三相桥式整流电路实验报告
三相桥式全控整流电路实验报告
三相桥式全控整流电路实验报告一、实验目的本实验旨在通过搭建三相桥式全控整流电路,理解电力电子整流技术的基本原理,掌握三相桥式全控整流电路的工作过程,探究整流电路的输出特性,为进一步研究和应用电力电子技术打下基础。
二、实验原理三相桥式全控整流电路是一种常见的整流电路,其工作原理基于三相半波可控整流电路。
在该电路中,三相交流电通过6个晶闸管(或二极管)整流,将交流电转换为直流电。
6个晶闸管分为三组,每组两个,分别与三相交流电的每一相相连。
通过控制晶闸管的导通时刻,可以控制电流的流向和大小,从而实现整流的目的。
三、实验步骤1.搭建三相桥式全控整流电路。
使用电源、电阻、二极管、晶闸管等元器件搭建电路。
注意确保连接正确、安全可靠。
2.连接输入电源,调整输入电压,使输入电压在允许范围内。
3.触发晶闸管,控制其导通时刻。
可以使用脉冲信号发生器触发晶闸管,通过改变触发脉冲的相位来控制晶闸管的导通时刻。
4.观察并记录输出电压和电流的变化情况。
可以使用示波器等设备观察输出波形,并记录相关数据。
5.改变触发脉冲的相位,观察输出电压和电流的变化情况,并记录数据。
6.分析实验数据,探究整流电路的工作特性和输出特性。
四、实验结果与分析1.实验结果在实验过程中,我们观察到了整流电路的输出电压和电流的变化情况。
当触发脉冲的相位角增加时,输出电压和电流的平均值增加;当触发脉冲的相位角减小时,输出电压和电流的平均值减小。
实验结果表明,通过控制触发脉冲的相位角,可以有效地控制整流电路的输出电压和电流。
2.结果分析根据实验结果,我们可以得出以下结论:(1)三相桥式全控整流电路可以实现整流的功能,将交流电转换为直流电。
(2)通过控制触发脉冲的相位角,可以控制晶闸管的导通时刻,进而控制输出电压和电流的大小。
当触发脉冲的相位角增加时,晶闸管的导通时间增加,输出电压和电流的平均值增加;当触发脉冲的相位角减小时,晶闸管的导通时间减少,输出电压和电流的平均值减小。
三相桥式全控整流电路实验结论
三相桥式全控整流电路实验结论一、电路结构与工作原理三相桥式全控整流电路由三相交流电源、三相全控桥、负载电阻以及触发脉冲源等部分组成。
其工作原理基于三相全控桥的工作原理,通过控制触发脉冲的相位来控制整流输出的电压大小和方向。
二、触发脉冲与控制方式本实验采用脉冲变压器触发方式,通过调节触发脉冲的相位来控制整流输出的电压大小和方向。
控制方式采用移相控制方式,通过调节控制电压的大小和极性来控制触发脉冲的相位。
三、输出电压与负载特性实验结果表明,随着控制电压的增大,整流输出电压增大,当控制电压达到一定值时,整流输出电压达到最大值。
当负载电阻增大时,整流输出电压减小,当负载电阻达到无穷大时,整流输出电压达到最小值。
四、功率因数与谐波分析实验结果表明,采用三相桥式全控整流电路可以有效地提高功率因数,减小谐波对电网的影响。
但是,当整流输出电压增大时,谐波电流也会相应增大,因此需要对谐波进行抑制。
五、电路参数设计与优化为了提高三相桥式全控整流电路的性能,需要对电路参数进行设计与优化。
实验结果表明,触发脉冲的频率和移相角是影响整流输出电压大小和稳定性的关键因素。
因此,在参数设计时需要重点考虑这些因素。
同时,为了减小谐波对电网的影响,需要选择合适的滤波器参数。
六、实验结果对比与分析通过对不同控制方式下的实验结果进行对比与分析,可以发现采用移相控制方式可以有效提高整流输出电压的稳定性和调节速度。
同时,采用脉冲变压器触发方式可以有效减小整流输出电压的脉动和噪声。
七、电路性能评估与改进建议根据实验结果,可以对三相桥式全控整流电路的性能进行评估。
本实验中,采用了以下指标进行评估:整流输出电压的大小和稳定性、功率因数、谐波含量以及调节速度等。
通过对这些指标进行分析,可以发现该电路具有以下优点:可以实现对交流电源的整流作用;可以提高功率因数;可以实现对整流输出电压的快速调节等。
但是也存在一些不足之处,例如触发脉冲的脉动和噪声较大等问题。
三相全控桥式整流电路实验报告doc
三相全控桥式整流电路实验报告篇一:实验一、三相桥式全控整流电路实验实验一、三相桥式全控整流电路实验一、实验目的1. 熟悉三相桥式全控整流电路的接线、器件和保护情况。
2. 明确对触发脉冲的要求。
3. 掌握电力电子电路调试的方法。
4. 观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。
二、实验类型本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。
三、实验仪器1.MCL-III教学实验台主控制屏。
2.MCL—33组件及MCL35组件。
3.二踪示波器 4.万用表 5.电阻(灯箱)四、实验原理实验线路图见后面。
主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。
五、实验内容和要求1. 三相桥式全控整流电路2. 观察整流状态下,模拟电路故障现象时的波形。
实验方法:1.按图接好主回路。
2.接好触发脉冲的控制回路。
将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。
打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。
(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60的幅度相同的双脉冲。
(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲60,则相序正确,否则,应调整输入电源。
3.三相桥式全控整流电路(1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使?在30o~90o范围内,用示波器观察记录?=30O、60O、90O 时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。
ou??= 30°uuia?tOuab=30O?ti a?=90O?tuuabacOuabuac??= 60°u(2)电路带阻感负载的情况下:在负载中串入700mH 的电感调节Uct(Ug),使?在30o~90o范围内,用示波器观察记录?=30O、60O、90O时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。
三相桥式整流电路实验报告
三相桥式整流电路实验报告引言三相桥式整流电路可以将三相交流电转变成直流电,是工业电力系统中常见的电力转换器件。
本次实验主要探究三相桥式整流电路的基本工作原理和电路组成,通过实验可以深入了解该电路的性能和实用价值。
实验原理三相桥式整流电路的基本组成为三组二极管,每组有两个二极管,如图1所示。
其中,L表示负载,R为调节器,C为滤波器,U是输入的三相交流电源。
在正半周期,当AB相电压为正时(B相电压高于A相电压),D1和D6导通,D2和D5截止,D3和D4也截止(图2a);当AC相电压为正时(C相电压高于A相电压),D3和D4导通,D2和D5截止,D1和D6也截止(图2b)。
图2 三相桥式整流电路正半周期工作原理因此,三相桥式整流电路可以使输出电压为U1=0.9U2=0.9U3,输出电流为3U/(π6√2R)。
实验仪器数字示波器、三相交流电源、三相桥式整流电路、电阻。
实验步骤1.将三相桥式整流电路连接好,并接上负载、调节器和滤波器,如图4所示。
图4 实验电路连接图2.打开三相交流电源,调节电压达到实验要求。
3.调节电阻R,观察数字示波器记录的输出电流和输出电压波形,并记录数据。
4.重复实验多次,取平均值,绘制输出电流-输出电压的特性曲线。
实验结果与分析实验中我们通过数字示波器观察了三相桥式整流电路输出电流和输出电压的波形,记录了不同电阻下的输出电流和输出电压数值,并绘制了输出电流-输出电压的特性曲线,如图5所示。
图5 输出电流-输出电压特性曲线由图5可以看出,在一定范围内,输出电压对输出电流的变化主要是线性关系,即输出电流随输出电压的增加而增加,但当电阻R较小时,输出电压变化较小,输出电流几乎不变(即电源电压对输出电流有一定限制)。
此外,我们还发现,当电阻R较小时,负载电流较大,说明负载对电路输出的电流有很大的影响。
结论。
三相桥式全控整流电路实验报告
三相桥式全控整流电路实验报告实验报告:三相桥式全控整流电路一、实验目的1.了解三相桥式全控整流电路的工作原理;2.掌握三相桥式全控整流电路的实际应用;3.熟悉实验中相关的仪器设备使用和操作;4.通过实验,加深对三相桥式全控整流电路的认识和理解。
二、实验原理1.三相交流电源通过三相桥式整流器,经过电感L1平滑滤波,然后由IGBT或晶闸管等元件构成的全控整流桥对交流电进行整流;2.控制信号通过控制电路产生,并通过触发电路以一定的脉冲方式送入IGBT或晶闸管触发端,从而实现对整流桥的控制。
三、实验所需器材和材料三相交流电源、电感、电容、IGBT或晶闸管、示波器、台式多功能电源等。
四、实验步骤及调试过程1.搭建三相桥式全控整流电路。
2.将三相交流电源连接到整流电路的输入端。
3.连接示波器,通过示波器观察输入和输出波形。
4.连接控制电路,根据实验要求对整流电路进行控制。
5.进行相应的实验数据采集和记录。
五、实验数据记录和分析1.实验中记录了输入电压、输出电压、输出电流等数据。
2.通过分析记录的数据,可以得出整流电路的性能指标,例如:输出电流的大小、纹波系数、效率等。
3.通过数据的分析可以得出实验结果。
六、实验结果分析1.通过数据分析得出输入输出电流的关系,验证了三相桥式全控整流电路的工作原理。
2.通过实验结果可以得出整流电路的性能指标,并对实验结果进行评价。
3.通过实验结果的分析可以对整流电路进行改进和优化。
七、实验结论八、实验中遇到的问题和解决方法1.连接电路时,需要注意电源的极性和电路的连接顺序,否则会导致电路不能正常工作。
解决方法是仔细查阅电路图和实验指导书,正确连接电路。
2.控制电路的参数设置不当,导致无法对整流电路进行控制。
解决方法是按照实验要求对控制电路进行参数调整,确保其能够正常工作。
3.示波器波形不清晰,无法正确观察到输入和输出波形。
解决方法是检查示波器和连接线路,确保其连接良好,并对示波器参数进行适当调整。
实验七 三相桥式全控整流电路实验
实验七 三相桥式全控整流电路实验一、实验目的了解三相桥式全控整流电路的工作原理,研究可控整流电路在电阻负载,电阻电感性负载,反电动势负载时的工作情况。
二、实验所需挂件及附件1. 电源控制屏2. 三相晶闸管触发电路3. 双踪示波器,万用表4. 晶闸管主电路5. 可调电阻,电感等三、实验原理1、电阻性负载图7-1 三相桥式全控整流电路(电阻性负载)及o 0=α波形阴极连接在一起的3个晶闸管(VT1,VT3,VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4,VT6,VT2)称为共阳极组。
共阴极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT1,VT3,VT5,共阳极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT4,VT6,VT2。
晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。
o 0=α表示各晶闸管从其自然换相点开始触发,得到的输出电压波形为其线电压的包络线。
图7-2 三相桥式全控整流电路(电阻性负载)o 30=α时波形从图可以看出,当o 60≤α时,u d 波形连续,对于电阻负载,i d 波形与u d 波形形状一样,也连续,每管工作120︒ ,每间隔60︒有一管换流。
60︒为波形连续和不连续的分界点。
α>60︒,由于对应线电压的过零变负,非同一相的共阴极组和共阳极晶闸管串联承受负压而关断,此时输出电压电流为零。
负载电流断续,各晶闸管导通角小于120︒。
晶闸管及输出整流电压的情况如下表所示:时段I II III IV V VI 共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸管VT6VT2VT2VT4VT4VT6整流输出电压u du α -u b=u abu α -u c=u αcu b –u c=u bcu b –u a=u bau c –u a=u cau c –u b=u cb三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
三相桥式全控整流实验报告
三相桥式全控整流实验报告三相桥式全控整流实验报告引言:在现代电力系统中,整流技术是一项重要的电力转换技术。
而三相桥式全控整流器作为一种常见的整流器结构,被广泛应用于工业和家庭电力系统中。
本次实验旨在通过搭建三相桥式全控整流实验电路,研究其工作原理和性能。
一、实验原理三相桥式全控整流器由六个可控硅器件组成,包括三个正向可控硅和三个反向可控硅。
其工作原理是通过控制可控硅的导通角来控制整流电流的大小和方向。
当可控硅导通角为0时,整流电流为零;当可控硅导通角为180度时,整流电流为最大值。
通过控制可控硅的导通角,可以实现对整流电流的精确控制。
二、实验步骤1. 搭建实验电路首先,我们按照实验电路图搭建三相桥式全控整流实验电路。
实验电路包括三相交流电源、三相桥式全控整流器、负载电阻和控制电路。
注意在搭建电路时,要确保电路连接正确,以避免电路短路或其他故障。
2. 接通电源接通电源之前,需要先检查电路连接是否正确,并确保所有开关处于关闭状态。
接通电源后,我们可以观察到整流器的运行状态。
3. 调节触发角通过控制电路,我们可以调节可控硅的触发角,从而控制整流电流的大小和方向。
在实验中,我们可以逐渐增加触发角,观察整流电流的变化情况。
同时,我们还可以改变负载电阻的大小,观察其对整流电流的影响。
4. 记录实验数据在实验过程中,我们需要记录整流电流、负载电压和触发角等数据。
这些数据可以用于后续的分析和比较。
三、实验结果通过实验,我们可以得到如下结果:1. 整流电流与触发角的关系当触发角为0度时,整流电流为零;当触发角为180度时,整流电流为最大值。
随着触发角的增加,整流电流逐渐增大,但增速逐渐减慢。
当触发角为90度时,整流电流为零。
2. 整流电流与负载电阻的关系当负载电阻增大时,整流电流减小;当负载电阻减小时,整流电流增大。
这是因为负载电阻的变化会影响整流电路的输出特性。
3. 整流电流与电源电压的关系整流电流与电源电压之间存在线性关系。
三相桥式全控整流电路实验报告
实验编号实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础课程代码:面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年10 月20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。
2.MCL—01组件。
3.MCL—02组件。
4.MEL-03可调电阻器。
5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图四、实验示意图:五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。
2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
实验三 三相桥式全控整流电路实验
实验三三相桥式全控整流电路实验一、实验目的(1)加深理解三相桥式全控整流的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件三、实验线路及原理实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13 三相桥式全控整流电路实验原理图四、实验内容三相桥式全控整流电路。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2))学习本教材中有关集成触发电路的内容,掌握该触发电路的工作原理。
六、思考题(1)如何解决主电路和触发电路的同步问题?在本实验中主电路三相电源的相序可任意设定吗?答:①采用宽脉冲触发或双脉冲触发发式。
在本实验中使脉冲宽度大于1/6个周期。
②在除法某个晶闸管的同时,前一个晶闸管补发脉冲,即用两个窄脉冲替代宽脉冲。
(2)在本实验的整流时,对α角有什么要求?为什么?答:在本实验的整流时,移相角度α角度为0-90度,这是因为移相角度α超过90度就会进入逆变状态。
七、实验方法(1)三相桥式全控整流电路按图3-13接线,将DJK06上的 “给定”输出调到零(逆时针旋到底),使电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使α角在30°~150°范围内调节,用示波器观察并记录α=30°、60°及90°时的整流电压U d 和晶闸管两端电压U vt 的波形,并记录相应的U d 数值于下表中。
计算公式:U d =2.34U 2cosα (0~60O) U d =2.34U 2[1+cos(a+3)] (60o ~120o) 描绘α=300、600时Ud 、Uvt 的波形。
三相桥式全控整流电路实验报告.doc
三相桥式全控整流电路实验报告.doc
实验目的:
1. 熟悉三相桥式全控整流电路的电气特性。
实验原理:
三相桥式全控整流电路是一种采用单相半波可控整流器结构组成的三相可控整流电路。
一般采用交-直-交的方式将三相电源的电能转换为直流电源供给负载使用。
该电路结构简单,可靠性高,输出电流稳定。
实验设备:
2. 示波器。
3. 多用表。
实验步骤:
1. 将三相交流电源接入实验箱的三相输入端,注意接线正确。
2. 打开实验箱电源开关,使电源工作。
3. 调整多用表测量输出电压和输出电流。
4. 通过改变触发角来改变输出电压的大小,记录不同触发角对输出电压和电流的影响。
5. 将示波器连接到电路中测量输出波形,观察波形随着触发角的变化而发生的变化。
实验结果:
观察实验箱测量仪器读数,当改变触发角时,输出电压大小也会相应改变。
输出电压
与触发角度是成反比关系的。
通过观察示波器显示的实验结果,可以看到,随着触发角的变化,输出波形也会随之
发生变化。
当触发角为0时,输出波形为直流电平;当触发角为90时,输出波形为正半波;当触发角为180度时,输出波形为负半波;当触发角为270度时,输出波形又变为正
半波。
三相桥式全控整流电路是一种常用的电力电子器件,其输出电压大小与触发角成反比
关系,输出波形则随触发角的变化而变化。
掌握该电路的工作原理,能够较好地开发利用
其电气特性。
三相桥式全控整流电路实验报告
实验三三相桥式全控整流电路实验一.实验目得1.熟悉MCL-18, MCL-33组件。
2.熟悉三相桥式全控整流电路得接线及工作原理。
二.实验内容1.MCL-18得调试2.三相桥式全控整流电路3.观察整流状态下,模拟电路故障现象时得波形。
三.实验线路及原理实验线路如图3-12所示。
主电路由三相全控整流电路组成。
触发电路为数字集成电路,可输出经高频调制后得双窄脉冲链。
三相桥式整流电路得工作原理可参见“电力电子技术”得有关教材。
四.实验设备及仪器1.MCL—Ⅱ型电机控制教学实验台主控制屏。
2.MCL-18组件3.MCL-33组件4.MEL-03可调电阻器(900 )6.二踪示波器7.万用表五.实验方法1.按图3-12接线,未上主电源之前,检查晶闸管得脉冲就是否正常。
(1)打开MCL-18电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33得双脉冲观察孔,应有间隔均匀,相互间隔60o得幅度相同得双脉冲。
(3)用示波器观察每只晶闸管得控制极、阴极,应有幅度为1V—2V得脉冲。
注:将面板上得Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲得六个琴键开关均拨到“接通”, 琴键开关不按下为导通。
(4)将给定输出Ug接至MCL-33面板得Uct端,在Uct=0时,调节偏移电压Ub,使α=90o。
(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。
)2.三相桥式全控整流电路(1)电阻性负载按图接线,将Rd调至最大450Ω (900Ω并联)。
三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。
调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)得波形,并记录相应得Ud与交流输入电压U2 数值。
三相桥式全控整流电路实验报告
三相桥式全控整流电路实验报告实验三三相桥式全控整流电路实验一.实验目的1.熟悉MCL-18, MCL-33组件。
2.熟悉三相桥式全控整流电路的接线及工作原理。
二.实验内容1.MCL-18的调试2.三相桥式全控整流电路3.观察整流状态下,模拟电路故障现象时的波形。
三.实验线路及原理实验线路如图3-12所示。
主电路由三相全控整流电路组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。
四.实验设备及仪器1.MCL—Ⅱ型电机控制教学实验台主控制屏。
2.MCL-18组件3.MCL-33组件4.MEL-03可调电阻器(900 )6.二踪示波器7.万用表五.实验方法1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开MCL-18电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V—2V的脉冲。
注:将面板上的Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲的六个琴键开关均拨到“接通”,琴键开关不按下为导通。
(4)将给定输出Ug接至MCL-33面板的Uct端,在Uct=0时,调节偏移电压Ub,使α=90o。
(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。
)2.三相桥式全控整流电路(1)电阻性负载按图接线,将Rd调至最大450Ω (900Ω并联)。
三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。
调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。
三相桥式相控整流实验报告
实验报告三三相桥式相控整流电路
一、实验电路结构分析
三相桥式相控整流电路由一个共阴极和一个共阳极三相半波整
流电路组成。
一个周期内6个晶闸管以(1-2)→(2-3)→(3-4)→(4-5)→(5-6)→(6-1)顺序导通,本组内SCR每隔120°换流一次,共阴极与共阳极的换流点隔60°。
二、实验数据及波形分析
由于任何时刻都要求有一个共阴极管和一个共阳极管导通,因此必须使用双窄脉冲或宽脉冲触发,本次实验选择双窄脉冲触发,波形如下:
输入线电压:由于晶闸管换相干扰造成电网电压畸变。
Ud =75V
U r=75V
U d=60V:晶闸管关断时产生震荡
Ur=57.5V:由于U d波动增大导致U r波动增大
α=60°时
U d=40V
Ur=40V
α=90°时
U d=12V
U r=12V 出现断流情况
比较波形可知:随着α的增大,输出电压的平均值降低;晶闸管换相时电压震荡幅度增大,震荡时间缩短,流过负载电阻的电流波动增大,因此负载电阻两端的电压波动也增大。
当α=90°时,会出现断流情况,由于晶闸管提前关断,所以此时已无换相重叠现象。
三、实验总结
三相桥式相控整流电路的优点是输出为六脉波,因此输出电压波动更小;变压器绕组正负半周都工作,效率高;输出电压的极性和幅值都可调。
但控制方式复杂。
通过本次实验,加深了我对相控整流电路工作原理的理解,对相关计算理解更深入。
电力电子技术三相桥式全控整流及有源逆变电路实验报告
纯阻性:
α
30°
U2
139.7
Id
0.66
Ud(记录值)
305
ቤተ መጻሕፍቲ ባይዱ
Ud(计算值)
283.1
60° 141.2 0.42 195 165.7
90° 142.2 0.12
55 44.6
七、 实验结果与分析 1.纯阻性 Ud=f(a)的相位图片:
三相桥式全控整流电路带纯电阻负载时的移相范围为 0~120°,当α>60°时,阻感性 质负载时的电压出现负值,但是纯阻性负载的电压 Ud 不会出现负值(而是断续),纯电阻 负载时和阻感性负载时的负载电流有差异,这是因为电感的平波作用导致的,电感越大, 对电流的平直作用越强,输出的 Id 越接近于水平的直线。
关 S2 拨到接地位置(即 Uct=0),调节 PE-11 上的偏移电压电位器 RP,用数字存储示波
器同时观察 A 相同步电压信号和“双脉冲观察孔” VT1 的输出波形,使α=170°。
适当增加给定 Ug 的正电压输出,观测 PE-11 上“脉冲观察孔”的波形,此时应观测到
双窄触发脉冲
用 20 芯的扁平电缆,将 PE-11 的“触发脉冲输出”端与“触发脉冲输入”端相连,并
150°范围内调节,同时,根据需要不断调整负载电阻 R,使得负载电流 Id 保持在 0.6A 左右
注意 Id 不得超过 0.82A、。用示波器观察并记录α=30°、60°及 90°时的整流电压 Ud 和
晶闸管两端电压 Uvt 的波形,并记录相应的 Ud 数值。
3、三相桥式有源逆变电路
六、 实验记录与处理
在三相桥式有源逆变电路中,电阻将并联形式改为串联形式、电感的取值与整流的完全 一致,而三相不控整流及心式变压器均在电源控制屏上,其中心式变压器用作升压变压器, 逆变输出的电压接心式变压器的中压端 Am、Bm、Cm,返回电网的电压从高压端 A、B、C 输出,变压器接成 Y/Y 接法。
三相桥式全控整流电路实验报告
实验编号实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础课程代码:面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年10 月20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。
2.MCL—01组件。
3.MCL—02组件。
4.MEL-03可调电阻器。
5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图四、实验示意图:五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。
2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
三相全控桥式整流电路实验报告
三相全控桥式整流电路实验报告三相全控桥式整流电路实验报告引言:电力是现代社会的基础设施之一,而电力的供应离不开电力系统的稳定运行。
整流电路是电力系统中的重要组成部分,它将交流电转换为直流电,为各种电子设备提供所需的稳定电源。
本实验旨在研究三相全控桥式整流电路的工作原理和性能。
一、实验目的本实验的目的是探究三相全控桥式整流电路的工作原理,并通过实验验证其性能指标。
具体目标如下:1. 理解三相全控桥式整流电路的原理;2. 掌握三相全控桥式整流电路的搭建方法;3. 测量和分析整流电路的输出电压和电流波形;4. 计算整流电路的输出电压和电流的平均值、峰值和脉动系数。
二、实验原理三相全控桥式整流电路由三相交流电源、三相可控硅和负载组成。
其工作原理如下:1. 当可控硅的控制电压施加在其控制端时,可控硅将导通,使得电流可以流过负载;2. 当可控硅的控制电压为零时,可控硅将截止,使得电流无法通过负载。
三、实验步骤1. 按照实验电路图搭建三相全控桥式整流电路;2. 连接实验仪器,包括交流电源、示波器和负载;3. 开启交流电源,调节电压和频率为合适的数值;4. 通过控制可控硅的触发角,改变整流电路的输出波形;5. 使用示波器测量和记录整流电路的输出电压和电流波形;6. 计算整流电路的输出电压和电流的平均值、峰值和脉动系数。
四、实验结果与分析通过实验测量和计算,得到了三相全控桥式整流电路的输出电压和电流的各项指标。
根据实验数据,可以得出以下结论:1. 整流电路的输出电压和电流呈现出脉动的特点,这是由于可控硅的导通和截止引起的;2. 控制可控硅的触发角可以改变整流电路的输出波形,从而调节输出电压和电流的大小;3. 整流电路的输出电压和电流的平均值、峰值和脉动系数与可控硅的触发角有关,可以通过调节触发角来控制输出电压和电流的稳定性。
五、实验总结本实验通过搭建三相全控桥式整流电路,探究了其工作原理和性能指标。
实验结果表明,通过控制可控硅的触发角,可以调节整流电路的输出电压和电流的大小和稳定性。
三相桥式全控整流电路实验报告
三相桥式全控整流电路实验报告三相桥式全控整流电路实验报告引言:在现代电力系统中,电力的传输和分配都离不开电力电子设备。
全控整流电路作为一种重要的电力电子器件,广泛应用于变频调速、电力质量改善等领域。
本实验旨在研究三相桥式全控整流电路的工作原理和性能特点,并通过实验验证其可靠性和稳定性。
一、原理介绍三相桥式全控整流电路是由六个可控硅器件组成的桥式整流电路。
通过对六个可控硅器件的控制,可以实现对输入交流电的整流和调节。
其工作原理如下:当输入交流电为正半周时,通过适当控制可控硅器件的导通时间,使得输出电压为正;当输入交流电为负半周时,通过适当控制可控硅器件的导通时间,使得输出电压为负。
通过不断调整可控硅的导通角,可以实现对输出电压的精确控制。
二、实验装置和步骤实验装置包括三相交流电源、三相桥式全控整流电路、负载电阻和测量仪器。
实验步骤如下:1. 连接实验装置:将三相交流电源的三相输出接入三相桥式全控整流电路的输入端,将负载电阻接入输出端,同时连接测量仪器以测量电流和电压。
2. 调节可控硅的触发角:通过控制触发脉冲的时刻和宽度,调节可控硅的导通时间,从而控制输出电压的大小。
3. 测量电流和电压:通过电流表和电压表分别测量负载电阻上的电流和输出电压的大小。
4. 记录实验数据:记录不同触发角下的输出电压和电流值,并绘制电压-电流特性曲线。
三、实验结果与分析通过实验测量和数据记录,得到了不同触发角下的输出电压和电流值。
根据这些数据绘制出了电压-电流特性曲线。
通过分析曲线,可以得出以下结论:1. 输出电压与触发角度成正比:当触发角度增大时,输出电压也随之增大;当触发角度减小时,输出电压也随之减小。
2. 输出电流与触发角度成正比:当触发角度增大时,输出电流也随之增大;当触发角度减小时,输出电流也随之减小。
3. 输出电压和电流的波形呈现近似直流的特点,具有较好的稳定性和可控性。
四、实验总结通过本次实验,我们深入了解了三相桥式全控整流电路的工作原理和性能特点。
三相桥式全控整流电路实验报告
三相桥式全控整流电路实验报告The Standardization Office was revised on the afternoon of December 13, 2020实验三三相桥式全控整流电路实验一.实验目的1.熟悉MCL-18, MCL-33组件。
2.熟悉三相桥式全控整流电路的接线及工作原理。
二.实验内容1.MCL-18的调试2.三相桥式全控整流电路3.观察整流状态下,模拟电路故障现象时的波形。
三.实验线路及原理实验线路如图3-12所示。
主电路由三相全控整流电路组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。
四.实验设备及仪器1.MCL—Ⅱ型电机控制教学实验台主控制屏。
2.MCL-18组件3.MCL-33组件4.MEL-03可调电阻器(900 )6.二踪示波器7.万用表五.实验方法1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开MCL-18电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V—2V的脉冲。
注:将面板上的Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲的六个琴键开关均拨到“接通”,琴键开关不按下为导通。
(4)将给定输出Ug接至MCL-33面板的Uct端,在Uct=0时,调节偏移电压Ub,使α=90o。
(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。
) 2.三相桥式全控整流电路(1)电阻性负载按图接线,将Rd调至最大450Ω (900Ω并联)。
三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。
调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O 时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。
三相桥式全控整流电路实验报告
三相桥式全控整流电路实验报告实验目的,通过搭建三相桥式全控整流电路,了解其工作原理和特性,掌握整流电路的调试方法和技巧。
实验器材,三相交流电源、三相桥式全控整流电路板、示波器、电压表、电流表、直流电源。
实验原理,三相桥式全控整流电路由六个可控硅组成,分别为T1、T2、T3、T4、T5、T6,接在三相交流电源上。
当T1和T4导通时,电流从A相正半周流向负极,当T2和T5导通时,电流从B相正半周流向负极,当T3和T6导通时,电流从C相正半周流向负极。
这样便实现了三相桥式全控整流电路的整流功能。
实验步骤:1. 按照实验电路原理图,搭建三相桥式全控整流电路。
2. 接通三相交流电源,调节电压和频率,观察整流电路的工作状态。
3. 使用示波器观察整流电路的输入输出波形,记录波形特点。
4. 调节触发脉冲的相位和宽度,观察整流电路的输出电压和电流变化。
5. 测量整流电路的输出电压和电流,绘制特性曲线。
实验结果与分析:通过实验观察和测量,我们得到了三相桥式全控整流电路的输入输出波形和特性曲线。
在不同触发脉冲相位和宽度的情况下,整流电路的输出电压和电流呈现出不同的变化规律。
当触发脉冲提前或延迟,整流电路的输出电压和电流波形会发生相位移动和变形,从而影响整流电路的工作效果。
结论:通过本次实验,我们深入了解了三相桥式全控整流电路的工作原理和特性,掌握了整流电路的调试方法和技巧。
同时,我们也发现了整流电路在不同触发脉冲条件下的输出特性,为今后的实际工程应用提供了重要的参考依据。
实验总结:三相桥式全控整流电路作为一种常见的电力电子器件,具有广泛的应用前景。
通过本次实验,我们不仅学习了整流电路的基本原理,还掌握了实际调试和测量的技能。
希望通过今后的实验和学习,能够更深入地理解电力电子技术,为工程实践和科研创新提供有力支持。
以上就是本次三相桥式全控整流电路实验的报告内容,希望能够对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称三相桥式全控整流电路实验课程名称电力电子技术
院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:
华北电力大学
实验一、三相桥式全控整流电路实验
一、实验目的
1.熟悉三相桥式全控整流电路的接线、器件和保护情况。
2.明确对触发脉冲的要求。
3.掌握电力电子电路调试的方法。
4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。
二、实验类型
本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。
三、实验仪器
1.MCL-III教学实验台主控制屏。
2.MCL—33组件及MCL35组件。
3.二踪示波器
4.万用表
5.电阻(灯箱)
四、实验原理
实验线路图见后面。
主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。
五、实验内容和要求
1.按图接好主回路。
2.接好触发脉冲的控制回路。
将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。
打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。
(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。
(3)用万用表记录α=0O、30O、60O、90O、120O时对应的Uct(Ug)的值。
在做下
3.三相桥式全控整流电路
(1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。
参考公式:α<=60°时 d U αcos 34.22U = α> 60°时 d U )3/cos 1(34.22)(πα++=U
(2)电路带阻感负载的情况下:在负载中串入700mH 的电感调节Uct (Ug ),使α在30o ~90o 范围内,用示波器观察记录α=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )以及负载电流d I 的波形,并用万用表记录相应的Ud 和交流输入电压U 2数值。
参考公式:d U αcos 34.22U =(阻感性负载) 4.电路模拟故障现象观察。
在α=60O 时,断开某一晶闸管元件的触发脉冲开关,则该元件无触发脉冲即该支路不能导通,观察并记录此时的u d 波形。
六、注意事项
1. 实验时要先观测触发脉冲,确保触发脉冲大小及相位正确才能给主回路通电;
2. 在改接线时要断开电源重新接线,改完后要进行检查才可送。
3. 注意使用示波器时,各个旋钮的位置。
4. 使用万用表时应注意测量直流量和交流量档位的选择。
七、实验报告:
1.画出电路的移相特性Ud=f(α)曲线
2.作出整流电路的输入—输出特性U d /U 2=f (α)
3.画出三相桥式全控整流电路时,α角为30O 、60O 、90O 时的u d 、u VT 波形 4.简单分析模拟故障现象
八、思考题
1.能否用双踪示波器同时观察触发电路与整流电路的波形?
2.在可控整流电路中,续流二极管VD起什么作用?在什么情况下需要接入?。