由组合定律的原理培育新品种的方法:优良性状分别在不同的品种中,先进行杂交,从中选择出符合需要的,再进行连续自交即可获得纯合的优良品种。
高中生物遗传考点1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。
2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。
判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。
以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。
3.常见遗传病的遗传方式:(1) 单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3 )染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。
单基因遗传病单基因遗传病是指受一对等位基因控制的遗传病, 较常见的有红绿色盲、血友病、白化病等。
根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1/2。
此种患者的异常性状表达程度可不尽相同。
在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。
由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。
还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。
常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。
临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。
2、珠蛋白生成障碍性贫血。
病因:珠蛋白肽链合成不足或缺失。
临床表现:贫血。
3、多发性家族性结肠息肉。
病因:息肉大小不等,可有蒂,也可以是广底的,分布在下段结肠或全部结肠。
临床表现:便血,常有腹痛、腹泻。
4、多囊肾。
病因:肾实质形成大小不等的囊泡,多为双侧。
临床表现:腹痛,血尿,腹部有肿块,高血压和肾功能衰竭。
5、先天性软骨发育不全。
病因:长骨干骺端软骨细胞形成障碍,软骨内成骨变粗,影响骨的长度,但骨膜下成骨不受影响。
临床表现:四肢粗短,躯干相对长,垂手不过髋关节,手指短粗,各指平齐,头围较大,前额前突出,马鞍型鼻梁,下颏前突,腰椎明显前突,臀部后凸。
6、先天性成骨发育不全。
临床表现:以骨骼易折、巩膜蓝色、耳聋为主要特点。
7、视网膜母细胞瘤。
临床表现:视力消失,瞳孔呈黄白色,发展可引起青光眼,眼球突出。
二、常染色体隐性遗传病致病基因为隐性并且位于常染色体上,基因性状是隐性的,即只有纯合子时才显示病状。
此种遗传病父母双方均为致病基因携带者,故多见于近亲婚配者的子女。
子代有1/4的概率患病,子女患病概率均等。
许多遗传代谢异常的疾病,属常染色体隐性遗传病。
按照“一基因、一个酶”或“一个顺反子、一个多肽”(one 的概念,这些遗传代谢病的酶或蛋白分子的异常,来自各自编码基因的异常。
常见常染色体隐性遗传病的病因和临床表现1、白化病。
病因:黑色素细胞缺乏酪氨酸酶,不能使酪氨酸变成黑色素。
临床表现:毛发银白色或淡黄色,虹膜或脉络膜不含色素,因而虹膜和瞳孔呈蓝或浅红色,且畏光,部分有曲光不正、斜视及眼球震颤,少数患者智力低下。
2、苯丙酮尿症。
肝脏中缺乏苯丙氨酸羟化酶,使苯丙氨酸不能氧化成酪氨酸,只能变成苯丙酮酸,大量苯丙氨酸及苯丙酮酸累积在血和脑积液中,并随尿排出,对婴儿神经系统造成不同程度的伤害,并抑制产生黑色素的酪氨酸酶,致使患儿皮肤毛发色素浅。
临床表现:不同程度的智力低下,皮肤毛发色浅,尿有发霉臭味,发育迟缓。
3、半乳糖血症。
病因:由于α1-磷酸半乳糖尿苷转移酶缺乏,使半乳糖代谢被阻断,而积聚在血、尿、组织内,对细胞有损害,主要侵害肝、肾、脑及晶状体。
临床表现:婴儿出生数周后出现体重不增、呕吐、腹泻、腹水等症状,可出现低血糖性惊厥、白内障、智力低下等。
4、粘多糖病。
病因:粘多糖类代谢的先天性障碍,各种组织细胞内积存大量的粘多糖,形成大泡。
临床表现:出生时正常,6个月到2岁时开始发育迟缓,可有智力及语言落后,表情呆板,皮肤略厚,似粘液水肿,可有骨关节多处畸形。
5、先天性肾上腺皮质增生症。
病因:肾上腺皮质合成过程中的各种酶缺乏。
临床表现:女性患者男性化,严重者可呈两性畸形;男性患者外生殖器畸形,假性性早熟,可合并高血压、低血钾等症状。
三、X连锁显性遗传病X连锁显性遗传一些性状或遗传病的基因位于X染色体上,其性质是显性的,这种遗传方式称为X连锁显性遗传(X-linked dominant inheritance),这种疾病称为X连锁显性遗传病。
目前所知X连锁显性遗传病不足20种。
由于致病基因是显性的,并位于X染色体上,因此,不论男性(XAY)和女性(XAXa)只要有一个这种致病基因XA就会发病。
与常染色体显性遗传不同之处是,女性患者既可将致病基因传给生子,又可以传给女儿,且机会均等;而男性患者只能将致病基因传给女儿,不传给儿子。
由此可见,女性患者多于男性,大约为男性的1倍。
另外,从临床上看,女性患者大多数是杂合子,病情一般较男性轻,而男患者病情较重。
抗维生素D佝偻病(vitamin D resistant rickets, VDRR)可以作为X连锁显性遗传病的实例。
VDRR是一种以低磷酸血症导致骨发育障碍为特征的遗传性骨病。
患者主要是肾远曲小管对磷的转运机制有某种障碍,困而尿排磷酸盐增多,血磷酸盐降低而影响骨质钙化。
患者身体矮小,有时伴有佝偻病等各种表现。
患者用常规剂量的维生素D治疗不能奏效,故有抗维生素D佝偻病之称。
从临床观察,女性患者的病情较男性患者轻,多数只有低血磷,佝偻症状不太明显,表现为不完全显性,这可能是女性患者多为杂合子,其中正常X染色体的基因还发挥一定的作用。
男性患者(XHY)与正常女性(XhXh)结婚,所生子女中,儿子全部正常,女儿全部发病;女性患者(XHXh)与正常男性(XhX)结婚,子女中正常与患者各占1/2。
X连锁显性遗传病病种较少,有抗维生素D性佝偻病等。
这类病女性发病率高,这是由于女性有两条X染色体,获得这一显性致病基因的概率高之故,但病情较男性轻。
男性患者病情重,他的全部女儿都将患病。
常见X伴性显性遗传病的病因和临床表现1、抗维生素D佝偻病。
病因:甲状腺功能不足,影响体内磷、血钙的代谢过程,致使血磷降低,且维生素D治疗效果不好。
临床表现为:身材矮小,可伴佝偻病和骨质疏松症的各种表现。
2、家族性遗传性肾炎。
病因:肾小管发育异常,集合管比常人分支少,呈囊状,远曲小管薄,但近曲小管变化轻。
临床表现为:慢性进行性肾炎,反复发作性血尿,1/3~1/2患者伴神经性耳聋。
四、X连锁隐性遗传病致病基因在X染色体上,性状是隐性的,女性只是携带者,这类女性携带者与正常男性婚配,子代中的男性有1/2是概率患病,女性不发病,但有1/2的概率是携带者。
男性患者与正常女性婚配,子代中男性正常,女性都是携带者。
因此X连锁隐性遗传在患病系中常表现为女性携带,男性患病。
男性的致病基因只能随着X染色体传给女儿,不能传给儿子,称为交叉遗传。
常见X伴性隐性遗传病的病因和临床表现1、血友病A。
病因:血浆中抗血友病球蛋白减少,AHG即第Ⅷ因子凝血时间延长。
临床表现:轻微创伤即出血不止,不出血时与常人无异。
2、血友病B。
病因:血浆中缺乏凝血酶成份PTC,即第Ⅸ因子。
临床表现同血友病A。
3、色盲。
临床表现:全色盲对所有颜色看成无色,红绿色盲为不能区别红色和绿色。
4、进行性肌营养不良。
病因:为原发性横纹肌变性并进行性发展。
临床表现:初为行走笨拙,易跌到,登梯及起立时有困难,从仰卧到起立必须先俯卧,双手撑地,再用两手扶小腿、大腿才能站起。
进行性肌肉萎缩,但一般不累及面部及手部肌肉。
隔代遗传隔代遗传从遗传学的角度看,致病基因的传递是代代相传的,一个个体一旦没有从亲代继承到某个特定的致病基因,那么,其后代一般也不必担忧此种致病基因所带来的遗传病。
伴性遗传病患儿绝大多数为男性,追踪其家族发病的情况时可以发现,患者的母亲是正常健康人,但其外祖父却是本病患者。
从中可以总结出两个特点:①伴性遗传病是从外祖父传给外孙,跳过母亲这一代,有明显的隔代遗传现象;为什么这种伴性遗传病都是隔代遗传的呢?是因为这种病是隐性遗传病,并且都是通过女性传递的。
女性虽不发病却是伴性遗传病致病基因的携带者,并将这种病传递给其子代中的男性。
比如甲型血友病,它的发病基因是位于X染色体上的第八凝血因子突变所致,是一种典型的隐性遗传病,其发病者均为男性。
由于父亲遗传给儿子的性染色体只是Y,传给女儿的则是唯一的一个带致病基因的X染色体,所以患血友病的男人,他的儿子完全正常,女儿虽然表型正常,但全部为致病基因携带者,她们结婚所生男孩约有一半将患有外公所患的遗传病。
由此可见,伴性隐性遗传病虽有隔代现象,但致病基因都是通过患者女儿传递下去的最新文件仅供参考已改成word文本。
方便更改。