工程力学-材料力学部分总结
工程力学材料力学篇复习资料
材料力学1.何谓应力?答:在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
2.何谓正应力与切应力?答:正应力就是垂直于截面的应力,对应的正应变是垂直于截面单位长度的该变量。
切应力时平行于截面的应力,对应的切应变是平行于截面单位长度的改变量。
3.何谓轴力?答:一根杆左右两端分别受一个F的力,那么它是是平衡的,那么它的任何一个部位都是平衡的,假设将一根杆用截面法切开,必有一个内力让切开的部分保持平衡,这个轴向的内力就是轴力,用FN表示,轴力或为拉力,或为压力,规定拉力为正,压力为负,这里的压力和拉力都是以研究对象为参考系的,具体情况需要具体分析,如图所示:4.何谓扭转?答:构件为直杆,并在垂直于杆件轴线的平面内作用有力偶,杆件各横截面绕轴线作相对旋转,这种以横截面绕轴线做相对旋转的变形形式称为扭转。
(说白了就是拧)5.什么是扭矩?答:一根杆受到一对力偶作用产生了扭转,如果用截面法将杆件切开,那么在截面处必将产生一个扭力偶使杆件保持原先的状态,这个扭力偶就叫做扭矩,用T表示。
6.何谓剪力?:梁在受垂直向上或者向下的外力的情况下,如果利用截面法将梁切开,截面上会产生一个竖直方向的力,使切开的部分保持平衡,这个竖直方向的力就叫做剪力,用Fs表示。
7.何谓弯矩?:弯矩是受力构件截面上的内力矩的一种,即垂直于横截面的内力系的合力偶矩。
其大小为该截面截取的构件部分上所有外力对该截面形心矩的代数和。
8.作用力与反作用力中的两个力和二力平衡原理中的两个力有何异同?两种情况共同点:两力等值、反向、共线。
不同点:前者,作用于不同物体。
后者,两力作用于同一物体。
9.理想约束有哪几种?理想约束主要包括:柔索约束、光滑接触面约束、光滑圆柱铰链约束、辊轴铰链约束、光滑球形铰链约束、轴承约束等。
10.什么是二力构件?其上的力有何特点?二力构件指两点受力,不计自重,处于平衡状态的构件。
(完整版)材料力学重点总结
(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学知识点总结教学内容
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点归纳总结(完整版)
材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。
因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。
应力的单位是帕斯卡(Pa),即XXX/平方米。
第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。
应变分为线性应变和非线性应变两种。
线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。
非线性应变则不满足这个比例关系。
2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。
3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。
XXX模量的大小反映了材料的柔软程度和刚度。
杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。
综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。
构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。
截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。
胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。
应力是指在截面m-m上某一点K处的力量。
它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。
其中,σ称为正应力,τ称为切应力。
将应力的比值称为微小面积上的平均应力,用表示。
在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。
杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。
某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。
(完整版)材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N FAσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F Aσσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F Aσσ=≤一定要有结论 2.设计截面[],maxN F A σ≥3.确定许可荷载[],maxN F A σ≤七、线应变ll ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F ll EA∆=注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l llδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
工程力学材料力学-知识点-及典型例题
作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
材料力学知识点总结
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结
材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域的设计和分析具有重要意义。
以下是对材料力学主要知识点的总结。
一、基本概念1、外力与内力外力是指物体受到的来自外部的作用力,包括集中力、分布力等。
内力则是物体内部各部分之间的相互作用力,当物体受到外力作用时,内力会随之产生以抵抗外力。
2、应力与应变应力是单位面积上的内力,它反映了材料内部受力的强弱程度。
应变是物体在受力作用下形状和尺寸的相对变化,分为线应变和切应变。
3、杆件的基本变形杆件在受力作用下主要有四种基本变形形式:拉伸(压缩)、剪切、扭转和弯曲。
二、拉伸与压缩1、轴力与轴力图轴力是指杆件沿轴线方向的内力。
通过绘制轴力图,可以直观地表示出轴力沿杆件轴线的变化情况。
2、横截面上的应力在拉伸(压缩)情况下,横截面上的应力均匀分布,其大小等于轴力除以横截面面积。
3、材料在拉伸与压缩时的力学性能通过拉伸试验,可以得到材料的强度指标(屈服强度、抗拉强度)和塑性指标(伸长率、断面收缩率)。
不同材料具有不同的力学性能,如低碳钢的屈服和强化阶段,铸铁的脆性等。
4、胡克定律在弹性范围内,应力与应变成正比,即σ =Eε ,其中 E 为弹性模量。
5、拉伸(压缩)时的变形计算根据胡克定律,可以计算杆件在拉伸(压缩)时的变形量。
三、剪切1、剪切内力与剪切应力剪切内力通常用剪力表示,剪切应力则是单位面积上的剪力。
2、剪切实用计算在工程中,通常采用实用计算方法来确定剪切面上的平均应力。
四、扭转1、扭矩与扭矩图扭矩是指杆件在扭转时横截面上的内力偶矩。
扭矩图用于表示扭矩沿杆件轴线的变化。
2、圆轴扭转时的应力与变形圆轴扭转时,横截面上的应力分布呈线性规律,其最大应力发生在圆周处。
扭转角的计算与材料的剪切模量、扭矩和轴的长度等因素有关。
五、弯曲1、剪力与弯矩弯曲内力包括剪力和弯矩,它们的计算和绘制剪力图、弯矩图是弯曲分析的重要内容。
材料力学知识点总结(重、难点部分)
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
工程力学基础知识点归纳总结
工程力学基础知识点归纳总结工程力学那可真是一门超级有趣又很有用的学科呢!今天就来和大家好好归纳总结一下它的基础知识点。
一、静力学。
静力学主要研究物体在力系作用下的平衡规律。
1. 力的概念。
力啊,它是物体间的相互作用。
你想啊,就像你推桌子,你给桌子一个力,桌子呢,也会给你一个反作用力。
这个力有大小、方向和作用点这三个要素,少了哪个都不行哦。
比如说,你用10牛的力去推桌子的角,和用5牛的力推桌子的中间,那效果肯定不一样呀。
2. 力的合成与分解。
这就像是把几个小伙伴的力量合起来,或者把一个大力量分成几个小力量。
平行四边形法则是个很厉害的方法呢。
比如说有两个力,像两个小伙伴拉一个东西,我们就可以用平行四边形法则把它们合成一个合力。
反过来,一个力也可以分解成不同方向的分力,就像把一个人的力量分成不同方向去做不同的事。
3. 刚体的概念。
刚体就是那种在力的作用下,形状和大小都不会改变的物体。
这有点像超级坚固的钢铁侠,不管怎么受力,都不会变形。
在静力学里研究刚体的平衡可重要啦。
4. 平衡方程。
物体平衡的时候,它受到的力要满足一定的方程。
比如说在平面汇交力系中,力在x轴和y轴上的投影的代数和都得是零呢。
这就像是一群小伙伴拔河,两边的力量要是不平衡,那绳子就会动起来,只有两边力量相等了,绳子才会静止,这就是平衡的状态。
二、材料力学。
材料力学就开始研究材料在力的作用下的性能啦。
1. 拉伸和压缩。
材料在受到拉力或者压力的时候,会有不同的表现。
像橡皮筋,你拉它的时候,它就会变长,这就是拉伸。
而像柱子,承受上面的重量,就是受到压缩。
材料在拉伸和压缩的时候,有个很重要的概念叫应力。
应力就像是材料内部每个小部分承受的压力或者拉力的平均情况。
2. 剪切。
剪切力就像是剪刀剪东西时的力。
想象一下你剪一张纸,纸的两边受到相反方向的力,这就是剪切力啦。
材料在剪切力作用下也有它自己的特性,比如说它能承受多大的剪切力才会被剪断。
3. 扭转。
工程力学知识点总结
工程力学知识点总结工程力学是一门研究物体机械运动和受力情况的学科,它对于解决工程实际问题具有重要的意义。
以下是对工程力学一些关键知识点的总结。
一、静力学静力学主要研究物体在静止状态下的受力平衡问题。
1、力的基本概念力是物体间的相互作用,具有大小、方向和作用点三个要素。
力的单位是牛顿(N)。
2、力的合成与分解遵循平行四边形法则,可以将一个力分解为多个分力,也可以将多个力合成为一个合力。
3、约束与约束力约束是限制物体运动的条件,约束力是约束对物体的反作用力。
常见的约束有柔索约束、光滑接触面约束、铰链约束等。
4、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其受力图,包括主动力和约束力。
5、平衡方程对于平面力系,有∑Fx = 0、∑Fy = 0、∑Mo(F) = 0 三个平衡方程;对于空间力系,则有六个平衡方程。
二、材料力学材料力学主要研究杆件在受力作用下的变形和破坏规律。
1、内力与应力内力是杆件内部由于外力作用而产生的相互作用力。
应力是单位面积上的内力,分为正应力和切应力。
2、应变应变是杆件变形量与原始尺寸的比值,分为线应变和切应变。
3、拉伸与压缩杆件在受到轴向拉伸或压缩时,会产生轴向变形和横截面上的应力分布。
4、剪切与挤压在剪切面上会产生切应力,在挤压面上会产生挤压应力。
5、扭转圆轴扭转时,横截面上会产生切应力,其分布规律与扭矩有关。
6、弯曲梁在弯曲时,会产生弯矩和剪力,横截面上会有正应力和切应力分布。
7、强度理论用于判断材料在复杂应力状态下是否发生破坏,常见的有第一、第二、第三和第四强度理论。
三、运动学运动学研究物体的运动规律,而不考虑引起运动的力。
1、点的运动描述点的运动可以用直角坐标法、自然法和极坐标法。
2、刚体的平动和转动平动时刚体上各点的运动轨迹相同,速度和加速度也相同;转动时刚体绕某一固定轴旋转。
3、角速度和角加速度用于描述刚体转动的快慢和变化率。
4、点的合成运动包括牵连运动、相对运动和绝对运动,通过速度合成定理和加速度合成定理来分析。
工程力学知识总结
工程力学知识总结工程力学是研究物体受力和运动规律的一门学科,它对于工程领域的发展和实践具有重要的作用。
在工程力学中,有许多基本概念和原理需要我们理解和掌握,下面我将就几个关键点进行总结。
一、静力学静力学是工程力学的基础,主要研究物体在平衡状态下受力的情况。
其中,最为重要的概念是力的平衡和向量的分解。
在工程实践中,我们经常需要分析物体受力平衡的问题,例如悬臂梁的计算、弹簧的力学特性等。
了解静力学原理,可以帮助我们更准确地预测物体在受力下的变形和破坏情况,从而做出合理的设计和决策。
二、动力学动力学是研究物体在受力下运动情况的学科。
在工程实践中,我们经常需要分析物体的加速度、速度和位移等动力学参数,来评估物体的运动特性和受力情况。
同时,动力学也与工程设计密切相关,例如汽车的制动距离计算、电梯的速度限制等都需要基于动力学原理进行分析和计算。
三、材料力学材料力学是研究材料受力和变形规律的学科。
在工程中,我们经常需要对各种材料的力学性能进行评估和分析。
例如,钢材的强度、混凝土的抗压能力、塑料的形变特性等都属于材料力学的范畴。
了解材料力学原理,可以帮助我们选择合适的材料,从而提高工程的可靠性和安全性。
四、结构力学结构力学是研究物体构件之间力学相互作用和受力特性的学科。
在工程设计中,往往需要设计各种强度合适、刚度满足要求的结构,而结构力学能够提供必要的分析工具和方法。
例如,房屋结构、桥梁设计、机械零部件等都需要依靠结构力学原理进行计算和分析。
了解结构力学原理,可以帮助我们做出合理的结构设计和优化。
五、流体力学流体力学是研究流体运动和受力规律的学科。
在工程领域中,流体力学的应用非常广泛,例如水力学、空气动力学等都属于流体力学的范畴。
在设计水利、空调、风力发电等工程时,我们需要对流体的流动特性和受力情况进行分析和计算。
熟悉流体力学原理,可以帮助我们更好地理解和控制流体的运动,从而提高工程的效率和可靠性。
综上所述,工程力学涵盖了静力学、动力学、材料力学、结构力学和流体力学等多个领域,它们共同构成了工程力学的基础和核心。
工程力学知识点总结
工程力学知识点总结
静力学:静力学部分主要研究受力物体平衡时作用力所应满足的条件,同时也研究物体受力的分析方法以及力系的简化的方法等。
例如,二力平衡公理指出,作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。
加减平衡力系公理表明,在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。
此外,还有平行四边形法则等。
材料力学:材料力学部分研究构件在外力作用下的变形与破坏(或失效)的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理论与方法。
例如,构件应具备足够的强度、刚度和稳定性,以保证在规定的使用条件下不发生意外断裂、显著塑性变形、过大变形或失稳。
工程力学的研究方法主要包括理论方法和试验方法。
在对事物观察和实验的基础上,经过抽象化建立力学模型,形成概念。
例如,在研究物体受外力作用而平衡时,可以采用刚体模型;但要分析物体内部的受力状态,必须考虑到物体的变形,建立弹性体的模型。
总的来说,工程力学涵盖了原有理论力学(静力学部分)和材料力学两门课程的主要经典内容,不仅与力学密切相关,而且紧密联系于广泛的工程实际。
如需更详细的知识点总结,建议查阅力学相关书籍或咨询力学专业人士。
材料力学重点总结
材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。
它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。
以下是材料力学的重点总结。
一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。
正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。
2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。
线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。
3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。
二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。
2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。
当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。
3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。
三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。
在应力达到屈服强度后,材料开始发生塑性应变。
2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。
3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。
四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。
韧性高的材料能够承受较大的变形和吸能。
2.断裂强度:指材料在断裂前所能承受的最大应力值。
断裂强度高的材料具有较好的抗拉强度。
3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。
五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。
疲劳强度与材料的强度和韧性都有关。
2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。
疲劳寿命与材料的疲劳强度和循环载荷有关。
3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。
(完整版)材料力学知识点总结
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结
材料力学知识点总结
材料力学是研究材料加载和变形的分支工程力学,是一门综合性
学科,从物理性质的角度深入探讨材料的结构、力学性能以及加载及
应力应变分布情况。
它涉及材料物理性质、材料力学实验、材料本构、形变理论及结构力学等多个领域。
1. 材料物理性质:包括晶粒结构、失真、应变变形、密度、弹
性模量、断裂应变、杨氏模量、弹性应变等。
2. 材料力学实验:材料的机械性能的测试,主要有拉伸实验Q及压
缩实验,分别测量其弹性模量、断裂强度、抗拉伸性及延展性等特征
参数。
3. 材料本构:包括等温应力应变曲线、温度应力应变曲线、时变应
力应变曲线、随机应力应变曲线等。
4. 形变理论:是研究材料力学性能和加载条件下材料形变前景的学科,基于牛顿-拉普拉斯运筹及微分几何原理,可以统一地分析静力
和动力问题。
5. 结构力学:主要涉及结构的稳定性及结构在外力作用下承载能力
分析,主要研究对象是材料在剪切加载下应变和变形的变化情况。
总之,材料力学是一门让材料在加载和变形过程中发挥最佳性能
的科学,它涉及材料本构、形变理论及结构力学等多个方面,为材料
应用提供了有力的依据。
材料力学的研究已广泛应用于各个领域,对
科学技术发展有着重要的意义。
材料力学章节重点和难点[整理]
材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。
2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。
3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。
2.重点:剪力方程和弯矩方程、剪力图和弯矩图。
3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。
第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。
2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。
3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。
2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。
3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。
第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。
2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。
3.难点:主应力方位确定。
第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。
3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。
工程力学-材料力学部分
A 代入上式,得: Aa cos a
pa s cos a 斜截面上总应力:
斜截面上总应力: pa s cos a 分解: pa
k
F F
sa pa cosa s cos a
2
k
F
a
k
a
sa
Pa
t a pa sin a s cos a sin a
s
2
sin 2a
a
工程力学材料力学部分:
主要研究作用在物体上的力及变形规律。研究构件在相应 承载能力的条件下,以最经济的代价为构件确定合理的形状和 尺寸,选择适当的材料,为构件的设计提供必要的理论基础和 计算方法。
主要内容:
1、内力、应力的概念; 2、轴向拉伸与压缩; 3、剪切和挤压; 4、圆轴扭转; 5、梁的弯曲。
截面面积A成反比,这一比例关系称为胡克定律。即
FN l l = EA
E 为材料的弹性模量,取值与材料有关,由实验测定, 单位常用GPa。 胡克定律的另一表达式:
s E
32
胡克定律表明:当 FN 和 l 不变时, EA 值越大,绝对 变形量越小。说明EA是杆件抵抗拉压变形能力的度量。
例5.3
并求与横截面夹角30°的斜截面上的正应力和切应力。 解:拉压杆斜截面上的应力,直接由公式求之:
s0
F 4 10000 127 .4MPa 2 A 3.14 10
τ max σ 0 /2 127.4/2 63.7MPa
3 s a s 0 cos a 127 .4 95.5MPa 4
m
F F
m
(a)
以作用力FN替代弃去部分对研究对象的作用。
材料力学知识点总结
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件横截面上的内力称为轴力。
轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。
通过实验可以得到材料在拉伸和压缩时的应力应变曲线。
低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。
弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。
对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。
而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。
二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
在剪切面上的内力称为剪力。
剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。
挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。
挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。
三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。
圆轴扭转时,横截面上的内力是扭矩。
扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 梁弯曲变形计算
(1)积分法
EIz EIz M dx C
EIz Mdx dx Cx D
(2)叠加法
边界条件确定
约束条件 光滑连续条件
作图规律
无外力段 外
力
q=0
均布载荷段
q>0
q<0
集中力 集中力偶
P
m
c
c
水平直线
Q Q>0 图Q 特
Q<0
Q
上升直线
下降直线
自左向右, 突变与P同
2
( 3
Q
Q
Q Q1
征
X
X
X
X
X
c
Q2
Q1-Q2=P
M 上升直线 下降直线 开口向上曲线 开口向下曲线 M 转折
图M
M
M
M
M
特
征
X
X
X
X
cX
无变化
Q
X
c
自左向右, 突变与M同
M M1
cX
M2 M1-M2=m
6 静不定问题 (1)静不定问题的求解步骤
判断系统静不定的次数
建立变形协调方程 力与变形间的物理关系
EIz
y My EIz
max
max
M max
Wz
FS max
S
z
Izb
w w max
max
1. 一些基本概念
(1)变形固体的四个基本假设及其作用
(2)应力、应变的概念
应力 正应力σ 切应力τ
应变
线应变ε 切应变γ
(3)内力分析的截面法及其求解步骤
2. 一些基本定理
45
低碳钢的扭转破坏断面
铸铁的扭转破坏断面
破坏原因解释
应力状态与强度理论
一、基本概念
应力单元体 一点的应力状态概念 一点的应力状态的表示
单向应力状态、二向应力状态、三向应力状态; 主应力、主平面、主方向;
二、二向应力状态分析——解析法
任意斜截面上应力
x
y
2
x
2
y
cos 2
xy
sin
2
x
y
2
sin
bh3 Iz 12
Wz
Iz h
bh2 12
实心圆截面
Ip
d 4
32
Wp
d 3
16
空心圆截面
Ip
D4 1 4
32
,
d
D
D3 1 4
Wp
16
,
d
D
y
z
dA
r
y
z
1)IP I y I z 2)下标y是对y轴而言
下标z是对z轴而言 3)下标r是对原点而言
面积: A dA
A
截 面 一 次 矩
补充方程
静力平衡方程
(2)简单静不定问题的求解方法
(a)拉压静不定问题 (b) 扭转静不定问题 (c) 弯曲静不定问题
求出全部未 知力和内力
应力、变形计算; 强度、刚度计算。
材料的力学性能
一、材料拉伸时的力学性能
e
cd
低碳钢:
b
a
四个阶段:弹性、屈服、硬化、颈缩。 b e
σs
p
强度指标: s , b
(静矩)
Sy
zdA
A
Sz
ydA
A
截 面 二 次 矩
(惯性矩)
Iy
z 2 dA
A
Iz
y 2 dA
A
截 面 二 次 矩
(惯性积)
I yz
yzdA
A
截 面 二 次 极 矩
(极惯性矩)
IP
r 2dA
A
惯性半径
iy
Iy A
iz
Iz A
4. 截面内力与内力图
(1)轴力N
(2) 扭矩T
弯矩M与弯矩图 (3) 剪力Fs与剪力图
弯曲
Iz 截面惯性矩 Wz 抗弯截面系数 Sz 对中性轴的
静矩
EA 抗拉刚度
l FNl EA
FN
EA E
GIP 抗扭刚度
Tl
GIP
T
GIP G
Q
max
FN max A
A
bs
P Abs
max
T Wp
T
GIP
EIz 抗弯刚度
1 M w''(x)
延伸率:
b:强度极限 截面收缩率:
L1
L
L
100
0
0
A A1 A
100 0 0
二、材料压缩时的力学性能
低碳钢:除无强度极限 b外,与拉伸情况相同。
铸 铁: 破坏断面:与轴线大致成45°~55°倾角;
抗压强度极限σbc比抗拉强度极限σbt高得多;
bc (4 ~ 5)bt
三、材料扭转时的力学性能
2
xy
cos 2
主应力与主方向
max min
x
y
2
x
2
y
2
2 xy
tan
2 0
2 xy x
y
最大最小切应力及其方向
max min
x
2
y
2
2 xy
三、三向应力状态简介
tan
21
x 2 xy
y
—— 与主平面成45°角
(1)简单三向应力状态下,求解主应力:
1, 2 , 3
(2)最大最小切应力
水平线或锯齿状 平台
上升曲线
下降曲线
变形 特点
①弹性 ②线弹性 ③小
①应力不变,变 ①加力才变形
形迅速 ②弹塑性③较大
②变形大且塑性 多
部分变形迅速 增大
规律 =E 现象 ( ≤ p )
45°晶格滑 移线
卸载定律、冷作 硬化、冷拉时效
颈缩、断裂
特征 值
p:比例极限 e:弹性极限
E:弹性模量
s:屈服极限
材料力学
总结
材料力学
四种基本变形; 材料力学性能; 应力状态与强度理论; 组合变形; 压杆稳定。
四种基本变形
受力特点
轴向拉、压
剪切
扭转
弯曲
变形特点 变形假设 内力 应力计算
应力分布
轴向伸长或 缩短
平截面假设 FN 轴力
FN
A
剪切面发生 任意两横截面发生 相对错动 绕轴线的相对转动
平截面假设
杆件的轴线由直线 变为曲线,任意横 截面绕中性轴发生 相对转动
l Nl EA
(1)胡克(Hooke)定律
(2)剪切胡克(Hooke)定律
E
G
或
G
(3)切应力互等定理
3. 截面几何性质的计算
圆形截面 环形截面
Iy
Iz
I
d 4
64
Wy
Wz
W
d 3
32
Iy
Iz
I
D4
64
1 4
Wy Wz
W
D3
32
1 4
d
D d
D
矩形截面
Iy
hb3 12
平截面假设
FS 剪力
Fs
A
bs
P Abs
T 扭矩
max
T
Wp
max
max
M 弯矩 Fs 剪力
max
M max Wz
Fs
S
z
I zb min
max
四种基本变形
截面几何 性质 刚度 变形计算
强度条件 刚度条件
轴向拉、压 A 横截面积
剪切
A 剪切面积 Abs 挤压面积
扭转
IP 截面极惯性矩 Wp 抗扭截面系数
max 1 3
min
2
四、广义Hooke定律
一般应力状态表示 的广义胡克定律:
x y
1
E 1
E
x y
( y ( z
z) x)
z
1 E
z
( x
y)
yz
yz
G
zx
zx
G
xy
xy
G
G 为剪切弹性模量。
用主应力表示的 广义胡克定律:
1
1 E
1
( 2
3长率
塑性指标:
l0
A0 A 100% —— 断面收缩率
A0
实验现象: 屈服时,与轴线成45°方向出现滑移线;
冷作硬化现象;卸载规律;颈缩现象;
铸铁:
变形很小; 突然脆性断裂; 只有强度极限: b
f
弹性段
屈服段
强化段 颈缩断裂段
线形
op—直线 pe—微弯曲线