2020年重庆八中八年级(上)期中数学试卷

合集下载

2020年重庆市渝中区巴蜀中学八年级(上)期中数学试卷

2020年重庆市渝中区巴蜀中学八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.在实数中,无理数的个数为()A. 1个B. 2个C. 3个D. 4个2.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A. B. 2,3,4 C. D.3.在平面直角坐标系中,点P(2,-3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.估算的值()A. 在3和4之间B. 在4和5之间C. 在5和6之间D. 在6和7之间5.函数中,自变量x的取值范围是()A. x>4B. x≥-2且x≠4C. x>-2且x≠4D. x≠46.若a>b,则下列各式正确的是()A. a+c2>b+c2B. -2a>-2bC.D. a-1>b7.若一次函数y=(k-1)x+1-k2经过原点,则k的值是()A. 1B. ±1C. -1D. 任意实数8.一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在图象上,则()A. y1>y2B. y1≥y2C. y1<y2D. y1≤y29.将直线y=kx-2向下平移6个单位后,正好经过点(2,4),则k的值为()A. 3B. 4C. 5D. 610.如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n>0)的图象是()A. B.C. D.11.不等式组的解集是x>2,则m的取值范围是()A. m≤2B. m≥2C. m≤1D. m≥112.如图,在平面直角坐标系上有个点A(-1,0),点A第1次向上跳动1个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2019次跳动至点A2019的坐标是()A. (-505,1009)B. (505,1010)C. (-504,1009)D. (504,1010)二、填空题(本大题共8小题,共32.0分)13.的平方根是______.14.比较大小:______.(填“>、<、或=”)15.已知直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式kx+b>-2的解集为______.16.若与的小数部分分别为a与b,则a+b=______.17.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点C′处,若AB=5,BC=3,则点C的坐标为______.18.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为______.19.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑500米,当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是______米.20.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为______元.三、解答题(本大题共8小题,共70.0分)21.计算:(1)(2)22.解下列不等式(组)(1)2-5x≥8-2x(2)23.先化简再求值,(-2a-b)(2a-b)+(a-2b)2-2a(3b-4a),其中.24.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB的解析式为y=-x+16,CD的解析式为y=kx+b且AO=2CO,两直线的交点E(3,m).(1)求直线CD的解析式;(2)求四边形DEAO的面积;(3)当-x+16>kx+b时,直接写出x的取值范围.25.定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为“对称直线”,例如,直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x i,y i),B(x2,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率.若点A(-3,1)、B(2,4)在直线y=ax+c上.(1)a=______;(2)直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,求△PAB的周长.26.开学初,为丰富教师们的业余生活,我校组织所有教师前往重庆大剧院观看演出.重庆大剧院的演出门票价格方案如下:1.票价根据座位区域不同定价不同,一区票价为120元/张,二区票价为100元/张;2.离退休教师各区均享受八折优惠.已知本次活动实到教师700人,若本次活动每人均购买二区票则需67200元.(1)求参加本次活动的在职教师、离退休教师分别有多少人;(2)为庆祝重阳节,重庆在大剧院调整了票价方案,将200张一区演出票票价每张降低了2a元,将全部二区演出票票价每张降低了a元,离退休教师可在降价后仍享受八折优惠.若学校决定将200张一区演出票全部购入并优先发放给离退休教师和部分在职教师,其余教师均购买二区票,且校方希望总门票费用不超过66420元,求a的最小值.27.如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,在△ABE中,∠AEB=90°,AE与BC交于点F.(1)若∠BAE=30°,BF=2,求BE的长;(2)如图2,D为BE延长线上一点,连接AD、FD、CD,若AB=AD,∠ACD=135°,求证:BD+BF=AF.28.如图,在平面直角坐标系中,已知直线BD:y=x-2与直线CE:y=-x+4相交于点A.(1)求点A的坐标;(2)点P是△ABC内部一点,连接PA、PB、PC,求PB+PA+PC的最小值;(3)将点D向下平移一个单位得到点D1,连接BD1,将△OD1B绕点O旋转至△OB1D2的位置,使B1D2∥x轴,再将△OB1D2沿y轴向下平移得到△O1B2D3,在平移过程中,直线O1D3与x轴交于点K,在直线x=3上任取一点T,连接KT,O1T,△O1KT 能否以O1K为直角边构成等腰直角三角形?若能,请直接写出所有符合条件的T 点的坐标;若不能,请说明理由.答案和解析1.【答案】A【解析】解:是分数,属于有理数;0,是整数,属于有理数;3.214是有限小数,属于有理数.无理数有:共1个.故选:A.无限不循环小数为无理数,由此可得出无理数的个数.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】C【解析】解:∵()2+12=8,(2)2=8,∴()2+12=(2)2,∴能组成直角三角形的一组数是,1,2,故选:C.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.【答案】D【解析】解:点P(2,-3)在第四象限.故选:D.根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.【答案】B【解析】【分析】看在哪两个可化为整数的二次根式之间即可.考查估算无理数的大小的知识,用“夹逼法”估算无理数的大小是估算无理数的常用方法.【解答】解:∵<<,∴4<<5,故选:B.5.【答案】B【解析】解:由题意得,x+2≥0且x-4≠0,解得x≥-2且x≠4.故选B.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】A【解析】解:A.根据不等式的性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;所以A选项正确;B.根据不等式性质③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以B选项错误;C.根据不等式性质②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以C选项错误;D.不符合不等式性质,所以D选项错误.故选:A.根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变即可判断.本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.7.【答案】C【解析】解:∵一次函数y=(k-1)x+1-k2经过原点,∴,解得:k=-1.故选C.由一次函数图象经过原点即可得出关于k的一元一次不等式以及一元二次方程,解之即可得出结论.本题考查了一次函数图象上点的坐标特征、解一元一次不等式以及解一元二次不等式,将点(0,0)代入一次函数解析式找出关于k的一元二次方程是解题的关键.8.【答案】A【解析】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0.∴y随x增大而减小,∵1<3,∴y1>y2,故选:A.根据图象在坐标平面内的位置确定m,n的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9.【答案】D【解析】解:直线y=kx-2向下平移6个单位后所得解析式为y=kx-8,∵平移后的直线经过点(2,4),∴4=2k-8,解得:k=6,故选:D.根据平移规律可得,直线y=kx-2向下平移6个单位后得y=kx-8,然后把(2,4)代入即可求出k的值.此题主要考查了一次函数图象与几何变换,直线平移后的解析式有这样的规律“左加右减,上加下减”.10.【答案】A【解析】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.11.【答案】A【解析】解:,由①得,x>2,∵不等式组的解集是x>2,∴m≤2.故选A.先求出不等式①的解集,再与不等式组的解集相比较即可得出m的取值范围.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.【答案】B【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n 为自然数).∵2019=504×4+3,∴A2015(504+1,504×2+2),即(505,1010).故选:B.设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2019=504×4+3即可得出点A2019的坐标.本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”是解题的关键.13.【答案】±【解析】解:∵(±)2=,∴的平方根是±.故答案为:±.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.此题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.【答案】<【解析】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.先把两个实数平方,然后根据实数的大小比较方法即可求解.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.15.【答案】x>-1.【解析】解:∵y=kx+b经过A(2,1),B(-1,-2)两点,∴,解得:,∴不等式kx+b>-2变为x-1>-2,解得x>-1,故答案为:x>-1.首先利用待定系数法计算出k、b的值,进而得到不等式,再解不等式即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数与不等式,关键是计算出k、b的值.16.【答案】1【解析】解:由题意得:3=<=4,∴与的整数部分分别为12和5,则与的小数部分分别为-3与4,即a=-3,b=4-,∴a+b=1.故答案为:1.根据3=<=4,可以判断出与的整数部分,继而得出其小数部分,代入计算即可.本题考查了估算无理数大小的知识,难度不大,注意夹逼法的运用及对一个数整数部分与小数部分的理解.17.【答案】(,0)【解析】解:∵矩形纸片ABCD中,AB=5,BC=3,∴AD=3,CD=C'D=5,∴Rt△ADC'中,AC'==4,∴BC'=5-4=1,设BO=x,则CO=C'O=3-x,∵Rt△BOC'中,BO2+BC'2=C'O2,∴x2+12=(3-x)2,解得x=,∴CO=3-,又∵点C在x轴上,∴点C的坐标为(,0),故答案为:(,0).依据折叠的性质以及勾股定理,即可得出AC'的长,进而得到BC'=1,再根据勾股定理可得,Rt△BOC'中,BO2+BC'2=C'O2,列方程求解即可得到BO=,进而得出点C的坐标.本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长.解题时注意方程思想的运用.18.【答案】(-,0)【解析】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+2中x=0,则y=2,∴点B的坐标为(0,2);令y=x+2中y=0,则x+2=0,解得:x=-3,∴点A的坐标为(-3,0).∵点C、D分别为线段AB、OB的中点,∴点C(-1.5,1),点D(0,1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-1).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(-1.5,1),D′(0,-1),∴有,解得:,∴直线CD′的解析式为y=-x-1.令y=-x-1中y=0,则0=-x-1,解得:x=-,∴点P的坐标为(-,0).故答案为:(-,0).根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.19.【答案】75【解析】解:由图形可知:乌龟125分钟到达终点,∴乌龟的速度为:500÷125=4(米/秒),设螃蟹的速度为v米/秒,25v-25×4=300,v=16,故螃蟹的速度为16米/秒,300÷4=75(分),75+25=100,∴点P(100,0),螃蟹惊醒后到达终点的时间为:(500-25×16)÷16=6.25分钟,则螃蟹到达终点时,乌龟距终点的距离为:4×(125-100-6.25)=75(米).故答案为:75根据“速度=路程÷时间”结合函数图象即可算出乌龟的速度,再根据“出发25分钟后螃蟹的路程-乌龟的路程=300”即可求出螃蟹的速度,进而即可求出螃蟹、乌龟会合地离起点的时间,结合总路程及二者的速度即可得出结论.本题考查了一次函数的应用,读懂题目信息,理解并得到螃蟹先到达终点,然后求出螃蟹、乌龟两人所用的速度是解题的关键.20.【答案】5750【解析】【分析】本题考查一元一次方程和不等式;能够通过题意列出方程是解题的关键.先求出A与B原料的成本和,再设A种原料成本价格x元,B种原料成本价格(40-x)元,生产甲产品m袋,乙产品n袋,根据题意列出方程,得到W=60m+40n+20n+250=60(m+n)+250,即可求解;【解答】解:∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b元,∴=20%,∴b=60,∴甲产品的成本价格60元,∴1.5kgA原料与1.5kgB原料的成本和60元,∴A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40-x)元,生产甲产品m袋,乙产品n 袋,根据题意得:,∴xn=20n-250,设生产甲乙产品的实际成本为W元,则有W=60m+40n+xn,∴W=60m+40n+20n-250=60(m+n)-250,∵m+n≤100,∴W≤5750;∴生产甲乙产品的实际成本最多为5750元,故答案为5750.21.【答案】解:(1)原式=-1-3+1-3=-6;(2)原式=3-2+-+13-4=3--5+13.【解析】(1)原式利用乘方的意义,平方根、立方根定义,零指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用二次根式乘除法则,以及完全平方公式计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)移项得:2x-5x≥8-2,合并同类项得:-3x≥6系数化为1得:x≤-2;(2)解不等式①得:x≤1,解不等式②得:x>-2,∴不等式组的解集为-2<x≤1.【解析】(1)根据不等式的性质求出不等式的解集即可;(2)先求出不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,解一元一次不等式,能求出不等式组的解集或不等式的解集是解此题的关键.23.【答案】解:原式=b2-4a2+a2-4ab+4b2-6ab+8a2=5a2+5b2-10ab,当a=+,b=-时,原式=5(8+2+8-2)-20=80-20=60.【解析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.【答案】解:(1)把E(3,m)代入y=-x+16,可得m=12,∴E(3,12),令y=0,则0=-x+16,解得x=12,∴A(12,0),即AO=12,又∵AO=2CO,∴CO=6,即C(-6,0),把E(3,12),C(-6,0)代入y=kx+b,可得,解得,∴直线CD的解析式为y=x+8;(2)在y=x+8中,令x=0,则y=8,∴D(0,8),∴四边形DEAO的面积=S△ACE-S△COD=(12+6)×12-×6×8=108-24=84;或四边形DEAO的面积=S△AOE-S△EOD=×12×12+×3×8=72+12=84;(3)当-x+16>kx+b时,由图可得x的取值范围为x<3.【解析】(1)依据一次函数图象上点的坐标特征,即可得到E(3,12),C(-6,0),再根据待定系数法,即可得到直线CD的解析式;(2)依据割补法进行计算,即可得到四边形DEAO的面积;(3)依据图象中两直线的位置或直接解不等式,即可得到不等式-x+16>kx+b的解集.此题考查了两直线的交点问题,坐标与图形性质以及待定系数法的综合运用.两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.25.【答案】【解析】解:(1)把A(-3,1)、B(2,4)分别代入y=ax+c,得.解得.故答案为;(2)∵直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,∴点P(x,y)是直线y=2x+3与直线y=3x+2的交点.∴.解得.∴P(1,5),∴PA==4,PB==,AB==,∴△PAB的周长为:4++=5+.(1)把点A、B的坐标分别代入直线方程,求得a的值即可;(2)由“对称直线”的定义得到点P(x,y)是直线y=2x+3与直线y=3x+2的交点,易求点P的坐标,然后根据勾股定理求得PA、PB、AB的长,即可求得△PAB的周长.本题考查的是待定系数法确定函数关系式,函数图象上点的坐标特征,三角形的周长,两条直线的交点等相关知识,属新定义型题目.26.【答案】解:(1)设参加本次活动的在职教师有x人,离退休教师有y人,依题意,得:,解得:.答:参加本次活动的在职教师有560人,离退休教师有140人.(2)依题意,得:(120-2a)×140×0.8+(120-2a)×(200-140)+(100-a)×(700-200)≤66420,解得:a≥5.答:a的最小值为5.【解析】(1)设参加本次活动的在职教师有x人,离退休教师有y人,根据参加活动的教师共700人且本次活动每人均购买二区票花费了67200元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合总门票费用不超过66420元,即可得出关于a的一元一次不等式,解之取其最小值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.27.【答案】(1)解:如图1中,作FE⊥BA于E.∵CA=CB,∠C=90°,∴∠ABC=45°,∵∠BEF=90°,∴△BEF是等腰直角三角形,∵BF=2,∴BE=EF=2,在Rt△AEF中,∵∠EAF=30°,∴AE=EF=2,∴AB=2+2,在Rt△ABE中,∵∠BAE=30°,∴BE=AB=1+.(2)证明:如图2中,延长AC交BD的延长线于H.∵∠BEF=∠ACF=90°,∠BFE=∠AFC,∴∠HBC=∠CAF,∵CB=CA,∠BCH=∠ACF,∴△BCH≌△ACF,∴AF=BH,CF=CH,∵∠ACD=135°,∠ACB=90°,∴∠ECD=∠HCD=45°,∵CD=CD,∴△CDF≌△CDH,∴DF=DH,∵AB=AD,AE⊥BD,∴BE=ED,∴AE垂直平分线段BD,∴FB=FD=DH,∴AF=BH=BD+DH=BD+BF,∴BD+BF=AF.【解析】(1)如图1中,作FE⊥BA于E.在Rt△BEF中,求出BE=EF=2,在Rt△AEF 中,求得AE=2,再在Rt△ABE中,根据BE=AB即可解决问题;(2)延长AC交BD的延长线于H.只要证明△BCH≌△ACF,△CDF≌△CDH,AE垂直平分线段BD,即可解决问题;本题考查全等三角形的判定和性质、等腰直角三角形的性质,线段的垂直平分线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,学会正确寻找全等三角形解决问题,属于中考常考题型.28.【答案】解:(1)直线,则点B、D的坐标分别为:(,0)、(0,-2);直线,则点C、E的坐标分别为:(4,0)、(0,4);联立BD、CE的表达式并解得:x=2,故点A(2,2);(2)如图,将△APB绕点B逆时针旋转60°得到△EFB,则△BFP是等边三角形,∠EBC=90°,BC=3,AB==BE,在Rt△EBC中,CE==,∵PA+PB+PC=EF+FP+PC≥CE,∴PA+PB+PC≥,∴PA+PB+PC的最小值为;(3)存在,理由:点D1(0,-3),点B(,0),则∠BD1O=30°,B1D2∥x轴,则直线OD2的倾斜角为30°,设直线O1K的表达式为:y=x+m,则点O1(0,m),点K(-m,0),则MO1=-m,MK=-m,KN=-m,TN=|-m-3|,则点T(3,-m)△O1KT能否以O1K为直角边构成等腰直角三角形,则O1K=TK,TK⊥O1K,过点K作y轴的平行线分别交过点O1、T与x轴的平行线于点M、N,∵∠NKT+∠NTK=90°,∠NKT+∠O1KM=90°,∴∠O1KM=∠NTK,∠KNT=∠O1MK=90°,O1K=TK,∴△KNT≌△O1MK(AAS),∴TN=KM,即:|-m-3|=-m,解得:m=,故点T(3,)或(3,).【解析】(1)联立BD、CE的表达式并解得:x=2,故点A(2,2);(2)如图,将△APB绕点B逆时针旋转60°得到△EFB,则△BFP是等边三角形,∠EBC=90°,PA+PB+PC=EF+FP+PC≥CE,即可求解;(3)直线OD2的倾斜角为30°,点O1(0,m),点K(-m,0),则MO1=-m,MK=-m,KN=-m,TN=|-m-3|,则点T(3,-m)证明△KNT≌△O1MK(AAS),则TN=KM,即:|-m-3|=-m,即可求解.本题考查的是一次函数综合运用,涉及到三角形全等、图形的平移和旋转等,其中(3),用绝对值表示TN的长度,易于求解多种情况.。

重庆市 八年级数学上学期期中试题新人教版

重庆市 八年级数学上学期期中试题新人教版

重庆市八年级数学上学期期中试题新人教版八年级数学上学期期中试题本试卷共4页,满分150分,考试时间120分钟。

注意事项:1.在答题卡规定的位置上填写姓名和准考证号。

2.答选择题时,使用2B铅笔将答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,使用0.5毫米黑色签字笔,在答题卡规定的位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题(共12个小题,每小题4分,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是()A。

1B。

2C。

7D。

82.下列图形中,不是轴对称图形的是()3.一个多边形的内角和是1260°,这个多边形的边数是()A。

6B。

7C。

8D。

94.如图,___用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再钉上木条的根数是()A。

0B。

1C。

2D。

35.如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则CF的长度是()A。

4B。

3C。

5D。

66.等腰三角形的一个角是80°,则它顶角的度数是()A。

80°B。

80°或20°C。

80°或50°D。

20°7.如图,将含30°角的三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A。

90°B。

80°C。

75°D。

70°8.如图:△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AC=6cm,则DE+BD等于()A。

5cmB。

4cmC。

6cmD。

7cm9.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A。

35°B。

70°C。

110°D。

2019-2020学年重庆八中八年级(上)期中数学试卷(含解析)

2019-2020学年重庆八中八年级(上)期中数学试卷(含解析)

2019-2020学年重庆八中八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题4分,共40分)1.下列算式中,正确的是()A.3=3 B.C.D.=32.下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个4.如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0 B.x<1 C.0<x<1 D.x>15.若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)6.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm7.若方程组的解中x与y互为相反数,则m的值为()A.﹣2 B.﹣1 C.0 D.18.如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6 B.3 C.2 D.129.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.6二、填空题(每小题4分,共12分)11.直角三角形的两条直角边长分别是3cm、4cm,则斜边长是cm.12.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.13.已知实数x,y满足y=+2,则(y﹣x)2011的值为.三、解答题(共48分)14.(8分)(1)(2)15.(10分)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠FAB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.16.(10分)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=,当x≥1时,y=.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;x ……y ……(3)观察函数图象,请写出该函数的一条性质:.17.(10分)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.18.(10分)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10 25 60015 30 750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?B卷(50分)一、选填题(每小题4分,共20分)19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)20.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15 B.12 C.7.5 D.621.半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔支.22.如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.23.A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.二、解答题(共30分)24.(10分)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.(8分)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.(12分)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH的最小值及此时点N 的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.1.【解答】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3﹣3+2=5﹣2,所以C选项正确;D、原式==,所以D选项错误.故选:C.2.【解答】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、42+43=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.3.【解答】解:①﹣m=12,不是整式方程,不符合题意;②y=z+2,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;故选:A.4.【解答】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.5.【解答】解:∵A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),∴m+2n=5,2m﹣n=﹣5,∴P(m,n)的坐标是(﹣8,3).故选:C.6.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB=∠CBD.,∴AE=BC=9cm,AB=CD=12cm.∴AB2=63.BE2=AE2+AB2=81+144=225,故选:D.7.【解答】解:根据题意得:,解得:,解得:m=0,故选:C.8.【解答】解:27﹣(27﹣)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,6÷2=3(厘米).故选:B.9.【解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.10.【解答】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴(AC+BC)2=(8)2,即AC2+2AC×BC+BC6=405,∴AC×BC=90,∴CD===6;故选:D.11.【解答】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:512.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣6=1,解得:m=﹣2或2,则m=﹣2.故答案为:﹣2.13.【解答】解:∵与都有意义,∴x=3,则y=2,故答案为:﹣1.14.【解答】解:(1)原式=++12﹣1=2+3+12﹣1(2)方程组整理为,②﹣①得4x=8,解得x=2,把x=3代入①得2﹣4y=﹣2,解得y=1,所以原方程组的解为.15.【解答】(1)解:如图,直角△AFB中,∠FAB=90°,AB=2,BF=4.由勾股定理知,AF===2;∵∠F=30°,∴BG=BE.∴∠DEC=∠D=45°.∴ED=EC.∴EC=2.∴∠ECG=∠DEC=45°.∴EG=CG.∴GC=2.∴BG=.∴BC=GC﹣GB=2﹣.16.【解答】解:(1)化简函数解析式,当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x≥1时,y=(x ﹣1)﹣2=x﹣,故答案为﹣x﹣,x﹣.当x=0时,y=﹣,故答案为0,﹣1.﹣,﹣7,故答案为:当x≥1时,y随x的增大而增大.17.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、点B(1,).∴,解得:.(2)如图,∵C在直线AB上,且S△ACO=S△ABO,∵A(﹣2,1),B(1,).∴C(﹣,)或(﹣,);18.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∴W的值随x值的增大而减小,3000÷10=300(束),答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.19.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(6,1),P2(2,0),P3(6,﹣1),P4(4,0),P5(5,1),…,∵17=4×4+1,故选:A.20.【解答】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:设AE=A′E=x,则DE=9﹣x,(4﹣x)2=x2+32,解得x=4,∴S△DEF=DE•CD=×5×3=7.5(cm8).故选:C.21.【解答】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122由题意可知x,y,z均为正整数当y=2,z=1时,x=4.8,不符合题意;当y=2,z=4时,由奇偶性可知,分子为奇数,不符合题意;故答案为:4.22.【解答】解:∵AB=BD=4,∴∠BAE=∠BDE,∴∠DBE=∠CAB=90°,∴∠CAE=∠DEB,∴∠CAE=∠CEA,∵BE=1,∵AC2+AB2=BC2,∴AC=,故答案为:.23.【解答】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).根据题意得:(300+324)t=2700﹣300×(10﹣9),∴他们在第二次相遇时距B地2700﹣300×()=(米),故答案为:.24.【解答】解:(1)由题意:(a+1)2+(7﹣4)2=52,解答a=3或﹣5.(3)∵=,∴+=+,求+,相当于求点(2x,3)到点(4,1)和点(0,7)的距离和的最小值,这个最小值==,∴原式的最小值=+3.25.【解答】解:(1)如图1中,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴△DAC≌△EAB,∵∠CFD=∠AFB,∵DE=EB=CD=,∴AB=AC=BC=.∴AE=EB,∵∠DEA=45°=∠EAB+∠EBA,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CJA=180°﹣∠CAJ﹣∠ACJ=67.5°,∴CA=CJ=CB,∴∠AEG=∠GEJ=90°,∵∠AGE=∠EBG+∠GEB,∵BE=BE,∠EBJ=∠EBG,∴BG=BJ,∴BC=CJ+BJ=AB+BG.26.【解答】解:(1)由已知可得A(3,0),B(0,5),∵将直线l1向右平移2个单位得到直线L2,∴直线L2:y=﹣x+5,(2)过点A作AE⊥L2,∴AE=,∴BM+MN+NH的最小值即为BM++NH的最小值,则BM+MN+NH的最小值即为+FH;∴B'M=FN,∴BM=B'M,在Rt△BDF中,BF=,BD=2,过点B作BG⊥FH,∴GB=,FG=,在Rt△BNG中,∠GBN=30°,BG=,∴N(,),∴BM+MN+NH的最小值+;∴A'(4,2),∴直线L3:y=x+2﹣15,∴AB=6,①当A'B'=A'C时,A'C=6,∴m=或m=,②当A'B'=B'C时,B'C=6,∴m=或m=;③当A'C=B'C时,∴m=4﹣;综上所述:A'(,),A'(,);A'(,),A'(,);A'(5﹣,﹣);).。

2020-2021学年重庆八中八年级(上)期中数学试卷(含解析)

2020-2021学年重庆八中八年级(上)期中数学试卷(含解析)

2020-2021学年重庆八中八年级第一学期期中数学试卷一、选择题(共10小题).1.|﹣3|的值等于()A.3B.﹣3C.±3D.2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.我B.爱C.中D.国3.在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A.6cm B.5cm C.7cm D.无法确定5.若函数y=(m﹣1)x|m|是正比例函数,则m的值为()A.1B.﹣1C.±1D.26.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为()A.B.C.D.7.点A(x1,y1)和B(x2,y2)都在直线y=x﹣3上,且x1>x2,则y1与y2的关系是()A.y1≥y2B.y1=y2C.y1<y2D.y1>y28.按如图所示的运算程序,若输入的x的值为﹣5,则输出的y值为()A.16B.﹣14C.D.﹣59.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,其直角顶点A落在x轴上,点B落在y轴上,点C落在第一象限内,已知点A(3,0),点B(0,2),连接OC,则线段OC的长度为()A.4B.3C.6D.10.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,以下说法正确的是.①若∠B+∠C=∠A,则△ABC是直角三角形;②若a2=(b+c)(b﹣c),则△ABC是直角三角形;③若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;④若a=32,b=42,c=52,则△ABC是直角三角形.二、填空题(共5小题,每小题4分,共20分)11.二次根式有意义,则x的取值范围是.12.如图,直线y=kx+b(k≠0)与直线y=mx(m≠0)交于点P,则关于x、y的二元一次方程组的解为.13.如图,在△ABC中,点D为线段AB上一点,过点D作DE∥AC交BC于点E,连接AE,已知∠EAC=34°,∠BDE=73°,则∠BAE的度数为.14.直线y=kx+b(k≠0)经过点(3,4),且平行于直线y=2x,则这条直线的解析式为.15.如图,长方体的棱AB长为3,棱BC长为4,棱BF长为2,P为CG中点,一只蚂蚁从点A出发,在长方体表面爬到点P处吃食物,那么它爬行的路程是.三、解答题:(本大题共5小题,16,17题各6分,18各题8分,19,20各10分,共40分)16.(6分)计算:(1)﹣+π0;(2).17.(6分)化简求值.已知x,y满足|2x+1|+(y+1)2=0,求代数式[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷(﹣2y)的值.18.(8分)在平面直角坐标系中,△ABC的顶点坐标分别是A(﹣5,1),B(﹣3,5),C(﹣1,4).(1)在图中作△A1B1C1,使△A1B1C1和△ABC关于x轴对称;(2)请直接写出点A1,B1,C1的坐标;(3)请直接写出△A1B1C1的面积.19.(10分)如图,在△ABC中,AD⊥BC于点D,AD=BD,点E是线段AD上一点,且ED=CD,连接BE交AC于点F.(1)求证:∠CBF=∠DAC;(2)若BD=3,BF=,求△BAF的周长.20.(10分)如图,在平面直角坐标系xOy中,已知直线l1:y=kx﹣3(k≠0)与坐标轴分别交于点A,点B,直线l2:y=﹣x+4与坐标轴分别交于点C,点D,直线l1,l2相交于点M(6,a).(1)求直线l1的解析式;(2)点P是直线l1上的一个点,连接PD,若△PDM的面积为15,求点P的坐标.四、选填题(本大题共2小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上。

2019-2020学年重庆八中八年级(上)期中数学试卷 -(含答案解析)

2019-2020学年重庆八中八年级(上)期中数学试卷 -(含答案解析)

2019-2020学年重庆八中八年级(上)期中数学试卷一、选择题(本大题共12小题,共48.0分) 1. 下列化简或计算正确的是( )A. √(−√3)2=−√3B. √1149=1+17=87C. (√6−√3)2=9−2√3D. √24÷(−12√6)=−42. 下列条件中,不能判断一个三角形为直角三角形的是( )A. 三个角的比是1:2:3B. 三条边满足关系a 2=c 2−b 2C. 三条边的比是2:3:4D. 三个角满足关系∠B +∠C =∠A3. 方程2x −3y =5、xy =3、x +3y =1、3x −y +2z =0、x 2+y =6中是二元一次方程的有( )个. A. 1 B. 2 C. 3 D. 4 4. 如图,已知直线y 1=x +m 与y 2=kx −1相交于点P(−1,2),则关于x的不等式x +m <kx −1的解集在数轴上表示正确的是( )A. B. C. D.5. 若点P(a,1)关于y 轴的对称点为Q(2,b),则a +b 的值是( )A. −1B. 0C. 1D. 2 6. 如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A. 245°B. 300°C. 315°D. 330°7. 方程组{3x +5y =k +22x +3y =k的解的值互为相反数,则k 的值( )A. 0B. 2C. 4D. 68. 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( )A. 12cm ≤ℎ≤19cmB. 12cm ≤ℎ≤13cmC. 11cm≤ℎ≤12cmD. 5cm≤ℎ≤12cm9.如图,长方体ABCD−A′B′C′D′中,AB=BB′=2,AD=3,一只蚂蚁从A点出发,沿长方体表面爬到C′点,求蚂蚁走的最短路程是()A. √5B. 5C. √29D. 2√1010.在Rt△ABC中,∠ACB=90°,AC=√2,BC=2,则AB的长为()A. √3B. √6C. √2D. 611.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,−1),P5(2,−1),P6(2,0),…,则点P2017的坐标是()A. (671,−1)B. (672,0)C. (672,1)D. (672,−1)12.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则△AEF的面积是()A. 8B. 10C. 12D. 14二、填空题(本大题共8小题,共44.0分)13.已知直角三角形的两直角边长为1和2,则斜边长为.14.若函数y=(k+3)x|k|−2+4是一次函数,则函数解析式是______ .15.若y=√x−4+√4−x+9,则√xy的值为______.16.已知∠AOB=30°,点D在OA上,OD=2√3,点E在OB上,DE=2,则OE的长是____.x+2的图像上,则y1、y2的大小关系是______.17.已知点(2,y1)、(−2.5,y2)都在函数y=−1218.钢笔每支a元,铅笔每支b元,买2支钢笔和3支铅笔共需_______元.19.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=______ .20.某校为了迎接缤纷体育运动会,初三年级作为代表参赛的甲和乙两名同学约定每天在一直线线路上的两个位置A和B之间往返练习长跑30分钟.在某次练习中,甲和乙分别在位置A和B 同时出发,沿线段AB按各自的速度匀速往返跑步,已知甲的速度大于乙的速度.在跑步的过程中,甲和乙两人之间的距离y(米)与他们出发的时间x(分钟)之间的关系如图所示,在他们3次相遇中,离点A 最近那次相遇时距点A 有________米.三、解答题(本大题共6小题,共58.0分) 21. 计算(1)5√12−9√13+12√48(2)√6−√3√3+(2+√2)(2−√2);22. 在平面直角坐标系中,直线AB 经过(1,1)、(−3,5)两点.(1)求直线AB 所对应的函数解析式;(2)若点P(a,−2)在直线AB 上,求a 的值.23. 某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B 第一次 30 40 3800 第二次40303200(1)求、两种商品每件的进价分别是多少元?(2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进、两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.24.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2)其两点间的距离公式为:P1P2=√(x2−x1)2+√(y2−y1)2,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时两点间距离公式可简化为|x2−x1|或|y2−y1|;(1)已知点A、B在平行于x轴的直线上,点A(2a−1,5−a)在第二象限的角平分线上,且A、B间的距离为5,求点B的坐标;(2)已知点A(0,6)、B(−3,2)、C(3,2),判断线段AB、BC、AC中哪两条是相等的?并说明理由;(3)应用平面内两点间的距离公式,求代数式√x2+(y−5)2+√(x−3)2+(y−1)2的最小值.25.如图,在△ABC中,P为AB上的点.(1)如图1,若∠ACP=∠B,AP=2,AC=√10,则BP=______;(2)已知,M是PC的中点.①如图2,若∠ACP=∠PBM,求证:BP=AC2−AP2;2AP②如图3,若AC=2,∠ABC=45°,∠A=∠BMP=60°,求BP的长.26.已知:一次函数l1:y=√3x+4√3和l2:y=−√3x+6√3交于点A,它们分别与x轴交于B、C3点,l2交y轴于点H,∠ACB=60°.(1)如图1:求△ABC的面积(2)如图2:CD为∠ACB的角平分线,M为OC中点,N为线段CD上一动点,连接NO、NM,求NO+NM的最小值.(3)如图3:点P为y轴上一动点,连接BP;射线BP与直线CH交于点Q,当△PQH为等腰三角形时,求△PQH的面积.-------- 答案与解析 --------1.答案:D解析:解:A、原式=|−√3|=√3,所以A选项错误;B、原式=√5049=5√27,所以B选项错误;C、原式=6−6√2+3=9−6√2,所以C选项错误;D、原式=−2√24÷6=−4,所以D选项正确.故选D.根据二次根式的性质对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的性质及计算.2.答案:C解析:解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故正确;B、三条边满足关系a2=c2−b2,故正确;C、三条边的比为2:3:4,22+32≠42,故错误;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故正确.故选:C.根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.3.答案:A解析:【分析】本题主要考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.根据二元一次方程的定义判断即可.【解答】解:2x−3y=5是二元一次方程,符合题意;xy=3,未知数的项的最高次数是2,不是二元一次方程,不符合题意;x+3y=1,不是整式方程,不符合题意;3x−y+2z=0,含有三个未知数,不是二元一次方程,不符合题意;x2+y=6未知数的项的最高次数是2,不是二元一次方程,不符合题意;所以是二元一次方程的有1个.故选A.4.答案:D解析:解:根据图象得,当x<−1时,x+m<kx−1.故选:D.利用函数图象,找出直线y =x +m 在直线y =kx −1的下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合. 5.答案:A解析:解:∵点P(a,1)关于y 轴的对称点为Q(2,b), ∴a =−2,b =1,则a +b =−2+1=−1. 故选:A .直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.此题主要考查了关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y). 6.答案:C解析:【分析】 利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的. 【解答】解:由图中可知:①∠4=12×90°=45°,②∠1和∠7的余角所在的三角形全等, ∴∠1+∠7=90°,同理,∠2+∠6=90°,∠3+∠5=90°,∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°, 故选:C . 7.答案:B解析:【分析】本题主要考查方程组解的定义,相反数,加减消元法解二元一次方程组的有关知识,掌握方程组的解满足每一个方程是解题的关键.由条件可知y =−x ,再代入方程组,即可求得k 值. 【解答】解:∵x 和y 互为相反数,∴y =−x ,代入方程组{3x +5y =k +22x +3y =k 可得{−2x =k +2−x =k , 解得k =2. 故选B .8.答案:C解析:【分析】先根据题意画出图形,再根据勾股定理解答即可.此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.解:当筷子与杯底垂直时h最大,h最大=24−12=12cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,故ℎ=24−13=11cm.故h的取值范围是11cm≤ℎ≤12cm.故选C.9.答案:B解析:解:如图1所示:由题意得:AD=3,DC′=2+2=4,在Rt△ADC′中,由勾股定理得AC′=√AD2+DC′2=√32+42=5,如图2所示:由题意得:AC=5,C′C=2,在Rt△ACC′中,由勾股定理得;AC′=√AC2+CC′2=√29,∵√29>5.∴第一种方法蚂蚁爬行的路线最短,最短路程是5.故选:B.做此题要把这个长方体中,蚂蚁所走的路线放到一个平面内,由于在平面内线段最短,根据勾股定理即可计算.本题考查了平面展开−最短路径问题,此题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的路线.解析:解:如图所示:∵∠ACB=90°,AC=√2,BC=2∴AB的长为:√BC2+AC2=√6.故选:B.直接利用勾股定理求出AB的长进而得出答案.此题主要考查了勾股定理,熟练应用勾股定理是解题关键.11.答案:C解析:【分析】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0).先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+1(2n,1),再根据P6×336(2×336,0),可得P2016(672,0),进而得到P2017(672,1).【解答】解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+1(2n,1),2016÷6=336,∴P6×336(2×336,0),即P2016(672,0),∴P2017(672,1).故选:C.12.答案:B解析:解:由折叠的性质可得,AD′=CD,DE=D′E,∵CD=AB,AB=4,∴AD′=CD=4设AE=x,则DE=D′E=8−x,在Rt△AD′E中,x2−(8−x)2=42,解得,x=5,即AE=5,∴△AEF的面积=12AE⋅AB=12×5×4=10,故选B.由折叠的性质可得,AD′=CD=AB=4,设AE=x,则DE=D′E=8−x,根据勾股定理即可求解.本题考查了翻折变换、勾股定理及矩形的性质,熟练掌握折叠的性质是解题的关键.13.答案:√5解析:【分析】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.利用勾股定理计算即可.【解答】解:∵直角三角形的两直角边长分别是1和2,∴斜边=√12+22=√5,故答案为√5.14.答案:y=6x+4解析:【分析】根据一次函数的定义,解:k+3≠0且|k|−2=1,求k即可.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.【解答】解:由题意得,k+3≠0且|k|−2=1,解得:k=3,所以,函数解析式是y=6x+4;故答案为y=6x+4.15.答案:6解析:解:∵y=√x−4+√4−x+9,∴{x−4≥04−x≥0,解得:x=4,故y=9,则√xy的值为:√4×9=6.故答案为:6.直接利用二次根式的性质得出x的值,进而得出y的值,即可得出答案.此题主要考查了二次根式的性质,正确得出x的值是解题关键.16.答案:2或4解析:解:如图所示,过D作DF⊥OB于F,∵∠AOB=30°,OD=2√3,OD=√3,OF=3,∴DF=12又∵DE=2,∴Rt△DEF中,EF=1,当点E在点F左侧时,OE=OF−EF=3−1=2;当点E′在点F右侧时,OE′=OF+E′F=3+1=4;综上所述,OE的长为2或4,故答案为:2或4.过D作DF⊥OB于F,依据∠AOB=30°,OD=2√3,可得EF=1,分两种情况进行讨论,即可得到OE的长.本题主要考查了直角三角形的性质,画出图形并分情况讨论是解决问题的关键.17.答案:y1<y2解析:【分析】<0,得到y随x的增大而减小,再根据两点本题主要考查了一次函数图象的性质,首先由k=−12横坐标的大小即可得出结论.【解答】解:∵一次函数y=−12x+2中,k=−12<0,∴y随x的增大而减小,∵点(2,y1),(−2.5,y2)在该函数图象上,且2>−2.5,∴y1<y2.故答案为y1<y2.18.答案:(2a+3b)解析:【分析】本题考查了列代数式,把问题中有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.知道一支铅笔和一支钢笔的价钱,故能计算出买2支钢笔和3支铅笔所需的钱,再相加即可.【解答】解:买2支钢笔和3支铅笔共需(2a+3b)元;故答案为(2a+3b).19.答案:4解析:解:∵AB=AC,AD是∠BAC的角平分线,∴DB=DC=12CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD=√52−32=4,故答案为:4.首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC=12CB,AD⊥BC,再利用勾股定理求出AD的长.此题主要考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.20.答案:480解析:【分析】本题考查一次函数图象的应用,路程、速度、时间之间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.由题意甲的速度V甲=240010=240米/分钟,则乙的速度V乙=24006−240=160米/分钟,观察图象可知,第2次相遇时离点A最近,设第二次相遇的时间为t分钟,则有t=3×2400240+160=18(分钟),求出t即可解决问题;【解答】解:由题意,得甲的速度v甲=240010=240(米/分),则乙的速度v乙=24006−240=160(米/分).∴易知3次相遇中.第2次相遇时离点A最近.第二次相遇的时间t=3×2400240+160=18(分钟),∴距点A 的距离s =18×160−2400=480(米).故答案为480.21.答案:解:(1)原式=10√3−3√3+2√3=9√3;(2)原式=√2−1+4−2=√2+1.解析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法法则和平方差公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.答案:解:(1)设直线AB 所对应的函数表达式为y =kx +b .∵直线AB 经过A(1,1)、B(−3,5)两点,∴{k +b =1−3k +b =5解得{k =−1b =2∴直线AB 所对应的函数表达式为y =−x +2.(2)∵点P(a,−2)在直线AB 上,∴−2=−a +2.∴a =4.解析:(1)设直线AB 解析式为y =kx +b ,把A 与B 坐标代入求出k 与b 的值,即可确定出直线AB 所对应的函数解析式;(2)把点P(a,−2)代入(1)求得的解析式即可求得a 的值.此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.23.答案:解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据题意得:{30x +40y =380040x +30y =3200, 解得:{x =20y =80. 答:A 种商品每件的进价为20元,B 种商品每件的进价为80元;(2)设购进B 种商品m 件,获得的利润为w 元,则购进A 种商品(1000−m)件,根据题意得:w =(30−20)(1000−m)+(100−80)m =10m +10000.∵A 种商品的数量不少于B 种商品数量的4倍,∴1000−m ≥4m ,解得:m ≤200.∵在w =10m +10000中,∴w 的值随m 的增大而增大,∴当m =200时,w 取最大值,最大值为10×200+10000=12000,∴当购进A 种商品800件、B 种商品200件时,销售利润最大,最大利润为12000元.解析:本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w 与m 之间的函数关系式.(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000−m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.24.答案:解:(1)点A(2a−1,5−a)在第二象限的角平分线上,∴2a−1=a−5,∴a=−4,∴A(−9,9),∵A、B间的距离为5,点A、B在平行于x轴的直线上,设B(m,9),∴m=−4或m=−14,∴B(−4,9)或B(−14,9);(2)点A(0,6)、B(−3,2)、C(3,2),∴AB=5,AC=5,BC=6,∴AB=AC;(3)√x2+(y−5)2+√(x−3)2+(y−1)2可以看点(x,y)到点(0,5),(3,1)的距离,∴√x2+(y−5)2+√(x−3)2+(y−1)2的最小值即为点(0,5),(3,1)的距离,∴最小值为5;解析:(1)点A(2a−1,5−a)在第二象限的角平分线上,2a−1=a−5;设B(m,9),根据已知可得m=−4或m=−14;(2)利用给出公式直接求AB=5,AC=5,BC=6;(3)√x2+(y−5)2+√(x−3)2+(y−1)2可以看点(x,y)到点(0,5),(3,1)的距离,√x2+(y−5)2+√(x−3)2+(y−1)2的最小值即为点(0,5),(3,1)的距离;本题考查平面内点的坐标特点,两点间的距离公式;能够理解公式的含义,结合平面内点的坐标特点求解是关键.25.答案:解:(1)∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,∴ACAB =APAC,∵AP=2,AC=√10,∴√102+BP =√10,∴BP=3,故答案为3;(2)①过M作MG//AC交AB于G,如图2,∴∠GMP=∠ACP=∠PBM,G为AP的中点,∴△BMG∽△MPG,∴BGGM =GMPG,∴BP+12 AP1 2AC=12AC12AP,∴BP+12AP=AC22AP,∴BP=AC22AP−12AP∴BP=AC2−AP22AP;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x,则BE=x.∵∠ABC=45°,∠A=60°,CH⊥AB,∴CH=√3,AH=1,BH=√3,∴HE=√3+x,∵CE2=(√3)2+(√3+x)2,∵PB=BE,PM=CM,∴BM//CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴CEEP =AECE,∴CE2=EP⋅EA,∴3+3+x2+2√3x=2x(x+√3+1),∴x=√7−1(负根已舍去),∴PB=√7−1.解析:本题考查了三角形综合题,相似三角形的判定和性质,平行线的性质,三角形的中位线的性质,勾股定理等知识,正确作出辅助线是解题的关键,属于中考压轴题.(1)根据相似三角形的判定和性质解答即可.(2)①过M 作MG//AC 交AB 于G ,利用相似三角形的判定和性质解答即可;②过C 作CG ⊥AB 于G ,延长AB 到E 使BP =BE ,利用相似三角形的判定和性质解答即可.26.答案:解:(1)对于函数y =√33x +4√3令y =0,解得x =−12, 可得B(−12,0),对于函数y =−√3x +6√3令y =0,解得x =6,可得C(6,0),由{y =√33x +4√3y =−√3x +6√3,解得{x =32y =9√32, ∴A(32,9√32), ∴S △ABC =12×18×9√32=81√32.(2)如图2中,如图,作点M 关于CD 的对称点M′,连接OM′交CD 于N ,连接MN ,此时OM +MN 的值最小,最小值=OM′的长.∵CD 平分∠ACB ,CM =OM =3,∴点M′在直线CA 上,CM′=CM =3,∵∠OCM′=60°,∴可得M′(92,3√32), ∴OM′=3√3,∴ON +MN 的最小值为3√3.(3)如图3−1中,当QP =QH 时,作QF ⊥PH 于F .易证∠QPH=∠QHP=∠OHC=30°,∴OP=√3OB=12√3,∵OH=6√3,∵QP=QH,QF⊥PH,∴PF=FH=3√3,∴QF=3,∴S△QPH=12⋅PH⋅QF=12×6√3×3=9√3.如图3−2中,当HQ=HP时,易证∠HQP=∠HPQ=∠OPB=75°,在OB上截取BF=FP,连接PF,设OP=x,∵FB=FP,∴∠FBP=∠FPB=15°,∴∠PFO=∠FBP+∠FPB=30°,∴PF=BF=2x,OF=√3x∴√3x+2x=12,∴x=24−12√3∴PH=OH−OP=6√3−(24−12√3)=18√3−24,∴S△PQH=12⋅PH⋅HQ⋅sin30°=192−96√3.如图3−3中,当PH=PQ时,作PF⊥HQ于F.易知PH=PQ=10√3,PF=5√3,FQ=FH=15,∴QH=30.∴S△PQH=1×30×5√3=75√3.2解析:(1)利用待定系数法求出B,C两点坐标,利用方程组求出点A坐标即可解决问题.(2)如图2中,如图,作点M关于CD的对称点M′,连接OM′交CD于N,连接MN,此时OM+MN的值最小,最小值=OM′的长.(3)分三种情形:如图3−1中,当QP=QH时,作QF⊥PH于F.如图3−2中,当HQ=HP时,如图3−3中,当PH=PQ时,作PF⊥HQ于F.分别求出即可.本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2020-2021重庆市初二数学上期中试题(含答案)

2020-2021重庆市初二数学上期中试题(含答案)

2020-2021重庆市初二数学上期中试题(含答案)一、选择题1.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =12.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .25.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .87.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .x x y -B .22x yC .2x yD .3232x y8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-110.下列图形中,周长不是32 m 的图形是( )A .B .C .D .11.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xyB .24 x 2y 2C .12 x 2y 2D .6 x 2y 2 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4D .以上结果都不对 二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)15.如图,在Rt △ABC 中,∠ACB =90°,∠B=30°,CD 是斜边AB 上的高,AD=3,则线段BD 的长为___.16.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 17.使分式的值为0,这时x=_____.18.若x 2+2mx +9是一个完全平方式,则m 的值是_______19.已知22139273m ⨯⨯=,求m =__________.20.因式分解:x2y﹣y3=_____.三、解答题21.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.22.已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用50天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前18天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键. 2.C解析:C【解析】设原来的行驶速度为xkm/h,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x-=+,故选C.点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP 的等边三角形,则AE=AP=2,在直角△AEB 中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C .【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.7.A解析:A【解析】【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x x x y x y x y=---, B 、224x 4x y y =, C 、()2222x 4222x x y y y == , D 、()()33322232x 243822x x y yy ⨯==, 故选A .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8.A解析:A【解析】分析:先把23m ﹣2n 化为(2m )3÷(2n )2,再求解.详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2.9.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --a a b - =b a a b--=-1,所以答案选择D. 【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.10.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4, ∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y , ∴212xy 和214x y的最简公分母是224x y , 故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母.14.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.15.9【解析】【分析】利用三角形的内角和求出∠A 余角的定义求出∠ACD 然后利用含30度角的直角三角形性质求出AC=2ADAB=2AC 即可【详解】解:∵CD⊥AB∠ACB=90°∴∠ADC=∠ACB=90解析:9【解析】【分析】利用三角形的内角和求出∠A ,余角的定义求出∠ACD ,然后利用含30度角的直角三角形性质求出AC=2AD ,AB=2AC 即可..【详解】解:∵CD ⊥AB ,∠ACB=90°,∴∠ADC= ∠ACB=90°又∵在三角形ABC 中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=12AC,即AC=6 ∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】 本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.16.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0,∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 18.±3【解析】【分析】完全平方公式的灵活应用这里首末两项是x 和3的平方那么中间项为加上或减去x 和3的乘积的2倍【详解】∵是完全平方式∴解得故答案是:【点睛】本题主要考查完全平方公式属于基础题关键是根据 解析:±3【解析】【分析】完全平方公式的灵活应用,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∵229x mx ++是完全平方式,∴223?mx x =±⨯,解得3m =±.故答案是:3±【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.19.8【解析】【分析】根据幂的乘方可得再根据同底数幂的乘法法则解答即可【详解】∵即∴解得故答案为:8【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法熟练掌握幂的运算法则是解答本题的关键解析:8【解析】【分析】根据幂的乘方可得293m m =,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m 创=,∴22321m ++=,解得8m =,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.证明见解析.【解析】【分析】证出AC=DF,由SAS推出△ABC≌△DEF,由全等三角形的性质推出即可.【详解】证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,AB DFA D AC DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS),∴BC=EF.【点睛】本题考查了全等三角形的判定与性质,根据题意找出全等三角形的条件是解决此题的关键.22.2b【解析】【分析】首先根据三角形三边之间的关系得出绝对值里面的数的正负性,然后再进行去绝对值计算,得出答案.【详解】∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|=(b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b23.原计划每天加工20套.【解析】【分析】设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.(1)75天;(2)30天【解析】【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】解:(1)设二号施工队单独施工需要x 天,根据题意得501850518150x---+= 解得:x =75经检验,x =75是原方程的解答:由二号施工队单独施工,完成整个工期需要75天.(2)设此项工程一号、二号施工队同时进场施工,完成整个工程需要y 天,根据题意得 111+=y 5075⎛⎫÷ ⎪⎝⎭, 解得y=30(天)经检验y=30是原方程的根,∴此项工程一号、二号施工队同时进场施工,完成整个工程需要30天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.见解析【解析】试题分析:(1)根据角平分线性质可证ED =EC ,从而可知△CDE 为等腰三角形,可证∠ECD =∠EDC ;(2)由OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,OE =OE ,可证△OED ≌△OEC ,可得OC =OD ;(3)根据ED =EC ,OC =OD ,可证OE 是线段CD 的垂直平分线.试题解析:证明:(1)∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴ED =EC ,即△CDE 为等腰三角形,∴∠ECD =∠EDC ;(2)∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴∠DOE =∠COE ,∠ODE =∠OCE =90°,OE =OE ,∴△OED ≌△OEC (AAS ),∴OC =OD ;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.点睛:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.。

重庆市八年级上学期数学期中考试试卷

重庆市八年级上学期数学期中考试试卷

重庆市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共12分)1. (1分) (2020八下·成都期中) 下列图形既是轴对称图形又是中心对称图形的是()A . 平行四边形B . 等边三角形C . 等腰梯形D . 圆2. (1分) (2020七下·江阴期中) 已知三角形的三边长分别为2、x、3,则x可能是()A . 5B . 1C . 6D . 43. (1分) (2015七下·无锡期中) 已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A . 12 cmB . 16cmC . 20cmD . 16cm或20cm4. (1分)如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A . AASB . SASC . ASAD . SSS5. (1分) (2017八上·潮阳月考) 一个多边形的每一个外角都等于36 ,则该多边形的内角和等于()A . 1080°B . 900°C . 1440°D . 720°6. (1分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC 于点E.若BD+CE=2013,则线段DE的长为()A . 2014B . 2011C . 2012D . 20137. (1分)三角形三个内角的度数之比分别为(1)2︰3︰4;(2)2︰2︰4;(3)3︰4︰5;(4)2︰3︰5。

其中是直角三角形的个数为()A . 1B . 2C . 3D . 48. (1分)下列说法中不正确的是()A . 有一腰长相等的两个等腰三角形全等B . 有一边对应相等的两个等边三角形全等C . 斜边相等、一条直角边也相等的两个直角三角形全等D . 斜边相等的两个等腰直角三角形全等9. (1分) (2018八上·浦江期中) 在平面直角坐标系中,点A(5,6)与点B关于x轴对称,则点B的坐标为()A . (5,6)B . (-5,-6)C . (-5,6)D . (5,-6)10. (1分) (2020八上·汝南月考) 如图所示,在 ABC中,已知点D,E,F分别是BC,AD,CE的中点,=4,则的值为()A . 2B . 1C . 0.5D . 0.2511. (1分)已知:如图,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,AC=18,则AMN的周长是()A . 30B . 33C . 36D . 3912. (1分)已知:在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:DC=9:7,则点D 到AB边的距离为()A . 18B . 16C . 14D . 12二、填空题: (共6题;共6分)13. (1分)(2017·南京模拟) 如图,∠A=∠C,只需补充一个条件:________,就可得△ABD≌△CDB.14. (1分) (2020八上·北京期中) 已知等腰三角形两边长分别为3cm和5cm,则等腰三角形的周长为________cm.15. (1分)(2016·连云港) 如图,正十二边形A1A2…A12 ,连接A3A7 , A7A10 ,则∠A3A7A10=________.16. (1分)若A =3m2-2m+1,B=5m2-3m+2,则3A-2B=________.17. (1分) (2019八下·硚口月考) Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为________.18. (1分) (2019八上·长沙月考) 如图,在等边三角形中,边上的高,是高上的一个动点,是边的中点,在点运动的过程中,存在的最小值,则这个最小值是________.三、解答题: (共7题;共11分)19. (2分) (2019八上·海安期中) 如图,已知△ABC,∠C = 90°, .D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B = 35°,求∠CAD的度数.20. (1分) (2020七下·重庆月考) 如图,直线分别与直线交于两点,,求证: (要求写出每一步的理论依据)21. (1分)(2020·防城港模拟) 如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于点D,过点C作CE⊥AC,使AE=BD.求证:∠E=∠D.22. (1分) (2020八上·南京月考) 如图,,为、的平分线的交点,于,且,求与之间的距离.23. (2分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.24. (2分) (2019七上·哈尔滨期中) 完成下面的推理过程.如图,AB∥CD,BE、CF分别是∠ABC和∠BCD的平分线.求证:∠E=∠F证明:∵AB∥CD(已知)∴∠ABC=∠BCD()∵BE、CF分别是∠ABC和∠BCD的平分线(已知)∴∠CBE= ∠ABC,∠BCF= ∠BCD()∴∠CBE=∠BCF()∴BE∥CF()∴∠E=∠F()25. (2分)如图,已知AB∥CD,DA平分∠BDC,DE⊥AD于D,∠B=110°,求∠BDE的度数.参考答案一、选择题: (共12题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题: (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题: (共7题;共11分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:。

重庆八中2022-2023学年八年级上学期期中数学试卷(含答案)

重庆八中2022-2023学年八年级上学期期中数学试卷(含答案)

2022-2023学年重庆八中八年级(上)期中数学试卷一、选择题(本题共11小题,共44分)1.璧山中学为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是( )A. B. C. D.2.如果a>0,那么下列计算正确的是( )A. (−a)0=0B. (−a)0=−1C. −a0=1D. −a0=−13.已知点M的坐标为(2,−3),则点M在哪个象限( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.估算√12÷√2的运算结果应在( )A. 1与2之间B. 2与3之间C. 3与4之间D. 4与5之间5.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.若一次摸出1个,则取出的小球标号小于4的概率是( )A. 14B. 12C. 34D. 16.如图,已知点A(2,2),将线段OA向左平移三个单位长度,则线段OA扫过的面积为( )A. 3B. 6C. 3√2D. 6√27.将一次函数y=x+k与y=kx的图象画在同一坐标系中,正确的是( )A. B.C. D.8.如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+b)(a−b)=a2−b2D. (ab)2=a2b29.如图,按照程序图计算,当输入正整数x时,输出的结果是62,则输入的x的值可能是( )A. 6B. 7C. 8D. 910.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是( )A. 体育场离小明家2.5kmB. 小明从体育场出发到文具店的平均速度是50m/minC. 体育场离文具店1kmD. 小明从文具店回家的平均速度是60m/min11.如图是一个圆柱形饮料罐,底面半径是3,高是4,上底面中心有一个小圆孔,则一条长10cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A. 5≤a≤6B. 3≤a≤4C. 2≤a≤3D. 1≤a≤2二、多选题(本题共1小题,共4分)12.对任意代数式,每个字母及其左边的符号(不包括括号外的符号)称为一个数,如:a−(b+c)−(−d−e),其中称a为“数1”,b为“数2”,+c为“数3”,−d为“数4”,−e为“数5”,若将任意两个数交换位置,则称这个过程为“换位思考”,例如:对上述代数式的“数1”和“数5”进行“换位思考”,得到:−e−(b+c)−(−d+a),则下列说法正确的是( )A. 代数式(a−b)+(c−d)−e进行一次“换位思考”,化简后只能得到1种结果B. 代数式a−(b+c−d−e)进行一次“换位思考”,化简后可能得到5种结果C. 代数式a+[b−(c−d−e)]进行一次“换位思考”,化简后可能得到7种结果D. 代数式a−[b+c−(d−e)]进行一次“换位思考”,化简后可能得到8种结果三、填空题(本题共7小题,共28分)13.64的算术平方根是______.14.点A(x+2,1)与点B(3,1)关于y轴对称,则x=______.15.已知直线l1:y=−3x+a和l2:y=x+b图象上部分点的横坐标和纵坐标如下表所示,则关于x的方程−3x+a=x+b的解是______.x−1012 y=−3x+a852−1y=x+b012316.如图1,一只蚂蚁从圆锥底端点A出发,绕圆锥表面爬行一周后回到点A,将圆锥沿母线OA剪开,其侧面展开图如图2所示,若∠AOA′=120°,OA=√3,则蚂蚁爬行的最短距离是______.17.如图所示,在平面直角坐标系中,已知点A1(0,1),点A2在x轴的正半轴上,且∠OA1A2=60°,过点A2作A2A3⊥A1A2交y轴于点A3;过点A3作A3A4⊥A2A3交x轴于点A4,过点A4作A4A5⊥A3A4交y轴于点A5,…,按此规律进行下去,则点A9的坐标是______.18.如图所示,四边形ABCD是一张长方形纸片,将该纸片沿着EF翻折,顶点B与顶点D重合,点A的对应点为点A′,若AB=6,BC=9,则△AA′E的面积为______.19.甲乙两个同学参加数学比赛,共有选择题、填空题、解答题三种题型.每种题型都不超过10个题,选择题每题3分,填空题每题5分,解答题每题8分,每题除全对外其他情况都不得分,两个同学选择题做对的道数相同,乙做对的填空题比甲做对的填空题至少多2道,甲、乙两个同学每个题型均有做对的题,甲一共得了70分,乙一共得了83分,则两个同学做对的解答题共为______道.四、解答题(本题共8小题,共74分)20. 计算:(1)2√75+√12−3√27; (2)√18−4√12+√24÷√3.21. 解方程组:(1){x =2y,3x −5y =8.;(2){3x −2y =6,2x +3y =17.. 22. 在平面直角坐标系中,△ABC 的顶点坐标分别是A(−2,3),B(−3,−1),C(−6,5).(1)在图中作△A 1B 1C 1,使△A 1B 1C 1和△ABC 关于y 轴对称; (2)请直接写出A 1,B 1,C 1的坐标; (3)连接CA 1,BA 1,请求出△A 1BC 的面积.23. 为了庆祝伟大的中国共产党第二十次全国代表大会召开,某校开展了“爱祖国⋅跟党走”的知识答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A.80≤x <85,B.85≤x <90,C.90≤x <95,D.95≤x ≤100)下面给出了部分信息: 七年级10名学生的竞赛成绩是:90,81,90,86,99,95,96,100,89,84 八年级10名学生的竞赛成绩在C 组中的数据是:90,94,94 七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9191中位数90b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握的相关知识较好?请说明理由(写一条理由即可);(3)该校七年级有1200人,八年级有1600人参加了此次答题竞赛活动,估计参加竞赛活动成绩优秀(x≥90)的学生人数是多少?24.如图是一个滑梯示意图,若将滑梯BD水平放置,则刚好与DE一样长,已知滑梯的高度CE为3米,BC为1米.(1)求滑道BD的长度;(2)若把滑梯BD改成滑梯BF,使∠BFA=60°,则求出DF的长.(精确到0.1米,参考数据:√3≈1.732)25.若一个四位正整数m满足千位数字加百位数字的和等于10,十位数字减去个位数字的差等于1,且千位数字大于十位数字,则称数m为“国庆数”.如:m=6432,∵6+4=10,3−2=1,且6>3,∴6432是“国庆数”.(1)判断数3721和5534是否为“国庆数”,并说明理由;(2)已知一个四位正整数m是“国庆数”,且满足千位数字和百位数字组成的两位数的2倍与十位数字和个位数字组成的两位数的差除以10余1,求出满足条件的所有m的值.26.如图1所示,在平面直角坐标系中,点A(0,2),点B在x轴负半轴上,OB=2OA.(1)求直线AB的解析式;(2)点C(−√3,m)是第三象限内一点,△ABC的面积为6−√3,若点P是x轴上一动点,求|PA−PC|的最大值;(3)如图2,在第(2)问的条件下,过点C作直线CD//x轴,点Q为直线CD上一动点,是否存在以A,B,Q为顶点的三角形是以AB为腰的等腰三角形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.27.如图1,已知△ABC为等边三角形,点D和E分别是直线AB和AC边上的动点,连接CD和BE相交于点F.(1)如图1,点E为AC中点,点D为AB三等分点且BD<AD,若S△DBF=1,求S△ABC;(2)如图2,已知∠DFB=60°,点H为BC中点,连接DH交BE于点Q,连接CQ并延长交AD于点M,若DM=MQ,探究CH、CQ、CE之间的数量关系并说明理由;(3)如图3,已知BC=8√3,点E在AC上,点D在BA延长线上且CE=AD,连接ED并以ED为边向左侧作等边△DEH,点M为AC上一点且AC=4AM,当MH取最小值时请直接写出△DAE的面积.答案和解析1.【答案】C【解析】解:A,B,D选项中的汉字都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的汉字能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A.(−a)0=1,故此选项不合题意;B.(−a)0=1,故此选项不合题意;C.−a0=−1,故此选项不合题意;D.−a0=−1,故此选项符合题意.故选:D.直接利用零指数幂的性质分别分析得出答案.此题主要考查了零指数幂的性质,正确化简各数是解题关键.3.【答案】D【解析】解:∵点M的坐标为(2,−3),2>0,−3<0,∴点M在第四象限.故选:D.根据各象限内点的坐标的符号特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.【答案】B【解析】解:原式=√122=√6,∵4<6<9,∴2<√6<3,故选:B.根据二次根式的除法化简,估算无理数的大小即可得出答案.本题考查无理数的估算,二次根式的乘除法,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.5.【答案】C【解析】解:袋中球的总数为:4,标号小于4的数有3个,故取出的小球标号小于4的概率是34.故选:C.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn .6.【答案】B【解析】解:∵点A(2,2),将线段OA向左平移三个单位长度,∴线段OA扫过的面积为3×2=6,故选:B.根据平移的性质和平行四边形的面积公式即可得到结论.本题考查了坐标与图形变化−平移,熟练掌握平移的性质是解题的关键.7.【答案】C【解析】解:A.一次函数y=kx的k>0与一次函数y=x+k的k<0矛盾,错误;B.从图象知,一次函数y=kx的图象不经过原点,错误;C.一次函数y=kx的k>0与一次函数y=x+k的k>0一致,正确;D.从图象知,一次函数y=kx的图象不经过原点,错误.故选:C.根据一次函数的图象与系数的关系依次分析各项即可.本题主要考查一次函数的图象,掌握一次函数的图象是解决问题的关键.8.【答案】A【解析】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.左边大正方形的边长为(a+b),面积为(a+b)2,由边长为a的正方形,2个长为a宽为b 的长方形,边长为b的正方形组成,根据面积相等即可得出答案.本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式的几何背景的计算方法进行求解是解决本题的关键.9.【答案】A【解析】解:当3x+2=62,3x=60,x=20,当3x+2=20,3x=18,x=6,当3x+2=6,3x=4,(不符合题意,舍去),x=43∴输入的x的值可能是6或20,故选:A.根据题意可得3x+2=62,从而可得x=20,然后再根据3x+2=20,进行计算即可解答.本题考查了代数式求值,有理数的混合运算,准确熟练地进行计算是解题的关键.10.【答案】B【解析】解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;(m/min),故选项B 小明从体育场出发到文具店的平均速度为:1000÷(45−30)=2003符合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项C不合题意;小明从文具店回家的平均速度是1500÷(90−65)=60(m/min),故选项D不合题意.故选:B.因为小明从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离小明家的距离;根据“速度=路程÷时间”即可得出小明从体育场出发到文具店的平均速度;小明从体育场到文具店是减函数,此段函数图象最高点与最低点纵坐标的差为小明家到文具店的距离;先求出小明家离文具店的距离,再求出从文具店到家的时间,求出二者的比值即可.本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.11.【答案】8【解析】解:因为82=64所以√64=8.故答案为:8.直接根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,解题的关键是算术平方根必须是正数,注意平方根和算术平方根的区别.12.【答案】−5【解析】解:∵点A(x+2,1)与点B(3,1)关于y轴对称,∴x+2=−3,∴x=−5,故答案为:−5.根据关于y轴对称的点的横坐标与纵坐标互为相反数,构建方程求解.本题考查坐标与图形变化−对称,解题的关键是掌握轴对称的性质,属于中考常考题型.13.【答案】x=1【解析】解:由表格数据可知,直线l1:y=−3x+a和l2:y=x+b交于(1,2)点,∴方程−3x+a=x+b的解是x=1,故答案为:x=1.根据两个函数交点的横坐标就是一元一次方程的解可直接得到答案.本题主要考查了一次函数与一元一次方程的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点横坐标为两函数组成的方程的解.14.【答案】3【解析】解:连接AA′,过O点作OH⊥AA′于H点,如图2,∵OA=OA′,∠AOA′=120°,∴AH=A′H,∠OAA′=30°,在Rt△OAH中,∵OH=1 2OA=√32,∴AH=√3OH=√32×√3=32,∴AA′=2AH=3.故答案为:3.连接AA′,过O点作OH⊥AA′于H点,如图2,根据等腰三角形的性质得到AH=A′H,∠OAA′=30°,然后利用含30度角的直角三角形三边的关系计算出AH,从而得到AA′的长.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了最短路径问题.15.【答案】解:(1)2√75+√12−3√27=10√3+2√3−9√3=3√3;(2)√18−4√12+√24÷√3=3√2−2√2+2√2=3√2.【解析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先计算二次根式的除法,再算加减,即可解答.本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.16.【答案】解:(1){x =2y①3x −5y =8②, 将①代入②得:6y −5y =8,解得:y =8,将y =8代入①得:x =16,所以原方程组的解为:{x =16y =8; (2){3x −2y =6①2x +3y =17②, ①×2得6x −4y =12……③,②×3得6x +9y =51……④,④−③得:13y =39,解得:y =3,将y =3代入①得:x =4,所以原方程组的解为:{x =4y =3. 【解析】(1)用代入法将x =2y 代入第二个方程即可求出y 的值,再求出x 的值即可;(2)用加减法先消去x 求出y 的值,再求出x 的值即可.本题主要考查了二元一次方程组的解法,掌握代入消元法和加减消元法解二元一次方程组是解题的关键.17.【答案】解:(1)如图,△A 1B 1C 1即为所求;(2)A 1(2,3),B 1(3,−1),C 1(6,5);(3)△A1BC的面积=6×8−12×3×6−12×5×4−12×2×8=21.【解析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.本题考查作图−轴对称变换,三角形的面积等知识,解题的关键是周围轴对称变换的性质,学会用割补法求三角形面积.18.【答案】解:(1)八年级成绩在“C组”的有3人,占3÷10=30%,所以“D组”所占的百分比为1−10%−20%−30%=40%,因此a=40,八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是94,因此中位数是94,即b=94;七年级10名学生成绩出现次数最多的是90,因此众数是90,即c=90,所以a=40,b=94,c=90;(2)八年级的成绩较好,理由:八年级成绩的中位数、众数都比七年级的高,而方差比七年级的小,成绩比较稳定;(3)1200×610+1600×10×40%+310=1840(人),答:估计参加竞赛活动成绩优秀(x≥90)的学生人数有1840人.【解析】(1)根据扇形统计图可求出“D组”所占的百分比,即可求出a的值,根据中位数、众数的意义可求出b、c的值;(2)通过中位数、众数、方差进行分析得出答案;(3)分别求出七、八年级样本中的优秀率,进而根据七、八年级的优秀率求出七、八年级的优秀人数,再求出总体中的优秀人数.本题考查扇形统计图、中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数、方差的意义和计算方法是正确解答的前提.19.【答案】解:(1)设BD的长为x米,则DE=x米,AD=DE−AE=(x−1)米,由题意得:∠BAD=90°,AB=CE=3米,在Rt△ABD中,由勾股定理得:x2=32+(x−1)2,解得:x=5,答:滑道BD的长为5米;(2)∵∠BFA=60°,∴∠ABF=90°−∠BFA=30°,∴BF=2AF,设AF=a米,则BF=2a米,∴AB=√BF2−AF2=√(2a)2−a2=√3a(米),∴√3a=3,解得:a=√3,∴AF=√3米,由(1)可知,AD=4米,∴DF=AD−AF=4−√3≈2.3(米),答:DF的长约为2.3米.【解析】(1)设BD的长为x米,则DE=x米,AD=DE−AE=(x−1)米,在Rt△ABD 中,由勾股定理得出方程,解方程即可(2)设AF=a米,则BF=2a米,由勾股定理得AB=√3a(米),则√3a=3,解得a=√3,即可解决问题.本题考查了勾股定理的应用以及含30°角的直角三角形的性质等知识,熟练掌握勾股定理是解题的关键.20.【答案】A【解析】解:如图,BC为饮料罐的底面直径,D为底面圆心,A为上底面中心,作射线BA、射线DA,∴AD⊥BC,AD=4cm,BD=CD=3cm,∵∠ADB=90°,∴AB=√AD2+BD2=√42+32=5(cm),当吸管底端与点B重合时,则露在罐外部分a最短,此时a=10−5=5(cm);当吸管底端与点D重合时,则露在罐外部分a最长,此时a=10−4=6(cm),∴a的取值范围是5≤a≤6,故选:A.画出图形,使BC为饮料罐的底面直径,D为底面圆心,A为上底面中心,作射线BA、射线DA,则∠ADB=90°,先根据勾股定理求出吸管在罐内的最大长度AB的值,当吸管底端与点B重合时,则露在罐外部分最短;当吸管底端与点D重合时,则露在罐外部分最长,分别求出相应的a的值即可.此题重点考查勾股定理及其应用,正确地画出图形并且根据勾股定理求出吸管在罐内的最大长度是解题的关键.21.【答案】ABC【解析】解:A、代数式(a−b)+(c−d)−e进行一次“换位思考”,化简后只能得到1种结果是正确的,符合题意;B、代数式a−(b+c−d−e)进行一次“换位思考”,化简后可能得到5种结果是正确的,符合题意;C、代数式a+[b−(c−d−e)]进行一次“换位思考”,化简后可能得到7种结果是正确的,符合题意;D、代数式a−[b+c−(d−e)]进行一次“换位思考”,化简后可能得到7种结果,不符合题意.故选:ABC.根据括号外面是“+”,去括号不改变括号里面式子的符号;括号外面是“−”,去括号改变括号里面式子的符号;依此即可求解.本题考查了整式的加减,属于新定义题型,关键是熟练掌握新定义的运算法则.22.【答案】(0,81)【解析】解:∵∠OA1A2=60°,OA1=1,∴OA2=√3∴点A2的坐标为(√3,0),同理,A3(0,−3,),A4(−3√3,0),A5(0,9),A6(9√3,0),A7(0,−27),…,∴点A4n+1的坐标为(0,32n)(n为正整数).∵9=2×4+1,∴点A9的坐标为(0,34)即(0,81).故答案为:(0,81).通过解直角三角形可得出点A2的坐标,同理可得出点A3,A4,A5,A6,A7,…的坐标,根据坐标的变化可得出变化规律“点A4n+1的坐标为(0,32n)(n为正整数)”,再结合9= 4×2+1即可得出点A9的坐标,此题得解.本题考查了特殊角的三角形函数值以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A4n+1的坐标为(0,32n)(n为正整数)”是解题的关键.23.【答案】7526【解析】解:∵四边形ABCD是矩形,∴AB=CD=6,∠B=∠C=∠BAD=∠ADC=90°,AD//BC,∵将该纸片沿着EF翻折,顶点B与顶点D重合,∴A′D=AB=6,∠A′DF=∠B=90°,∠DA′E=∠BAD=90°,∴∠A′DE=∠CDF,A′D=CD,∠DA′E=∠C,∴△A′DE≌△CDF(ASA),∴DE=DF,A′E=CF,∵CD2+CF2=DF2,∴62+(9−DF)2=DF2,解得DF=132,∴DE=DF=132,∴AE=A′E=9−132=52,过A′作A′H⊥AD于H,∴A′H=A′E⋅A′DDE =3013,∴△AA′E的面积为12AE⋅A′E=12×52×3013=7526.故答案为:7526.根据矩形到现在得到AB=CD=6,∠B=∠C=∠BAD=∠ADC=90°,AD//BC,根据折叠的性质得到A′D=AB=6,∠A′DF=∠B=90°,∠DA′E=∠BAD=90°,根据全等三角形的性质得到DE=DF,A′E=CF,由勾股定理得到DF=132,根据三角形的面积公式即可得到结论.本题考查了翻折变换(折叠问题),矩形的性质,三角形面积的计算,熟练掌握折叠的性质是解题的关键.24.【答案】10【解析】解:设甲做对的选择题、解答题分别a道,b道,乙做对的选择题、解答题分别a道,c道,由题意得:2≤83−3a−8c5−70−3a−8b5≤10,化简得:2≤13+8(b−c)5≤10,∵a,b,c都为整数,13+8(b−c)5为整数,∴当b−c=4时,他们做对的填空题的差是9,此时,甲做对填空题1道,乙做对的填空题为10道,∴b=65−3a8,c=33−3a8,∴只有当x=3时,b=7,c=3,∴c+b=10,故答案为:10.设甲做对的选择题、解答题分别a道,b道,乙做对的选择题、解答题分别a道,c道,先根据题意列不等式组,再由a,b,c为整数,求出做对填空题的数目,最后求出a,b,c 的整数解.本题考查了三元一次方程组的应用,验证整数解是解题的关键.25.【答案】解:(1)数m=3721,∵3+7=10,2−1=1,且3>2,∴3721是“国庆数”;m=5534,∵5+5=10,3−4=−1,∴5534不是“国庆数”;(2)设m的千位数字是a,则百位数字是10−a,十位数字是b,则个位数字是b−1,∴2(10a+10−a)−(10b+b−1)=18a−11b+21=10(a−b+2)+8a−b+1,∵千位数字和百位数字组成的两位数的2倍与十位数字和个位数字组成的两位数的差除以10余1,∴8a−b能被10整除,∵a>b,∴当a=9时b=2,此时m=9121;当a=8时b=4,此时m=8243;当a=7时b=6,此时m=7365;当a=4时b=2,此时m=4621;综上所述:m的值为9121,8243,4621,7365.【解析】(1)认真读懂题意,利用新定义判断即可;(2)设m的千位数字是a,则百位数字是10−a,十位数字是b,则个位数字是b−1,由题意可得8a−b能被10整除,再由a>b,分类讨论确定a、b的值,进而求出m的值.本题考查因式分解的应用,弄清题意,根据所给的定义将所求问题转化为整式的加减运算,再根据数的特点分类讨论是解题的关键.26.【答案】解:(1)∵OB=2OA,点A(0,2),∴OB=4,∵点B在x轴负半轴上,∴B的坐标为(−4,0),设直线AB解析式为y=kx+b,把A、B两点代入得,{−4k+b=0b=2,解得{k=12b=2,∴直线AB的解析式为:y=12x+2;(2)∵点C(−√3,m)是第三象限内一点,△ABC的面积为6−√3,∴S△ABC=S△AOB+S△BOC−S△AOC=12×4×2+12×4×|m|−12×2×√3=6−√3,解得:m=−1或m=1(不符合题意,舍去),∴点C的坐标为(−√3,−1),如图,作点C关于x轴的对称点C′,连接AC′并延长,交x轴于点P,连接PC,则此时|PA−PC|的值最大,∵A(0,2),C(−√3,−1),点C关于x轴的对称点为点C′,∴C′(−√3,1),∴|PA−PC|=|PA−PC′|=|AC′|=√(√3)2+(2−1)2=2,∴|PA−PC|的最大值为2;(3)∵C(−√3,−1),CD//x轴,∴直线CD的解析式为y=−1,设点Q的坐标为(n,−1),∵OA=2,OB=4,∴AB=√22+42=2√5,若AQ=AB=2√5,则△ABQ是以AB为腰的等腰三角形,∴(n−0)2+(−1−2)2=(2√5)2,解得:n=√11或n=−√11,∴点Q的坐标为(−√11,−1)或(√11,−1);若BQ=AB=2√5,则△ABQ是以AB为腰的等腰三角形,∴(−4−n)2+(0+1)2=(2√5)2,解得:n=−4−√19或n=−4+√19,∴点Q的坐标为(−4−√19,−1)或(−4+√19,−1);综上所述,点Q的坐标为(−√11,−1)或(√11,−1)或(−4−√19,−1)或(−4+√19,−1).【解析】(1)先求出点B的坐标,然后设出直线的解析式,代入已知点,即可求出直线的解析式;(2)根据△ABC的面积,即可求出点C的坐标,然后找点C的对称点C′,利用对称的性质,即可求出答案;(3)根据点C的坐标,即可得出直线CD的解析式,设出点Q的坐标,根据△ABQ是以AB为腰的等腰三角形,即可建立方程,解方程,即可求出答案.本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积,等腰三角形的性质等知识,利用分类讨论思想解决问题是解题的关键.27.【答案】解:(1)取AD的中点K,连接EK,FK,DE.∵AE=EC,AK=KD,∴EK//CD,∵D为AB三等分点且BD<AD,∴AD=2BD,∴AK=DK=BD,∴S△DKF=S△BDF=1,∵DF//EK,∴S△DFE=S△DFE=S△BDF=1,∴S△AEK=S△DKE=S△BDE=2,∴S△ABE=6,∵AE=EC,∴S△ABC=12;(2)结论:CQ+CF=2CH.理由:延长QH到T,使得QH=HT,连接BT,CT.∵BH=CH,QH=HT,∴四边形BQCT是平行四边形,∴BT=CQ,BT//QC,∴∠DQM=∠DTB,∵MD=MQ,∴∠MDQ=∠MQD=∠BTD,∴BT=BD=CQ,∵∠DFB=∠FBC+∠FCB=60°,∠FCB+∠ACD=60°,∴∠CBE=∠ACD,∵∠A=∠BCE=60°,CA=CB,∴△ACD≌△BCE(ASA),∴AD=CE,∴CQ+CE=BD+aAD=AB,∵AB=BC,BH=CH,∴AB=2CH,∴CQ+CF=2CH;(3)连接BH,过点E作ER//CB交AB于点R,交BH于点J,设MH交AB于点O.∵△ABC是等边三角形,∴∠∠BAC=ABC=∠C=60°,∵ER//BC,∴∠ARE=∠ABC=60°,∠AER=∠C=60°,∴△ARE是等边三角形,∵△DEH是等边三角形,∴∠AER=∠DEH=60°,∴∠AED=∠REH,∵ED=EH,EA=ER,∴△AED≌△REH(SAS),∴HR=AD,∵AB=AC,AR=AE,∴EC=BR,∵AD=EC=BR,∵∠DAE=∠BRE=120°,AD=RB,RE=AE,∴△AED≌△REB(SAS),∴EB=ED=EH,∵RB=RH,∴EJ⊥BH,JH=JB,∵EJ//CB,∴HB⊥BC,∴当MH⊥BH时,MH的值最小,AC=2√3,此时△AOM是等边三角形,AO=AM=OM=14∵AB=BC=AC=8√3,∴OB=AB−AO=6√3,∵BR=RH,∴∠RBH=∠RHB=30°,∴∠BOH=∠ROH=60°,∴△ORH是等边三角形,∴RH−OR=OB=3√3,∴AR=ER=5√3,∵OH=OR=3√3,∠OHB=90°,∴BH=√OB2−OH2=√(6√3)2−(3√3)2=9,∴JH=BJ=92,∴S△DAE=S△REH=12×ER×HJ=12×5√3×92=45√34.【解析】(1)取AD的中点K,连接EK,FK,DE.利用三角形中位线定理解决问题;(2)结论:CQ+CF=2CH.延长QH到T,使得QH=HT,连接BT,CT.证明四边形BQCT 是平行四边形,再证明BD=BT,AD=EC,可得结论;(3)连接BH,过点E作ER//CB交AB于点R,交BH于点J,设MH交AB于点O.证明△ARE是等边三角形,△AED≌△REH(SAS),推出HR=AD,证明△AED≌△REB(SAS),推出EB=ED=EH,可得HB⊥BC,推出当MH⊥BH时,MH的值最小,求出ER,HJ可得结论.本题属于三角形综合题,考查了等边三角形的性质和判定,全等三角形的判定和性质,勾股定理,三角形中位线定理,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形,全等三角形解决问题.。

2019-2020学年重庆八中八年级(上)期中数学试卷

2019-2020学年重庆八中八年级(上)期中数学试卷

2019-2020学年重庆八中八年级(上)期中数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)下列算式中,正确的是( ) A .3333-=B .5813+=C .2(32)526-=-D .933÷=2.(4分)下列条件中,不能判断ABC ∆为直角三角形的是( ) A .23a =,24b =,25c = B .::3:4:5a b c = C .A B C ∠+∠=∠D .::1:2:3A B C ∠∠∠=3.(4分)下列方程中是二元一次方程的有( ) ①512m n-=; ②31126y z =+; ③21a n=+; ④7mn =; ⑤6x y z += A .1个B .2个C .3个D .4个4.(4分)如图,直线12y kx =+与2y x b =+交于点P ,点P 的横坐标是1,则关于x 的不等式2kx x b +>+的解集是( )A .0x <B .1x <C .01x <<D .1x >5.(4分)若(2,2)A m n m n +-关于x 轴对称点是1(5,5)A ,则(,)P m n 的坐标是( ) A .(1,3)-- B .(1,3)-C .(1,3)-D .(1,3)6.(4分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.37cm B.13cm C.14cm D.15cm7.(4分)若方程组323(1)6x ym x y+=⎧⎨+-=⎩的解中x与y互为相反数,则m的值为()A.2-B.1-C.0D.18.(4分)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27157)-厘米,则底面半径为()厘米.A.6B.3C.2D.129.(4分)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A85cm B89cm C97cm D28110.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于D .已知15AB =,Rt ABC ∆的周长为1595+,则CD 的长为( )A .5B .13C .95D .6二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)直角三角形的两条直角边长分别是3cm 、4cm ,则斜边长是 cm . 12.(4分)函数||1(2)5m y m x -=-+是y 关于x 的一次函数,则m = . 13.(4分)已知实数x ,y 满足332y x x =-+-+,则2011()y x -的值为 . 三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分) 14.(8分)(1)127(3)(231)(231)3⨯++-+ (2)3()2565163y x y x y y --=⎧⎪+⎨-=⎪⎩15.(10分)数学课上,静静将一副三角板如图摆放,点A ,B ,C 三点共线,其中90FAB ECD ∠=∠=︒,45D ∠=︒,30F ∠=︒,且//DE AC .(1)若2AB =,4BF =.求AF 的长. (2)若4ED =,求BC 的长.16.(10分)探究函数1|1|22y x =--的图象和性质.静静根据学习函数的经验,对函数1|1|22y x =--的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当1x <时,y = ,当1x 时,y = . (2)根据(1)的结果,完成下表,并补全函数1|1|2y x =--图象; x⋯ ⋯ y⋯⋯(3)观察函数图象,请写出该函数的一条性质: .17.(10分)已知函数(0)y kx b k =+≠图象经过点(2,1)A -,点5(1,)2B .(1)求直线AB 的解析式;(2)若在直线AB 上存在点C ,使12ACO ABO S S ∆∆=,求出点C 坐标.18.(10分)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10 25 600 1530750。

2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(重庆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八上第11~13章(三角形、全等三角形、轴对称)含七年级部分内容。

5.难度系数:0.69。

第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.学校为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是()A.B.C.D.【答案】C【解析】A、“爱”不是轴对称图形,故该选项不符合题意;B、“我”不是轴对称图形,故该选项不符合题意;C、“中”是轴对称图形,故该选项符合题意;D、“华”不是轴对称图形,故该选项不符合题意.故选C.V的高的图形是()2.下面四个图形中,线段BD是ABCA.B.C.D.【答案】D【解析】A.线段BD是BDA△的高,选项不符合题意;B.线段BD是BDA△的高,选项不符合题意;C.线段BD是BDA△的高,选项不符合题意;V的高,选项符合题意.D.线段BD是ABC故选D.3.下列长度的各组线段可以组成三角形的是()A.2,3,5B.5,7,4C.4,4,8D.2,4,64.已知多边形的内角和是1080°,则这个多边形是几边形?()A.六边形B.七边形C.八边形D.十边形【答案】C【解析】设这个多边形是n边形,则(n-2)•180°=1080°,解得:n=8,即这个多边形为八边形.故选C.5.下列说法,正确的是()A.等腰三角形的高、中线、角平分线互相重合B.到三角形二个顶点距离相等的点是三边垂直平分线的交点C.三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等【答案】B【解析】A 、等腰三角形底边上的高、中线、顶角的角平分线互相重合,错误;B 、到三角形二个顶点距离相等的点是三边垂直平分线的交点,正确;C 、三角形一边上的中线将三角形分成面积相等的两个三角形,错误;D 、若一个直角三角形的斜边和直角边与另一个直角三角形的两个直角边相等则这两个直角三角形不全等,错误;故选B .6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .547.如图,若31A Ð=°,那么A B C D E Ð+Ð+Ð+Ð+Ð=( )A .90°B .180°C .211°D .242°【答案】D【解析】根据题意,180AFG AGF A Ð+Ð=°-ÐQ ,180CFG AFG Ð+Ð=°,180EGF AGF Ð+Ð=°()()360360180180CFG EGF AFG AGF A A\Ð+Ð=°-Ð+Ð=°-°-Ð=°+Ð又CFG B C Ð=Ð+ÐQ ,EGF D E Ð=Ð+Ð,A B C D E\Ð+Ð+Ð+Ð+ÐA CFG EGF=Ð+Ð+Ð1802A =°+Ð180231=°+´°=242°故选D .8.如图,在ΔABC 中,AB AC =,6BC =,且ΔABC 面积是24,AC 的垂直平分线EF 分别交,AC AB 边于点,E F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM D 周长的最小值为( )A .9B .10C .11D .12BC 边的中点,9.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,在等腰直角ACB △中,90ACB Ð=°,点D 是ACB △内部一点,连接DC 并延长至点E ,连接AE 、,BE AD BE ^,垂足为点,G AG 交BC 于点Q ,延长AC 交BE 于点F ,连接DF ,EAC DAC Ð=Ð.给出以下结论:①CF CQ =;②DE 平分AEB Ð;③若点G 为BF 的中点,连接GC 并延长交AE 于点H ,则AH CH DG =+:④2ACE ADFE S S =四边形△.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【解析】∵90ACB Ð=°,AD BE ^,∴90FCB ACB AGB Ð=°=Ð=Ð,∵AQB ACQ CAQ AGB CBF Ð=Ð+Ð=Ð+Ð,∴CAQ CBF Ð=Ð,∵AC BC =,∴ACQ BCF V V ≌,∴CF CQ =,故①正确;∵CAQ CBF Ð=Ð,EAC DAC Ð=Ð,∴EAC EBC Ð=Ð,∵AC BC =,90ACB Ð=°,∴45CAB CBA Ð=Ð=°,∴EAC CAB EBC CBA Ð+а=Ð+Ð,∴EAB EBA Ð=Ð,∴AE EB =,又∵AC BC =,EC EC =,∴EAC EBC V V ≌,∴AEC BEC Ð=Ð,∴DE 平分AEB Ð;故②正确;∵点G 为BF 的中点,AG BF ⊥,∵AE BE =,EN 平分Ð∴EN AB ^,∵AC BC =,CN AB ^∴CN 平分ACB Ð,∴45ACN BCN Ð=Ð=°∵90,FCQ CF CQ Ð=°=,∴45FQC DCQ Ð=°=Ð,∴FQ ED ∥,∴CDF CDQ S S =V V ,∵CFM CDF CDM S S S =-V V V ,DMQ CDQ CDM S S S =-V V V ,∴CFM DMQ S S =V V ,∵ACQ BCF V V ≌,∴ACQ BCF S S =V V ,∵ACQ CMF DMQ ADF S S S S +-=V V V V ,∴ADF ACQ BCF S S S ==V V V ,∴ADF ECF BCF ECF BCE S S S S S +=+=V V V V V ,∵EAC EBC V V ≌,∴EAC EBC S S =V V ,∴2ACE ADF CEF ACE CEB ACE ADFE S S S S S S S =++=+=四边形△△△△△△;故④正确;综上:正确的有4个;故选D .第二部分(非选择题 共110分)二、填空题:本题共8小题,每小题4分,共32分。

重庆市2020版八年级上学期期中数学试题A卷

重庆市2020版八年级上学期期中数学试题A卷

重庆市2020版八年级上学期期中数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 当取最小值时,的值为()A.0B.- 1C.0或1D.以上都不对2 . 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形3 . 下面结论中,一定成立的是()A.(a+b)2=a2+b2B.(﹣2a)2•(﹣a2)=a4C.(a﹣b)0=1D.(a+2)(a﹣3)=a2﹣a﹣64 . 如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2 B.3cm2 C.4cm2 D.5cm25 . 正六边形的外接圆半径为,则它的内切圆半径为()C.2D.1A.B.6 . 下列各组线段能组成一个三角形的是()A.,,B.,,C.,,D.,,7 . 如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=().A.60°B.45°C.30°D.15°8 . 如图,从边长为的大正方形纸片中剪去一个边长为的小正方形,剩余部分沿虚线剪开,拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.B.C.D.9 . (2018•石狮市模拟)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.610 . 下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a411 . 如图,已知:在▱ABCD中,E、F分别是AD、BC边的中点,G、H是对角线BD上的两点,且BG=DH,则下列结论中不正确的是()A .GF⊥FHB .GF =EHC .EF 与AC 互相平分D .EG =FH 12 . 下列说法中,错误的是( )A .全等三角形对应角相等B .全等三角形对应边相等C .全等三角形的面积相等D .面积相等的两个三角形一定全等二、填空题13 . 如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,则△ABC 的面积为__.14 . 观察下列等式:……,则____________. 15 . 在中,°,,,某线段,,两点分别在和的垂线上移动,则当__________.时,才能使和全等.16 . 在数学活动课上,老师说有人根据如下的证明过程,得到“1=2”的结论.设a 、b 为正数,且a =b .∵a=b,∴ab=b2.①∴ab﹣a2=b2﹣a2.②∴a(b﹣a)=(b+a)(b﹣a).③∴a=b+a.④∴a=2a.⑤∴1=2.⑥大家经过认真讨论,发现上述证明过程中从某一步开始出现错误,这一步是_____(填入编号),造成错误的原因是_____.17 . 当k=_____时,100x2﹣kxy+49y2是一个完全平方式.18 . (-3×103)×(2×102)=________.三、解答题19 . 试确定p,q的值,使(x2+px+8)(x2-3x+q)的积中不含x2和x3项.20 . 如图所示,BD、CE分别是△ABC的外角平分线,过点A作,垂足分别为点D、点E,连接DA.求证:.21 . 将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).22 . 利用因式分解计算(1)22019﹣(﹣2)2020.(2)(16)2﹣(13)2.23 . 作图题:已知∠AOB和∠AOB内两点M、N,画一点P使它到∠AOB的两边距离相等,且到点M和N的距离相等。

重庆市2020年八年级上学期期中数学试卷(I)卷

重庆市2020年八年级上学期期中数学试卷(I)卷

重庆市2020年八年级上学期期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·蔡甸月考) 下列图形中,即是中心对称图形,又是轴对称图形的是()A .B .C .D .2. (2分) (2019七下·长安期末) 下列命题:①对顶角相等;②内错角相等;③两条平行线之间的距离处处相等;④有且只有一条直线垂直于已知直线.其中是假命题的有()A . ①②B . ②④C . ②③D . ③④3. (2分) (2020七下·常熟期中) 若三角形的两条边的长度是4cm和7cm,则第三条边的长度可能是()A . 2cmB . 3cmC . 8cmD . 12cm4. (2分)下列说法中,正确的是()A . 直角三角形中,已知两边长为3和4,则第三边长为5B . 三角形是直角三角形,三角形的三边为a,b,c则满足C . 以三个连续自然数为三边长不可能构成直角三角形D . △ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形5. (2分)已知a<b,下列不等式中,变形正确的是()A . a﹣3>b﹣3B . >C . ﹣3a>﹣3bD . 3a﹣1>3b﹣16. (2分)“a<b”的反面应是()A . a≠bB . a>bC . a=bD . a=b或a>b7. (2分) (2018八上·柳州期中) 如图,∠1=∠2,PD⊥OA,PE⊥O B,垂足分别为D,E,下列结论错误的是()A . PD = PEB . OD = OEC . ∠DPO = ∠EPOD . PD = OD8. (2分)在▱ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A . 10B . 16C . 6D . 139. (2分)已知等腰三角形的周长为24,其中两边之差为6,则这个等腰三角形的腰长为()A . 10B . 6C . 4或6D . 6或1010. (2分)一个直角三角形的两边长是6和8,那么第三边的长是()A . 10B . 2C . 10或 2D . 50或28二、填空题 (共6题;共6分)11. (1分) (2018八上·浦江期中) 已知等腰三角形的一个外角为108°,则其底角的度数为________12. (1分) (2019七下·蔡甸期中) 命题“垂直于同一条直线的两直线平行”写成“如果……那么……”的形式为________.13. (1分)如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=________.14. (1分)不等式组的所有整数解是________15. (1分)等腰△ABC的底和腰的长恰好是方程x2﹣4x+3=0的两个根,则等腰△ABC的周长为________.16. (1分)如图,四边形ABCD中,AB=BC=3,∠A=∠C=90°,∠ABC=120°,点E是对角线BD上的一个动点,过点E分别作AB,BC,CD,AD的垂线,垂足分别为点F,H,I,G,连结FG和HI,则FG+HI的最小值为________.三、解答题 (共7题;共57分)17. (5分) (2020·苏州模拟) 解不等式,并把它的解集在数轴上表示出来.18. (10分)如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面3个结论:①射线BD是∠ABC的角平分线;②△BCD是等腰三角形;③△AMD≌△BCD.(1)判断其中正确的结论是哪几个?(2)从你认为是正确的结论中选一个加以证明.19. (5分)(2016·凉山) 如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.20. (10分) (2019九下·未央月考) 某学校计划购进A.B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵.B种树木5棵,共需600元;购买A种树木3棵.B种树木1棵.共需380元。

重庆市2020年八年级上学期数学期中考试试卷C卷

重庆市2020年八年级上学期数学期中考试试卷C卷

重庆市2020年八年级上学期数学期中考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2020·浙江模拟) 在RtΔABC中,∠C=90°,如果sinA= ,那么sinB的值是()A .B .C .D . 32. (1分)(2017·龙岗模拟) 如图,已知正方形ABCD的边长为4,点E、F分别在边AB、ABC上,且AE=BF=1,CE、DF相交于点O,下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④△COD的面积等于四边形BEOF的面积中,正确的有()A . 1个B . 2个C . 3个D . 4个3. (1分)(2017·绥化) 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:① = ;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A . ①②③④B . ①④C . ②③④D . ①②③4. (1分)(2017·许昌模拟) 如图,在▱ABCD中,E为AD的三等分点,AE= AD,连接BE交AC于点F,AC=12,则AF为()A . 4B . 4.8C . 5.2D . 65. (1分)(2018·枣庄) 如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A .B .C .D .6. (1分) (2019九下·锡山月考) 如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A . =B . =C . =D . =7. (1分)如图,在直角△BAD中,延长斜边BD到点C,使DC= BD,连结AC,若tanB=,则tan∠CAD 的值为()A .B .C .D .8. (1分) (2017九上·鞍山期末) 如图,已知等边的边长为2,是它的中位线.给出3个结论:⑴ ;⑵ ;⑶ 的面积与的面积之比为1∶4.其中正确的有()A . 0个B . 1个C . 2个D . 3个9. (1分)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是A . b2=acB . b2=ceC . be=acD . bd=ae10. (1分) (2018八上·天台期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC 交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90+ ∠A;③点G到△ABC 各边的距离相等;④设GD=m,AE+AF=n,则 =mn.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2018·宁波) 如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为________米(结果保留根号).12. (1分)(2017·青山模拟) 如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,则S△BCF=________.13. (1分)(2019·盘锦) 如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF=________.14. (1分)如图,在直角梯形ABCD中,AB//CD,∠ABC=90o , AD=8。

重庆市2020版八年级上学期数学期中考试试卷D卷

重庆市2020版八年级上学期数学期中考试试卷D卷

重庆市2020版八年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题:(共15小题,每小题2分,满分30分) (共15题;共30分)1. (2分) (2019九上·五常月考) 下列图案中,是轴对称图形而不是中心对称图形的是()A .B .C .D .2. (2分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A . 两点之间线段最短B . 长方形的对称性C . 长方形的四个角都是直角D . 三角形的稳定性3. (2分) (2017八上·无锡期末) 下面图案中是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)如图,在平面直角坐标系中,点A(m,2)在第一象限.若点A关于y轴的对称点B在反比例函数y=- 的图象上,则m的值为()A . -3B . 3C . 6D . -65. (2分)已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A . 13B . 11C . 11或13D . 12或156. (2分)(2020·哈尔滨模拟) 如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为()A . 1B . 2C . 4D . 无法确定7. (2分) (2020·温州模拟) 如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A . ∠ABC=∠DCBB . ∠ABD=∠DCAC . AC=DBD . AB=DC8. (2分)(2018·平南模拟) 若一个等腰三角形的两边长分别为和,则这个等腰三角形的周长是为().A .B .C . 或D . 或9. (2分) (2016八上·蕲春期中) 如图△ABC≌△AEF,点F在BC上,下列结论:①AC=AF②∠FAB=∠EAB③∠FAC=∠BAE④若∠C=50°,则∠BFE=80°其中错误结论有()A . 1个B . 2个C . 3个D . 4个10. (2分)如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是()A . 线段CD的中点B . CD与∠AOB的平分线的交点C . CD与过点O作的CD的垂线的交点D . 以上均不对11. (2分)(2019·张家港模拟) 如图,平行四边形ABCD绕点D逆时针旋转40°,得到平行四边形A'B'C'D(点A'是A点的对应点,点B’是B点的对应点,点C'是C点的对应点),并且A'点恰好落在AB边上,则∠B的度数为()A . 100°B . 105°C . 110°D . 115°12. (2分)(2019·吉林模拟) 如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A . 100°B . 160°C . 80°D . 20°13. (2分) (2018八上·翁牛特旗期末) 一个多边形内角和是1080°,则这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形14. (2分) (2019·岳阳模拟) 下列命题中的真命题是()A . 两边和一角分别相等的两个三角形全等B . 正方形不是中心对称图形C . 圆内接四边形的对角互补D . 相似三角形的面积比等于相似比15. (2分) (2017八上·潮阳月考) 如图,在△ABC中,AB=10,AC=8,则BC边上的中线AD的取值范围是()A . 2<AD<18B . 3<AD<6C . 4<AD<12D . 1<AD<9二、填空题:(本大题共10小题,每小题3分,满分30分) (共10题;共30分)16. (3分)等腰三角形ABC中,∠A=40°,则∠B=________17. (3分) (2016八上·重庆期中) 已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则ab 的值为________.18. (3分)工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学知识是________.19. (3分) (2018八上·句容月考) 如图所示,已知△ABC≌△DFE,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=________°,∠F=________°,DE=________,BE=________.20. (3分) (2016七上·乐昌期中) 若|a﹣1|+(b+2)2=0,则a+b=________.21. (3分)一般地,从n边形的一个顶点出发,可以作(n-3)条对角线,它们将n边形分为________个三角形,因此n边形的内角和是________个三角形的内角的和,即n边形的内角和等于________.22. (3分)一个凸多边形的内角中,最多有________个锐角.23. (3分) (2019八下·大埔期末) 如图,,,,若,则的长为________.24. (3分)如图,在平面直角坐标系中,点A(, 0),点B(0,1),作第一个正方形OA1C1B1且点A1在OA上,点B1在OB上,点C1在AB上;作第二个正方形A1A2C2B2且点A2在A1A上,点B2在A1C2上,点C2在AB上…,如此下去,则点Cn的纵坐标为________ .25. (3分) (2016八上·铜山期中) 一辆气车车牌在水中的倒影为,该车牌的牌照号码是________.三、解答题(一):(本大题共3小题,每小题6分,满分18分) (共3题;共18分)26. (6分) (2019八上·盐津月考) 如图:在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度数.27. (6分) (2020七下·哈尔滨月考) 如图,B处在A处南偏西39°方向,C处在A处南偏东20°方向,C 处在B处的北偏东78°方向,求的度数.28. (6分) (2019七上·萧山月考) 如图,已知点A,B,C,D.请用直尺和圆规作图(保留作图痕迹):①画出直线AB,射线AD,及线段BD;②在射线AD上画出点E,使得AE=AB+BD;③在线段BD上取点M,使MA+MC的值最小.四、解答题(二):(本大题共3小题,每小题6分,满分18分) (共3题;共14分)29. (6分) (2016八上·重庆期中) 如图,已知AB=CD,AD=CB,求证:△ABD≌△CDB.30. (6分)已知M是含字母x的单项式,要使多项式4x2+M+1是某一个多项式的平方,求M的表达式.31. (2分)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,求证:△BDE≌△CDF.五、解答题(三):(本大题共3小题,每小题8分,满分24分) (共3题;共24分)32. (8.0分) (2019九上·洮北月考) 如图,已知点A , B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF ,画出△EOF;(3)点D的坐标是________,点F的坐标是________,此图中线段BF和DF的关系是________.33. (8分) (2019七上·确山期中) 如图,将连续的奇数1,3,5,7……排成如下的数表,用十字形框框出5个数.(1)探究规律一:设十字框中间的奇数为x ,则框中五个奇数的和用含x的整式表示为________,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是________;(2)探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为________;(用含m的式子表示)(3)运用规律一:已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是________,这个奇数落在从左往右第________列;(4)运用规律二:被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:;若不能,请说明理由.34. (8分) (2019八下·邛崃期中) 问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC= AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE= AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为________.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论________.(4)拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.参考答案一、选择题:(共15小题,每小题2分,满分30分) (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题:(本大题共10小题,每小题3分,满分30分) (共10题;共30分) 16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、三、解答题(一):(本大题共3小题,每小题6分,满分18分) (共3题;共18分) 26-1、27-1、28-1、四、解答题(二):(本大题共3小题,每小题6分,满分18分) (共3题;共14分) 29-1、30-1、31-1、五、解答题(三):(本大题共3小题,每小题8分,满分24分) (共3题;共24分)32-1、32-2、32-3、33-1、33-2、33-3、33-4、34-1、34-2、34-3、34-4、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.下列算式中,正确的是()A. 3=3B.C. D. =32.下列条件中,不能判断△ABC为直角三角形的是()A. a2=3,b2=4,c2=5B. a:b:c=3:4:5C. ∠A+∠B=∠CD. ∠A:∠B:∠C=1:2:33.下列方程中是二元一次方程的有()①-m=12;②z+1;③=1;④mn=7;⑤x+y=6zA. 1个B. 2个C. 3个D. 4个4.如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A. x<0B. x<1C. 0<x<1D. x>15.若A(m+2n,2m-n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A. (-1,-3)B. (1,-3)C. (-1,3)D. (1,3)6.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A. 3cmB. 13cmC. 14cmD. 15cm7.若方程组的解中x与y互为相反数,则m的值为()A. -2B. -1C. 0D. 18.如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27-)厘米,则底面半径为()厘米.A. 6B. 3C. 2D. 129.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A. cmB. cmC. cmD. cm10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A. 5B.C. 9D. 611.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P第17次运动到点()A. (17,1)B. (17,0)C. (17,-1)D. (18,0)12.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,拆痕为EF,则重叠部分△DEF的面积是()cm2.A. 15B. 12C. 7.5D. 6二、填空题(本大题共8小题,共44.0分)13.直角三角形的两条直角边长分别是3cm、4cm,则斜边长是______cm.14.函数y=(m-2)x|m|-1+5是y关于x的一次函数,则m=______.15.已知实数x,y满足y=+2,则(y-x)2011的值为______.16.数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠FAB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.17.探究函数y=|x-1|-2的图象和性质.静静根据学习函数的经验,对函数y=|x-1|-2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=______,当x≥1时,y=______.(2)根据(1)的结果,完成下表,并补全函数y=|x-1|-2图象;x…______ ______ …y…______ ______ …()观察函数图象,请写出该函数的一条性质:______.18.半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔______支.19.如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=______.20.A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地______米.三、解答题(本大题共6小题,共58.0分)21.(1)(2)22.已知函数y=kx+b(k≠0)图象经过点A(-2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.23.小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?24.材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A (-2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(-1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.如图,直线L1:y=-x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.答案和解析1.【答案】C【解析】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3-2+2=5-2,所以C选项正确;D、原式==,所以D选项错误.故选:C.根据二次根式的加减法对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.【答案】A【解析】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、32+42=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.【答案】A【解析】解:①-m=12,不是整式方程,不符合题意;②y=z+1,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;⑤x+y=6z,是三元一次方程,不符合题意,故选:A.利用二元一次方程的定义判断即可.此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.4.【答案】B【解析】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.观察函数图象得到当x<1时,函数y1=kx+2的图象都在y2=x+b的图象上方,所以不等式kx+2>x+b的解集为x<1;本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.【答案】C【解析】解:∵A(m+2n,2m-n)关于x轴对称点是A1(5,5),∴m+2n=5,2m-n=-5,解得m=-1,n=3,∴P(m,n)的坐标是(-1,3).故选:C.关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.【答案】D【解析】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC=9cm,AB=CD=12cm.∴AE2=81,CD2=144.∴AB2=63.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=81+144=225,∴BE=15.故选:D.根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB=∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.7.【答案】C【解析】解:根据题意得:,解得:,代入得:3(m+1)+3=6,解得:m=0,故选:C.根据x与y互为相反数,得到x=-y,代入方程组第一个方程求出y的值,进而求出x的值,确定出m的值即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.【答案】B【解析】解:27-(27-)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,=6(厘米),6÷2=3(厘米).故底面半径为3厘米.故选:B.首先得出杯子内筷子的长度,再根据勾股定理求得圆柱形水杯的直径,即可求出底面半径.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长度是解决问题的关键.9.【答案】A【解析】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.根据勾股定理即可得到结论.此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.10.【答案】D【解析】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405-225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.由已知条件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面积即可得出答案.本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键.11.【答案】A【解析】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1)”,根据该规律即可得出结论.本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.12.【答案】C【解析】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:∠A′=∠C=90°,A′D=DC=3,A′E=AE,设AE=A′E=x,则DE=9-x,在Rt△A′ED中,根据勾股定理,得(9-x)2=x2+32,解得x=4,∴DE=9-x=5,∴S△DEF=DE•CD=×5×3=7.5(cm2).故选:C.根据翻折变换可得AE=A′E,∠A′=∠C=90°,即可利用勾股定理求得DE的长,进而求解.本题考查了翻折变换、三角形的面积、矩形的性质,解决本题的关键是利用翻折的性质.13.【答案】5【解析】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:5根据勾股定理解答即可.此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.14.【答案】-2【解析】解:根据一次函数的定义可得:m-2≠0,|m|-1=1,由|m|-1=1,解得:m=-2或2,又m-2≠0,m≠2,则m=-2.故答案为:-2.根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m 的值.本题主要考查了一次函数的定义,难度不大,注意基础概念的掌握.15.【答案】-1【解析】解:∵与都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.直接利用二次根式有意义的条件进而分析得出答案.此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.16.【答案】(1)解:如图,直角△AFB中,∠FAB=90°,AB=2,BF=4.由勾股定理知,AF===2;(2)解:如图,过点E作EG⊥AC于点G,则AF∥EG.∵∠F=30°,∴∠BEG=30°.∴BG=BE.∵∠ECD=90°,∠D=45°,∴∠DEC=∠D=45°.∴EC=CD.∴ED=EC.又ED=4,∴EC=2.∵DE∥AC,∴∠ECG=∠DEC=45°.∴∠GEC=∠GCE=45°.∴EG=CG.∴EC=GC,即2=GC.∴GC=2.在直角△BGE中,由勾股定理知BG2+EG2=BE2,即BG2+22=4BG2.∴BG=.∴BC=GC-GB=2-.【解析】(1)在直角△AFB中,利用勾股定理求得AF的长度;(2)如图,过点E作EG⊥AC于点G,构造等腰直角△EGC.在直角△EDC中,根据勾股定理求得EC的长度;然后在直角△EGC中,再次利用勾股定理求得GC的长度,在直角△EGB中,求得BG的长度,则BC=GC-GB.考查了勾股定理和含30度角的直角三角形.注意图中辅助线的作法,通过作辅助线,构造直角三角形,方可利用勾股定理求得相关线段的长度.17.【答案】-x-x-0 -1 --1 当x≥1时,y随x的增大而增大【解析】解:(1)化简函数解析式,当x<1时,y=(1-x)-2=-x-,当x≥1时,y=(x-1)-2=x-,故答案为-x-,x-.(2)当x<1时,y=(1-x)-2=-x-,当x=0时,y=-,当x=-1时,y=-1,故答案为0,-1.-,-1,函数图象如图所示:(3)观察图象可知:当x≥1时,y随x的增大而增大.故答案为:当x≥1时,y随x的增大而增大.(1)根据绝对值的性质化简即可.(2)利用描点法取点,画出图形即可.(3)观察图象解答即可(答案不唯一).本题考查一次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.【答案】4【解析】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122∴x==由题意可知x,y,z均为正整数∴当y=1,z=1时,x=5.2,不符合题意;当y=2,z=1时,x=4.8,不符合题意;当y=3,z=1时,x=4.4,不符合题意;当y=2,z=2时,由奇偶性可知,分子为奇数,不符合题意;当y=4,z=1时,x=4,符合题意.故答案为:4.设购买x支钢笔,y支铅笔,z支签字笔,根据他一共用了122元,列出方程,将x用含y和z的式子表示出来,分别对y和z取值验证,即可得解.本题考查了代数式变形在实际问题中的应用,根据题意正确列式并分类讨论,是解题的关键.19.【答案】【解析】解:∵AB=BD=4,∴∠BAE=∠BDE,∵CB⊥BD,∴∠DBE=∠CAB=90°,∴∠DEB=90°-∠D,∠CAE=90°-∠BAD,∴∠CAE=∠DEB,∵∠AEC=∠DEB,∴∠CAE=∠CEA,∴AC=EC,∵BE=1,∴BC=AC+1,∵AC2+AB2=BC2,∴AC2+42=(AC+1)2,∴AC=,故答案为:.根据等腰三角形的性质得到∠BAE=∠BDE,根据等式的性质得到∠CAE=∠DEB,求得AC=EC,根据勾股定理列方程即可得到结论.本题考查了直角三角形的性质,等腰三角形的性质,勾股定理,证得AC=CE是解题的关键.20.【答案】【解析】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙到达A地时的时间为2700÷270=10(分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).设乙从返回到相遇跑了t分钟,根据题意得:(300+324)t=2700-300×(10-9),解得:t=,∴他们在第二次相遇时距B地2700-300×()=(米),故答案为:.观察函数图象,可知甲用9分钟到达B地,由速度=路程÷时间可求出甲的速度,结合甲、乙速度间的关系可求出乙的初始速度及乙加速后的速度,利用时间=路程÷速度可求出乙到达A地时的时间,设乙从返回到第二次相遇跑了t分钟,根据题意列方程解答即可.本题考查了一次函数的应用以及一元一次方程的应用,通过解方程求出两人第二次相遇的时间是解题的关键.21.【答案】解:(1)原式=++12-1=9+3+12-1=23;(2)方程组整理为,②-①得4x=8,解得x=2,把x=2代入①得2-4y=-2,解得y=1,所以原方程组的解为.【解析】(1)根据二次根式的乘法法则和平方差公式计算;(2)先把方程组整理为,然后利用加减消元法解方程组.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了解二元一次方程组.22.【答案】解:(1)∵一次函数y=kx+b的图象经过点A(-2,1)、点B(1,).∴,解得:.∴这个一次函数的解析式为:y=x+2.(2)如图,∵在直线AB上存在点C,使S△ACO=S△ABO,∴C是线段AB的中点,或A是线段AC的三等分点,∵A(-2,1),B(1,).∴C(-,)或(-,);【解析】(1)根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C是线段AB的中点,或A是线段AC的三等分点,即可求得C的坐标.本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.23.【答案】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=-+4200(3000≤x≤5000).∵-<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600-3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.【解析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出W关于x的函数关系式.24.【答案】解:(1)由题意:(a+1)2+(1-4)2=52,解答a=3或-5.(2)求的最小值,相当于求点(x0,y0)到点(-4,4)和点(2,4)的距离和的最小值,观察图象可知最小值=6,此时-4≤x0≤2.(3)∵=,∴3y=4时,这个式子有最小值,最小值为3,∴+=+=+,求出+的最小值即可解决问题,求+,相当于求点(2x,3)到点(4,1)和点(0,0)的距离和的最小值,这个最小值==,∴原式的最小值=+3.【解析】(1)根据两点间距离公式构建方程即可解决问题.(2)求的最小值,相当于求点(x0,y0)到点(-4,4)和点(2,4)的距离和的最小值.(3)由=,推出3y=4时,这个式子有最小值,最小值为3,因为+=+=+,求出+的最小值即可解决问题.本题考查勾股定理,非负数的性质,两点间的距离公式,最短问题等知识,解题的关键是学会用转化的思想思考问题,学会利用数形结合的思想解决问题.25.【答案】解:(1)如图1中,∵△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴∠EAB=∠DAC,∴△DAC≌△EAB,∴CD=EB=,∠ACD=∠ABE,∵∠CFD=∠AFB,∴∠CDF=∠FAB=90°,∵DE=EB=CD=,∴BC===,∴AB=AC=BC=.(2)如图2中,延长AE交BC于J.∵DE=BE,DE=AE,∴AE=EB,∴∠EAB=∠EBA,∵∠DEA=45°=∠EAB+∠EBA,∵EF=BE,∠BAF=90°,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CAE=67.5°,∴∠CJA=180°-∠CAJ-∠ACJ=67.5°,∴∠CAJ=∠CJA,∴CA=CJ=CB,∵EG⊥AE,∴∠AEG=∠GEJ=90°,∴∠AGE=90°-22.5°=67.5°,∵∠AGE=∠EBG+∠GEB,∴∠BEG=45°=∠BEJ,∵BE=BE,∠EBJ=∠EBG,∴△EBJ≌△EBG(ASA),∴BG=BJ,∴BC=CJ+BJ=AB+BG.【解析】(1)只要证明△DAC≌△EAB,推出CD=EB,∠ACD=∠ABE,由∠CFD=∠AFB,推出∠CDF=∠FAB=90°,再求出CD、BD,利用勾股定理求出BC即可解决问题.(2)如图2中,延长AE交BC于J.想办法证明C=CJ,BJ=BG即可解决问题.本题考查等腰直角三角形的性质、全等三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.【答案】解:(1)由已知可得A(3,0),B(0,3),∵将直线l1向右平移2个单位得到直线L2,∴C(5,0),∴直线L2:y=-x+5,∴D(0,5);(2)过点A作AE⊥L2,∵AC=2,∠DCA=30°,∴AE=,∴MN=,∴BM+MN+NH的最小值即为BM++NH的最小值,作B点关于L2的对称点B',与L2的交点为F,过点F作FH⊥x轴,交于L1于N,过点N作MN⊥L2,则BM+MN+NH的最小值即为+FH;由作图可得,四边形FNMB'是平行四边形,∴B'M=FN,∵B与B'关于L2对称,∴BM=B'M,∴BM=FN,在Rt△BDF中,BF=,BD=2,∴∠DBF=30°,过点B作BG⊥FH,在Rt△BGF中,∠FBG=60°,BF=,∴GB=,FG=,∴F(,),在Rt△BNG中,∠GBN=30°,BG=,∴GN=,∴N(,),∴FH=,∴BM+MN+NH的最小值+;(3)由已知可知,AC⊥A'C,AC=A'C,∴A'(5,2),∵直线L1与直线L3垂直,∴直线L3:y=x+2-15,∵A(3,0),B(0,3),∴AB=6,设A'(m,m+2-15),则B'(m+3,m+5-15),①当A'B'=A'C时,A'C=6,∴36=+∴m=或m=,∴A'(,),A'(,);②当A'B'=B'C时,B'C=6,∴36=+,∴m=或m=;∴A'(,),A'(,);③当A'C=B'C时,+=+,∴m=5-;∴A'(5-,-);综上所述:A'(,),A'(,);A'(,),A'(,);A'(5-,-);).【解析】(1)求出直线L2:y=-x+5即可求出D;(2)求出两直线间距离MN=,作B点关于L2的对称点B',与L2的交点为F,过点F 作FH⊥x轴,交于L1于N,过点N作MN⊥L2,则BM+MN+NH的最小值即为+FH;过点B作BG⊥FH,在Rt△BGF中,∠FBG=60°,BF=,求出F(,);在Rt△BNG 中,∠GBN=30°,BG=,求出N(,),则可求FH=,即可德奥BM+MN+NH的最小值+;(3)由已知可知,AC⊥A'C,AC=A'C,求得A'(5,2),再由直线L1与直线L3垂直,可求直线L3:y=x+2-15,设A'(m,m+2-15),则B'(m+3,m+5-15),①当A'B'=A'C时,A'C=6,所以36=+;②当A'B'=B'C时,B'C=6,所以36=+,③当A'C=B'C时,+=+,分别求出m即可.本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,利用轴对称构造平行四边形,将所求线段和的最小转化为求FH的长,同时结合等腰三角形的性质解题是关键.。

相关文档
最新文档