2000考研数一真题答案及详细解析

合集下载

2000考研数一真题及答案

2000考研数一真题及答案

2000考研数一真题及答案一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 0=⎰(2) 曲面2222321x y z ++=在点()1, -2, 2的法线方程为(3) 微分方程"3'0xy y +=的通解为(4) 已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = (5) 设两个相互独立的事件A 和B 都不发生的概率为19, A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设(),()f x g x 是恒大于零的可导函数,且'()()()'()0,f x g x f x g x -<则当a x b << 时,有 ( )(A)()()()()f x g b f b g x > (B) ()()()()f x g a f a g x >(C)()()()()f x g x f b g b > (D) ()()()()f x g x f a g a >(2) 设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有 ( ) (A)14S S xdS xdS =⎰⎰⎰⎰ (B)14S S ydS xdS =⎰⎰⎰⎰ (C)14S S zdS xdS =⎰⎰⎰⎰ (D)14S S xyzdS xyzdS =⎰⎰⎰⎰(3) 设级数1n n u∞=∑收敛,则必收敛的级数为 ( )(A)()11.nn n u n ∞=-∑ (B)21.n n u ∞=∑ (C)2121().n n n u u ∞-=-∑ (D)11().n n n uu ∞+=-∑(4) 设n 维列向量组1,,()m m n αα⋅⋅⋅<线性无关,则n 维列向量组1,,m ββ⋅⋅⋅线性无关的充分必要条件为 ( )(A) 向量组1,,m αα⋅⋅⋅可由向量组1,,m ββ⋅⋅⋅线性表示.(B) 向量组1,,m ββ⋅⋅⋅可由向量组1,,m αα⋅⋅⋅线性表示.(C) 向量组1,,m αα⋅⋅⋅与向量组1,,m ββ⋅⋅⋅等价.(D) 矩阵()1,,m A αα=⋅⋅⋅与矩阵()1,,m B ββ=⋅⋅⋅等价.(5) 设二维随机变量() ,X Y 服从二维正态分布,则随机变量X Y ξ=+与X Y η=-不相关的充分必要条件为 ( )(A) ()().E X E Y = (B) [][]2222()()()().E X E X E Y E Y -=- (C) 22()().E X E Y = (D) [][]2222()()()().E X E X E Y E Y +=+三、(本题满分5分) 求1402sin lim .1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭四、(本题满分6分) 设,,x x z f xy g y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.z x y ∂∂∂ 五、(本题满分6分) 计算曲线积分22,4L xdy ydx I x y -=+⎰其中L 是以点()1,0为中心, R 为半径的圆周()R >1,取逆时针方向.六、(本题满分7分)设对于半空间0x >内任意的光滑有向封闭曲面S , 都有2()()0,x S xf x dydz xyf x dzdx e zdxdy --=⎰⎰其中函数()f x 在(0, +)∞内具有连续的一阶导数,且0lim ()1,x f x +→== 求()f x . 七、(本题满分6分)求幂级数113(2)nn n n x n ∞=+-∑的收敛区域,并讨论该区间端点处的收敛性. 八、(本题满分7分)设有一半径为R 的球体,0P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、(本题满分6分)设函数()f x 在[]0,π上连续,且00()0,()cos 0,f x dx f x xdx ππ==⎰⎰试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6 分)设矩阵A 的伴随矩阵*10000100,10100308A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦且113,ABA BA E --=+其中E 为4 阶单位矩阵,求矩阵B .十一、(本题满分8分) 某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐,新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年一月份统计的熟练工和非熟练工所占百分比分别为,n x n y 记成向量n n x y ⎛⎫ ⎪⎝⎭. (1) 求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:11;n n n n x x A y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2) 验证1241,11ηη-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭是A 的两个线性无关的特征向量,并求出相应的特征值;(3) 当111212x y ⎡⎤⎢⎥⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎣⎦时,求11.n n x y ++⎛⎫ ⎪⎝⎭ 十二、(本题满分8分)某流水生产线上每个产品不合格的概率为()01p p <<,各产品合格与否相互独立,当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了产品的个数为X , 求X 的数学期望()X E 和方差()X D .十三、(本题满分8分)设某种元件的使用寿命X 的概率密度为2()2,(;)0, x e x f x x θθθθ--⎧≥=⎨<⎩其中0θ>为未知参数,又设12,,,n x x x ⋅⋅⋅是X 的一组样本观测值,求参数θ的最大似然估计值. 参考答案。

2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

x y2
f12)
1 y2
f2
1 y
(xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
三、(本题满分 5 分)
1

lim(
x0
2
ex
4
sin x
x) .
1 ex
1
4
3
解:因
lim
x0
(
2
ex
4
sin x
2e
) lim (
x
x0
x e
4
x
sin x) 1 x

1 ex
e x 1
1
1
2 ex
lim (
x0
4
sin x) x
2 ex
lim (
x0
4
sin x) 2 1 1, x
(5) 设二维随机变量 X ,Y 服从二维正态分布,则随机变量 X Y 与 X Y 不相关
的充分必要条件为
(B)
(A) E(X)=E(Y)
(B) E X 2 E X 2 E Y 2 E Y 2
(C) E X 2 E Y 2
(D) E X 2 E X 2 E Y 2 E Y 2
为半径的圆周(R>1).取逆时

2000年-年考研数学一历年真题完整版(word版)

2000年-年考研数学一历年真题完整版(word版)

2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)⎰=_____________.(2)曲面2222321x y z ++=在点(1,2,2)--的法线方程为_____________. (3)微分方程30xy y '''+=的通解为_____________.(4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = _____________. (5)设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 、()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,有 (A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x >(C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >(2)设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有 (A)14SS xdS xdS =⎰⎰⎰⎰(B)14SS ydS xdS =⎰⎰⎰⎰(C)14SS zdS xdS =⎰⎰⎰⎰(D)14SS xyzdS xyzdS =⎰⎰⎰⎰(3)设级数1nn u∞=∑收敛,则必收敛的级数为(A)1(1)nn n un ∞=-∑(B)21nn u∞=∑(C)2121()n n n uu ∞-=-∑(D)11()nn n uu ∞+=+∑(4)设n 维列向量组1,,()m m n <αα线性无关,则n 维列向量组1,,m ββ线性无关的充分必要条件为(A)向量组1,,m αα可由向量组1,,m ββ线性表示 (B)向量组1,,m ββ可由向量组1,,m αα线性表示(C)向量组1,,m αα与向量组1,,m ββ等价(D)矩阵1(,,)m =A αα与矩阵1(,,)m =B ββ等价(5)设二维随机变量(,)X Y 服从二维正态分布,则随机变量X Y ξ=+与 X Y η=-不相关的充分必要条件为(A)()()E X E Y =(B)2222()[()]()[()]E X E X E Y E Y -=-(C)22()()E X E Y =(D)2222()[()]()[()]E X E X E Y E Y +=+三、(本题满分6分)求142e sin lim().1exx xxx→∞+++四、(本题满分5分)设(,)()x x z f xy g y y =+,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.zx y∂∂∂五、(本题满分6分)计算曲线积分224L xdy ydxI x y -=+⎰,其中L 是以点(1,0)为中心,R 为半径的圆周(1),R >取逆时针方向.六、(本题满分7分)设对于半空间0x >内任意的光滑有向封闭曲面,S 都有2()()e 0,x Sx f x d y d zx y f xd z d x z d x d y --=⎰⎰其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1,x f x +→=求()f x .七、(本题满分6分) 求幂级数113(2)nn nn x n ∞=+-∑的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为R 的球体0,P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、(本题满分6分)设函数()f x 在[0,]π上连续,且()0,()cos 0.f x dx f x xdx ππ==⎰⎰试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ⎛⎫⎪⎝⎭(1)求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:11.n n n n x x y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A(2)验证1241,11-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭ηη是A 的两个线性无关的特征向量,并求出相应的特征值. (3)当111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭时,求11.n n x y ++⎛⎫ ⎪⎝⎭十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p <<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X ,求X 的数学期望()E X 和方差()D X .十三、(本题满分6分)设某种元件的使用寿命X 的概率密度为2()2e (;)0x x f x x θθθθ-->⎧=⎨≤⎩,其中0θ>为未知参数.又设12,,,n x x x 是X 的一组样本观测值,求参数θ的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设e (sin cos )(,xy a x b x a b =+为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)222z y x r ++=,则(1,2,2)div(grad )r -= _____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设24+-=A A E O ,则1(2)--A E = _____________.(5)()2D X =,则根据车贝晓夫不等式有估计≤≥-}2)({X E X P _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(A) (B)(C) (D)(2)设),(y x f 在点(0,0)的附近有定义,且1)0,0(,3)0,0(='='y x f f 则 (A)(0,0)|3dz dx dy =+(B)曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}(C)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{1,0,3}(D)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{3,0,1}(3)设0)0(=f 则)(x f 在x =0处可导⇔(A)20(1cos )lim h f h h→-存在(B) 0(1e )lim h h f h→-存在(C)2(sin )limh f h h h→-存在(D)hh f h f h )()2(lim-→存在(4)设111140001111000,11110000111100⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭A B ,则A 与B (A)合同且相似 (B)合同但不相似 (C)不合同但相似(D)不合同且不相似(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 相关系数为(A) -1 (B)0(C)12(D)1三、(本题满分6分)求2arctan e exxdx ⎰.四、(本题满分6分)设函数),(y x f z =在点(1,1)可微,且3)1,1(,2)1,1(,1)1,1(='='=y x f f f ,)),(,()(x x f x f x =ϕ,求13)(=x x dxd ϕ.五、(本题满分8分)设()f x = 21a r c t a n 010x x x x x +≠=,将)(x f 展开成x 的幂级数,并求∑∞=--1241)1(n n n的和.六、(本题满分7分) 计算222222()(2)(3)LI y z d x z x d y x y d z =-+-+-⎰,其中L 是平面 2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f .证明:(1)对于)1,0()0,1( -∈∀x ,存在惟一的)1,0()(∈x θ,使 )(x f =)0(f +))((x x f x θ'成立. (2)5.0)(lim 0=→x x θ.八、(本题满分8分)设有一高度为t t h )((为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?九、(本题满分6分)设12,,,s ααα为线性方程组=AX O 的一个基础解系,1112221223121,,,s s t t t t t t =+=+=+βααβααβαα,其中21,t t 为实常数,试问21,t t 满足什么条件时12,,,s βββ也为=AX O 的一个基础解系?十、(本题满分8分)已知三阶矩阵A 和三维向量x ,使得2,,A A x x x 线性无关,且满足3232=-A A A x x x . (1)记2(,,),=P A A x x x 求B 使1-=A PBP . (2)计算行列式+A E .十一、(本题满分7分)设某班车起点站上客人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<且中途下车与否相互独立.Y 为中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分)设2~(,)X N μσ抽取简单随机样本122,,,(2),n X X X n ≥样本均值∑==ni i X n X 2121,∑=+-+=ni i n i X X X Y 12)2(,求().E Y2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________. (2)已知2e 610yxy x ++-=,则(0)y ''=_____________.(3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim=∞→n n u n ,则级数)11()1(11+++-∑n n n u u 为(A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数(C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与2arctan 0ex t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}ex y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y y x dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n n n x x y (+∞<<∞-x )满足微分方程e xy y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x =1c o s 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体的概率分布为其中θ(02θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点(C)两个极小值点和两个极大值点(D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立(B)n n c b <对任意n 成立(C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点 (C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 (4)设向量组I:12,,,r ααα可由向量组II:12,,,s βββ线性表示,则(A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关 (C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①②(B)①③(C)②④(D)③④(6)设随机变量21),1)((~XY n n t X =>,则 (A)2~()Y n χ (B)2~(1)Y n χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin e e e e y x y x LLx dy y dx x dy y dx ---=-⎰⎰.(2)sin sin 2e e 2.y x Lx dy y dx π--≥⎰六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为()y y x =满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分) 设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y xf t F σ,⎰⎰⎰-+=t t D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分) 设总体X 的概率密度为()f x =2()2e 0x θ--x x θ>≤其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x .(2)求统计量θˆ的分布函数)(ˆx F θ. (3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ .(2)已知(e )e x xf x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n na收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(本题满分12分) 计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10n x nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有 (A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数(D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xzxy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==(D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n(B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它 求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z (01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '= (B)若00(,)0x f x y '=,则00(,)0y f x y '≠ (C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T =C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A > (B)()()P A B P B >(C)()()P AB P A =(D)()()P AB P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y+=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x=+-展开成x 的幂级数. (18)(本题满分12分)设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂.(1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解.(21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X 的概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当0x +→时,(A)1-(B)1(D)1-(2)曲线1ln(1e )x y x=++,渐近线的条数为 (A)0 (B)1 (C)2(D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设()()xF x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F =(D)5(3)(2)4F F =--(4)设函数()f x 在0x =处连续,下列命题错误的是(A)若0()limx f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()lim x f x x→ 存在,则(0)0f '=(D)若0()()lim x f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n ==则下列结论正确的是(A)若12u u >,则{n u }必收敛(B)若12u u >,则{n u }必发散(C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是(A)(,)x y dx Γ⎰(B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是 (A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪⎪⎝⎭B ,则A 与B(A)合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为(A)()X f x(B)()Y f y(C)()X f x ()Y f y (D)()()X Y f x f y二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______. (12)设(,)f u v 为二元可微函数,(,)yxz f x y =,则zx∂∂=______. (13)二阶常系数非齐次线性方程2''4'32e xy y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵01000010********⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则3A 的秩为________.(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤)(17)(本题满分11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值. (18)(本题满分10分)计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中 ∑为曲面221(01)4y z x z =--≤≤的上侧.(19)(本题满分11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=. (20)(本题满分10分) 设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+(2)求()y x 的表达式. (21)(本题满分11分)设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321,x x x a ++=-有公共解,求a 的值及所有公共解. (22)(本题满分11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)T λλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (1)求{2}.P X Y >(2)求Z X Y =+的概率密度.(24)(本题满分11分) 设总体X 的概率密度为1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ. (2)判断24X 是否为2θ的无偏估计量,并说明理由.。

2000数学一解析

2000数学一解析

2000年数学(一)真题解析一、填空题(1)【答案】7T方法一—x 2 dx = f a /1 — (jc — l)2 d(j? — 1)=J 0a /1 — x 2 dj?方法二1/----------帀x = sin tV 1 —无=o根据定积分的几何应用,「屆—工认即以曲线J 0y = Jlx — jc 2 (0 £工W 1)为曲边的曲边梯形的面积. 如图所示,显然[丿2工-工f =中.⑵【答案】千1_卄2_「2-46cos 2/d/=/2=£x Ko 2【解】"={F : ,F ; ,F ;} |(1,一2,2)= {2工,4y ,6z} |(i,_2,2)= {2, — 8,12},qr 1 yi —I — 2 N 2则曲面在点(1.—2,2)处的法线方程为、工占=乞丁.(3) 【答案】y =q + C2(C 】,C2为任意常数).X【解】 方法一 由xy" + 33/' = 0 ,得y"-----y' =0.X解得/hCojM =$,积分得原方程的通解为y =^ + C 2(C 15C 2为任意常数).XJC方法二 由砂"+ 3y f =0,得 x 7,y" + 3x 2y f =0 或(x 3y'Y =0.「 C于是工s ,=c 。

,解得y =-|,积分得原方程通解为^=4 + C 2(C.,C 2为任意常数).jc x (4) 【答案】 一1.【解】 因为原方程组无解,所以r (A ) <r (A ),而r (A )三3,所以r (A ) <3.于是|A 1 = 0,解得a =-1或a =3._ I 121/I 21 ! 1 \/I2 11当a = 3时,由A=”35Y -> 0 - 1-* °—131'13—2i o''o 1-3 - 1''00 00得r (A ) =r (A ) =2,原方程组有无数个解,所以a 工3 ,故a == -1.2(5)【答案】 y.【解】PCAB) =PCA) -F(AB), P CAB) = P (B) - P (AB),由P(AB)=P(AB),得P(A)=P(B).--------------1«由P(AB)=P(A+B)=l-P(A+B)=y,得P(A+B)=§.又P(A+B)=P(A)+P(B)-P(AB)=2P(A)-P2(A),o o得P2(A)-2P(A)+y=0,解得P(A)=y.二、选择题(6)【答案】(A).【解】由厂Q)gQ)TQ)g‘Q)<o,得&(工)」g(工)即牛¥为减函数,当a V工时,有牛牛>力黑>侏.gd g(工)g lb)于是/'(•z)g(b)>f(b)gO,应选(A).方法点评:本题考查函数单调性.若y'(H)>o或y'(_z)<o时,/•&)严格递增或严格递减.注意如下技巧:若题中出现/'(_r)g(>z)—/■(H)g'(_z)时,一般构造辅助函数;g(H)若题中出现f'(j;)+/(a-)g z(j:),一般构造辅助函数/(JC)g(J7).(7)【答案】(C).【解】由对面积的曲面积分的对称性质,得又因为s i x dS=JJ ydSs iF ds=.sjjj/dS=0,s』n dS9所以』n dS=4JJS]S S]zdS Z(1S9s】x dS9应选(C).方法点评:二重积分、三重积分、对弧长的曲线积分、对面积的曲面积分有类似的对称性,对面积的曲面积分的对称性如下:若》关于jrOy平面对称,其中工0夕平面上方为I】,则有]J/(z,z)dS=J0,12jJ/(jr,w)dS,I习f(.x,y,—z)=—f(工,y,z),f(a:,y,—2)=f{x,y,z).其他两种情形同上.(8)【答案】(D).【解】方法一令S”="]+“2------"”,因为工"”收敛,所以lim“”=0且limS…存在.”=]"-88设limS”=S,令S:=("]+“2)+("2+"3)+…+("”+«…+i)=2S”一"i+“卄i.OO因为limS:,=2S—-,所以级数工("”+"”+i)收敛,应选(D).心00”=1■(—1\H g/_1\W°°1方法二取U n=丄1、,级数工|/,1、收敛,而工丄1、发散,(A)不对;ln(z?+1)/z=1ln(n+1) z/=1n ln(7?+1)取"”=上?,级数》>7 =工丄发散,(B)不对;寸Tln = \” = 1"(—1 \n~l00 吕1取U ” =',级数工(“2”T — “2”)= Y —发散,(C)不对,应选(D).n n=\n=\ n(9) 【答案】(D).【解】 令 A =( a 1 .a?,…,a ”),B = (0i ,02,・"‘0,”).由 a i ,a 2, ,a m 线性无关,得 r (A ) =m .若山,卩-…仇线性无关,则r (B )=m,因为r(A) =r(B) 所以矩阵A.B 等价;反之,若矩阵A .B 等价,则r(A) — rCB ),因为r(A)—加,所以r(B)=加,又因为矩阵的秩与矩阵列向量组的秩相等,所以你,02,…,血的秩为加,即你心,…0”线性无关,应选(D).(10) 【答案】(E).【解】W 诃不相关的充分必要条件是Cov(f ,^) =0.而 Cov(Wq) =Cov(X + Y,X — Y) =Cov(X,X) -Cov(Y,Y) =D(X) -D(Y),又 D(X) =E(X 2) -[E(X )T , D(Y) =E(Y 2) ~[E(Y)]2,所以不相关的充分必要条件是D(X) =D(Y),即 E(X 2) ~[E(X)J 2 =E(Y 2) -[E(Y)]2,应选(E).三、解答题(11)【解】— . 1/2 + sin j - \ 2 -h e 7由 lim T + I I = lim -------r + lim z-o+'l+e ’ 1 1 ' 乂_°* 1 += 0 + 1=1,— . 1/2 + e J . sin jc \ 9 4- e 7 sin rlim ( T x I j = lim ------------lim --------=2 — 1 = 19/2 + e T sin x \得啸匚/ +甘)7(12)【解】由复合函数求偏导法则,得券= yf ; + —fi —气 g', dx y xdy=f\ + y (工咒y 〃-------gX1l —i £〃 无 〃〃 1 / y >—f 2 + ^yf 11 J 22 g s y yQ («Z 9』)=(13)【解】令 PCx.y) = , 2 24j ? + ydQ dp y 2 — 4 工23jc (4jc 2 + y 2 )2((乂,』)# (0,0)).如图所示,作L 0:4^2+y 2=r 2(r> 0且L 。

2000-2017年历年考研数学一真题(答案 解析)

2000-2017年历年考研数学一真题(答案 解析)

历年考研数学一真题1987-2017(答案+解析)(经典珍藏版)最近三年+回顾过去最近三年篇(2015-2017)2015年全国硕士研究生入学统一考试数学(一)试卷一、选择题1—8小题.每小题4分,共32分.1.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A)0(B)1(C)2(D)3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点0x =.但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C)2.设21123(x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则(A)321,,a b c =-==-(B)321,,a b c ===-(C)321,,a b c =-==(D)321,,a b c ===【详解】线性微分方程的特征方程为20r ar b ++=,由特解可知12r =一定是特征方程的一个实根.如果21r =不是特征方程的实根,则对应于()xf x ce =的特解的形式应该为()xQ x e ,其中()Q x 应该是一个零次多项式,即常数,与条件不符,所以21r =也是特征方程的另外一个实根,这样由韦达定理可得213212(),a b =-+=-=⨯=,同时*xy xe =是原来方程的一个解,代入可得1c =-应该选(A)3.若级数1nn a∞=∑条件收敛,则33,x x ==依次为级数11()nn n na x ∞=-∑的(A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点【详解】注意条件级数1nn a∞=∑条件收敛等价于幂级数1n nn ax ∞=∑在1x =处条件收敛,也就是这个幂级数的收敛为1,即11limn n na a +→∞=,所以11()n n n na x ∞=-∑的收敛半径111lim()nn n na R n a →∞+==+,绝对收敛域为02(,),显然33x x ==依次为收敛点、发散点,应该选(B)4.设D 是第一象限中由曲线2141,xy xy ==与直线3,y x y ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰()(A)1321422sin sin (cos ,sin )d f r r rdrπθπθθθθ⎰⎰(B)1231422sin sin (cos ,sin )d f r r rdrπθπθθθθ⎰⎰(C)1321422sin sin (cos ,sin )d f r r drπθπθθθθ⎰⎰(D)1231422sin sin (cos ,sin )d f r r drπθπθθθθ⎰⎰【详解】积分区域如图所示,化成极坐标方程:221212122sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=221141412222sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=也就是D:432sin sin r ππθθθ⎧<<⎪⎪⎨<<22所以(,)Df x y dxdy =⎰⎰1231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰,所以应该选(B).5.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A),a d ∉Ω∉Ω(B),a d ∉Ω∈Ω(C),a d ∈Ω∉Ω(D),a d ∈Ω∈Ω【详解】对线性方程组的增广矩阵进行初等行变换:22221111111111111201110111140311001212(,)()()()()B A b ad a d a d a d a d a a d d ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪==→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭方程组无穷解的充分必要条件是3()(,)r A r A b =<,也就是120120()(),()()a a d d --=--=同时成立,当然应该选(D).6.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A)2221232y y y -+(B)2221232y y y +-(C)2221232y y y --(D)2221232y y y ++【详解】()()132123100100001001010010,,,,Q e e e e e e P ⎛⎫⎛⎫⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,100001010T TQ P ⎛⎫⎪=- ⎪ ⎪⎝⎭211T T T Tf x Ax y PAPy y y⎛⎫⎪=== ⎪ ⎪-⎝⎭所以100100100210001001001100010010010101T T Q AQ P AP ⎛⎫⎛⎫⎛⎫⎛⎫⎛ ⎪ ⎪ ⎪⎪=-=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝故选择(A).7.若,A B 为任意两个随机事件,则()(A)()()()P AB P A P B ≤(B)()()()P AB P A P B ≥(C)2()()()P A P B P AB +≤(D)2()()()P A P B P AB +≥【详解】()(),()(),P A P AB P B P AB ≥≥所以2()()()P A P B P AB +≤故选择(C).8.设随机变量,X Y 不相关,且213,,EX EY DX ===,则2(())E X X Y +-=()(A)3-(B)3(C)5-(D)5【详解】222225(())()()()E X X Y E X E XY EX DX EX EXEY EX +-=+-=++-=故应该选择(D).二、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)9.20ln(cos )limx x x→=【详解】200122ln(cos )tan lim lim x x x x x x →→-==-.10.221sin cos x x dx x ππ-⎛⎫+=⎪+⎝⎭⎰.【详解】只要注意1sin cos xx+为奇函数,在对称区间上积分为零,所以22202214sin .cos x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰11.若函数(,)z z x y =是由方程2cos ze xyz x x +++=确定,则01(,)|dz =.【详解】设2(,,)cos zF x y z e xyz x x =+++-,则1(,,)sin ,(,,),(,,)z x y z F x y z yz x F x y z xz F x y z e xy'''=+-==+且当01,x y ==时,z =,所以010101001010010010(,)(,)(,,)(,,)|,|,(,,)(,,)y x z z F F z zx y F F ''∂∂=-=-=-=∂∂''也就得到01(,)|dz =.dx -12.设Ω是由平面1x y z ++=和三个坐标面围成的空间区域,则23()dxdydz x y z Ω++=⎰⎰⎰.【详解】注意在积分区域内,三个变量,,x y z 具有轮换对称性,也就是dxdydz dxdydz dxdydzx y z ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰11212366314()dxdydz dxdydz ()zD x y z z zdz dxdy z z dz ΩΩ++===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰13.n 阶行列式20021202002212-=-.【详解】按照第一行展开,得1111212122()()n n n n n D D D +---=+--=+,有1222()n n D D -+=+由于1226,D D ==,得11122222()n n n D D -+=+-=-.14.设二维随机变量(,)X Y 服从正态分布10110(,;,;)N ,则{}0P XY Y -<=.【详解】由于相关系数等于零,所以X ,Y 都服从正态分布,1101~(,),~(,)X N Y N ,且相互独立.则101~(,)X N -.{}{}{}{}1111101001001022222(),,P XY Y P Y X P Y X P Y X -<=-<=<->+>-<=⨯+⨯=三、解答题15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值.【详解】当0x →时,把函数1()ln()sin f x x a x bx x =+++展开到三阶的马克劳林公式,得233332331236123()(())(())()()()()x x f x x a x o x bx x x o x a aa xb x x o x =+-+++-+=++-+++由于当0x →时,(),()f x g x 是等价无穷小,则有10023a ab a k ⎧⎪+=⎪⎪-+=⎨⎪⎪=⎪⎩,解得,11123,,.a b k =-=-=-16.(本题满分10分)设函数)(x f y =在定义域I 上的导数大于零,若对任意的0x I ∈,曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且02()f =,求()f x 的表达式.【详解】)(x f y =在点00(,())x f x 处的切线方程为000()()()y f x x x f x '=-+令0y =,得000()()f x x x f x =-'曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积为00000142()()(()()f x S f x x x f x =--='整理,得218y y '=,解方程,得118C x y =-,由于02()f =,得12C =所求曲线方程为84.y x=-17.(本题满分10分)设函数(,)f x y x y xy =++,曲线223:C x y xy ++=,求(,)f x y 在曲线C 上的最大方向导数.【详解】显然11,f f y x x y∂∂=+=+∂∂.(,)f x y x y xy =++在(,)x y 处的梯度()11,,f f gradf y x x y ⎛⎫∂∂==++ ⎪∂∂⎝⎭(,)f x y 在(,)x y 处的最大方向导数的方向就是梯度方向,最大值为梯度的模gradf =所以此题转化为求函数2211(,)()()F x y x y =+++在条件223:C x y xy ++=下的条件极值.用拉格朗日乘子法求解如下:令2222113(,,)()()()L x y x y x y xy λλ=++++++-解方程组22212021203()()x y F x x y F y y x x y xy λλλλ⎧'=+++=⎪⎪'=+++=⎨⎪++=⎪⎩,得几个可能的极值点()11112112,,(,),(,),(,)----,进行比较,可得,在点21,x y ==-或12,x y =-=处,方向导数取到最大,3.=18.(本题满分10分)(1)设函数(),()u x v x 都可导,利用导数定义证明(()())()()()()u x v x u x v x u x v x '''=+;(2)设函数12(),(),,()n u x u x u x 都可导,12()()()()n f x u x u x u x = ,写出()f x 的求导公式.【详解】(1)证明:设)()(x v x u y =)()()()(x v x u x x v x x u y -++=∆∆∆()()()()()()()()u x x v x x u x v x x u x v x x u x v x =+∆+∆-+∆++∆-vx u x x uv ∆∆∆)()(++=xu x u x x v x u x y ∆∆∆∆∆∆∆)()(++=由导数的定义和可导与连续的关系00'limlim[()()]'()()()'()x x y u uy v x x u x u x v x u x v x x x x∆→∆→∆∆∆==+∆+=+∆∆∆(2)12()()()()n f x u x u x u x = 1121212()()()()()()()()()()n n nf x u x u x u x u x u x u x u x u x u x u ''''=+++ 19.(本题满分10分)已知曲线L的方程为z z x ⎧=⎪⎨=⎪⎩,起点为0()A ,终点为00(,)B ,计算曲线积分2222()()()Ly z dx z x y dy x y dz ++-+++⎰.【详解】曲线L的参数方程为cos ,cos x ty t z t =⎧⎪=⎨⎪=⎩起点0()A 对应2t π=,终点为00(,)B 对应2t π=-.22222222()()()cos )(cos )))(cos )cos Ly z dx z x y dy x y dzt t d t t d t t d tππ-++-+++=+++-⎰⎰2202sin .tdt ππ==20.(本题满分11分)设向量组123,,ααα为向量空间3R 的一组基,113223332221,,()k k βααβαβαα=+==++.(1)证明:向量组123,,βββ为向量空间3R 的一组基;(2)当k 为何值时,存在非零向量ξ,使得ξ在基123,,ααα和基123,,βββ下的坐标相同,并求出所有的非零向量.ξ【详解】(1)()12312321020201(,,),,k k βββααα⎛⎫⎪=⎪ ⎪+⎝⎭,因为201210224021201kk k k ==≠++,且123,,ααα显然线性无关,所以123,,βββ是线性无关的,当然是向量空间3R 的一组基.(2)设非零向量ξ在两组基下的坐标都是123(,,)x x x ,则由条件112233112233x x x x x x αααβββ++=++可整理得:1132231320()()x k x x k ααααα++++=,所以条件转化为线性方程组()1321320,,k k x ααααα++=存在非零解.从而系数行列式应该等于零,也就是12312310110101001002020(,,)(,,k k k k αααααα⎛⎫⎪== ⎪ ⎪⎝⎭由于123,,ααα显然线性无关,所以10110020k k=,也就是0k =.此时方程组化为()112121312230,,()x x x x x x ααααα⎛⎫⎪=++= ⎪ ⎪⎝⎭,由于12,αα线性无关,所以13200x x x +=⎧⎨=⎩,通解为1230x C x x C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪⎪-⎝⎭⎝⎭,其中C 为任意常数.所以满足条件的0C C ξ⎛⎫⎪= ⎪ ⎪-⎝⎭其中C 为任意不为零的常数.21.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.【详解】(1)因为两个矩阵相似,所以有trA trB =,A B =.也就是324235a b a a b b +=+=⎧⎧⇒⎨⎨-==⎩⎩.(2)由2120050150031()()E B λλλλλλ--=-=--=--,得A,B 的特征值都为12315,λλλ===解方程组0()E A x -=,得矩阵A 的属于特征值121λλ==的线性无关的特征向量为12231001.ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;解方程组50()E A x -=得矩阵A 的属于特征值35λ=的线性无关的特征向量为3111ξ-⎛⎫ ⎪= ⎪⎪⎝⎭令()123231101011,,P ξξξ--⎛⎫ ⎪== ⎪ ⎪⎝⎭,则1100010005.P AP -⎛⎫ ⎪= ⎪⎪⎝⎭22.(本题满分11分)设随机变量X 的概率密度为22000ln ,(),x x f x x -⎧>=⎨≤⎩对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为次数.求Y 的分布函数;(1)求Y 的概率分布;(2)求数学期望.EY 【详解】(1)X 进行独立重复的观测,得到观测值大于3的概率为313228()ln x P X dx +∞->==⎰显然Y 的可能取值为234,,,且2211117171234888648()(),,,,k k k P Y k C k k ---⎛⎫⎛⎫==⨯⨯=-= ⎪⎪⎝⎭⎝⎭(2)设22322221111()()(),()n n n n n n x S x n n xx x x x x ∞∞∞-===''''⎛⎫⎛⎫''=-====< ⎪ ⎪--⎝⎭⎝⎭∑∑∑2221717116648648()()()k k n E Y kP Y k k k S -∞∞==⎛⎫⎛⎫===-== ⎪⎪⎝⎭⎝⎭∑∑23.(本题满分11分)设总体X 的概率密度为1110,(;),x f x θθθ⎧≤≤⎪=-⎨⎪⎩其他其中θ为未知参数,12,,,n X X X 是来自总体的简单样本.(1)求参数θ的矩估计量;(2)求参数θ的最大似然估计量.【详解】(1)总体的数学期望为111112()()E X xdx θθθ==+-⎰令()E X X =,解得参数θ的矩估计量:21ˆX θ=-.(2)似然函数为12121110,,,,()(,,,;),n nn x x x L x x x θθθ⎧≤≤⎪-=⎨⎪⎩其他显然()L θ是关于θ的单调递增函数,为了使似然函数达到最大,只要使θ尽可能大就可以,所以参数θ的最大似然估计量为12ˆmin(,,,).nx x x θ=--..--2016年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选前的字母填在答题纸指定位置上。

2000年考研数学试题详解及评分参考

2000年考研数学试题详解及评分参考

……2 分
即 f (x) ( 1 1) f (x) 1 e2x , x 0 .按一阶线性非齐次微分方程通解公式,有
x
x
f
(
x)

e
(1
1 x
)dx
[
1
e2x

e
(
1 x
1)
dx
dx

C]ex[ Nhomakorabea1 e2x.xexdx C] ex (ex C) .
……5 分
f22

1 x2
g y x3
g .
……5 分
五、(本题满分 6 分)
计算曲线积分 I xdy ydx ,其中 L 是以点 (1, 0) 为中心,R 为半径的圆周 (R 1) .
L 4x2 y2
取逆时针方向.
解: P

y 4x2
y2
,Q
x 4x2
y2
P

0,
……4 分
即得
L
xdy ydx 4x2 y2

C
xdy ydx 4x2 y2

2 0
1 2

2
2
d

.
……6 分
六、(本题满分 7 分) 设对于半空间 x 0 内任意的光滑有向封闭曲面 S ,都有
2000 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·2000 年数学试题详解及评分参考
所以 zdS 4 xdS ,故选 (C).
S
S1

(3) 设级数 un 收敛,则必收敛的级数为 n 1
(A) 1n un
n 1

2000年全国硕士研究生入学统一考试数学一试题及解析

2000年全国硕士研究生入学统一考试数学一试题及解析

,其中
L 是以点
(1,0) 为中心,
R 为半径的圆周
(R
1)
取逆时针方向 . 【分析】 考查封闭曲线上第二类曲线积分。由于
R 1,故原点 (0,0) 包含在圆周 L 内,
而原点是被积函数的瑕点。 因此不满足格林公式条件, 须通过做一包含原点的闭曲线挖去原
点。在 L 所围域内做一有向闭曲线 C 挖去瑕点 (0,0) ,为了便于计算取 C : 4x2 y2 2 。
1, 2,
, m 线性无关
(A) 向量组 1, 2 , , m 可由向量组 1, 2, , m 线性表示
(B) 向量组 1, 2, , m 可由向量组 1, 2, , m 线性表示
(C)向量组 1, 2 , , m 与向量组 1, 2, , m 等价
(D) 矩阵 A ( 1, 2, , m ) 与矩阵 B ( 1, 2 , , m ) 等价
【分析】 考查线性表示、线性无关和等价的性质。
【详解】 (A) “充分非必要” 。向量组 1, 2 , , m 可由向量组 1, 2 , , m 线性表示,
则一定得到 1, 2, , m 线性无关(否则 1, 2 , , m 必线性相关了) 。但反之不真,如 1 (1 0 0 0 0)T , 2 (0 1 0 0 0)T ; 1 (0 0 0 1 0)T ,
(D) f ( x) g(x) f ( a) g(a)
【分析】 本题既可以用单调性来推出结论,也可以利用定积分保号性定理得到结论。
【详解】 法一:由于 f ( x) g(x) f ( x)g ( x) 0 ,所以
( f ( x) ) g( x)
f ( x) g (x) g ( x) f ( x) g 2 (x)

考研数学一真题2000

考研数学一真题2000

考研数学一真题2000考研数学一真题2000年,是许多考生备考过程中必不可少的一部分。

这套真题包含了许多典型的数学问题,涉及了各个知识点和解题方法。

通过对这套真题的深入分析和解答,可以帮助考生更好地理解数学的基本原理和解题思路,提升解题能力。

首先,我们来看一道典型的选择题。

题目如下:已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c为常数,且f'(1)=0,f''(1)=2,f'(2)=0,f''(2)=4,则a,b,c的值是()。

这道题目要求我们根据已知条件来确定a,b,c的值。

首先,我们可以利用已知条件求出f(x)的导函数和二阶导函数。

由于f'(1)=0,我们可以得到导函数f'(x)=3x^2+2ax+b的一次方程3+2a+b=0。

同理,由f''(1)=2,可以得到二阶导函数f''(x)=6x+2a的一次方程6+2a=2。

通过解这两个方程,我们可以求得a和b的值。

接下来,我们来看一道典型的填空题。

题目如下:已知函数f(x)在区间[0,1]上连续,且f(0)=1,f(1)=2,且对于任意的x∈[0,1],都有f(x)≥0,那么f(x)在[0,1]上的最小值是______。

这道题目要求我们确定函数f(x)在区间[0,1]上的最小值。

根据题目中的条件,我们可以得知函数f(x)在[0,1]上是连续的,并且f(0)=1,f(1)=2。

由于对于任意的x∈[0,1],都有f(x)≥0,我们可以得出结论函数f(x)在[0,1]上的最小值是0。

除了选择题和填空题,考研数学一真题2000年还包含了许多典型的解答题。

这些题目要求考生通过运用数学的基本原理和解题方法,来解答给定的问题。

通过解答这些题目,考生可以更好地理解数学的应用和推导过程。

例如,一道典型的解答题如下:已知函数f(x)=x^2+px+q,其中p,q为常数。

2000年-2019年考研数学一历年真题(完整版)

2000年-2019年考研数学一历年真题(完整版)

2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)1202x x dx -⎰=_____________.(2)曲面2222321x y z ++=在点(1,2,2)--的法线方程为_____________. (3)微分方程30xy y '''+=的通解为_____________.(4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = _____________.(5)设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 、()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a xb <<时,有(A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x >(C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >(2)设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有 (A)14SS xdS xdS =⎰⎰⎰⎰(B)14SS ydS xdS =⎰⎰⎰⎰(C)14SS zdS xdS =⎰⎰⎰⎰(D)14SS xyzdS xyzdS =⎰⎰⎰⎰(3)设级数1nn u∞=∑收敛,则必收敛的级数为(A)1(1)nn n un ∞=-∑(B)21nn u∞=∑(C)2121()n n n uu ∞-=-∑(D)11()nn n uu ∞+=+∑(4)设n 维列向量组1,,()m m n <αα 线性无关,则n 维列向量组1,,m ββ 线性无关的充分必要条件为(A)向量组1,,m αα 可由向量组1,,m ββ 线性表示 (B)向量组1,,m ββ 可由向量组1,,m αα 线性表示(C)向量组1,,m αα 与向量组1,,m ββ 等价 (D)矩阵1(,,)m =A αα 与矩阵1(,,)m =B ββ 等价(5)设二维随机变量(,)X Y 服从二维正态分布,则随机变量X Y ξ=+与 X Y η=-不相关的充分必要条件为(A)()()E X E Y =(B)2222()[()]()[()]E X E X E Y E Y -=-(C)22()()E X E Y =(D)2222()[()]()[()]E X E X E Y E Y +=+三、(本题满分6分)求142e sin lim().1exx xxx→∞+++四、(本题满分5分)设(,)()x xz f xy g y y =+,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.z x y∂∂∂五、(本题满分6分)计算曲线积分224L xdy ydxI x y -=+⎰ ,其中L 是以点(1,0)为中心,R 为半径的圆周(1),R >取逆时针方向.六、(本题满分7分)设对于半空间0x >内任意的光滑有向封闭曲面,S 都有2()()e 0,x Sxf x dydz xyf x dzdx zdxdy --=⎰⎰其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1,x f x +→=求()f x .七、(本题满分6分) 求幂级数113(2)nn nn x n ∞=+-∑的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为R 的球体0,P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、(本题满分6分)设函数()f x 在[0,]π上连续,且()0,()cos 0.f x dx f x xdx ππ==⎰⎰试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ⎛⎫ ⎪⎝⎭(1)求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:11.n n n n x x y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A(2)验证1241,11-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭ηη是A 的两个线性无关的特征向量,并求出相应的特征值.(3)当111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭时,求11.n n x y ++⎛⎫ ⎪⎝⎭十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p <<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X ,求X 的数学期望()E X 和方差()D X .十三、(本题满分6分)设某种元件的使用寿命X 的概率密度为2()2e (;)0x x f x x θθθθ-->⎧=⎨≤⎩,其中0θ>为未知参数.又设12,,,n x x x 是X 的一组样本观测值,求参数θ的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设e (sin cos )(,x y a x b x a b =+为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)222z y x r ++=,则(1,2,2)div(grad )r -= _____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设24+-=A A E O ,则1(2)--A E = _____________.(5)()2D X =,则根据车贝晓夫不等式有估计≤≥-}2)({X E X P _____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(A) (B)(C) (D)(2)设),(y x f 在点(0,0)的附近有定义,且1)0,0(,3)0,0(='='y x f f 则 (A)(0,0)|3dz dx dy =+(B)曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}(C)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{1,0,3}(D)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{3,0,1}(3)设0)0(=f 则)(x f 在x =0处可导⇔(A)20(1cos )lim h f h h→-存在(B) 0(1e )lim h h f h→-存在(C)2(sin )limh f h h h →-存在(D)hh f h f h )()2(lim-→存在(4)设1111400011110000,11110000111100⎛⎫⎛⎫⎪ ⎪⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A B ,则A 与B (A)合同且相似 (B)合同但不相似 (C)不合同但相似(D)不合同且不相似(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 相关系数为(A) -1 (B)0(C)12(D)1三、(本题满分6分)求2arctan e e xxdx ⎰.四、(本题满分6分) 设函数),(y x f z =在点(1可微,且3)1,1(,2)1,1(,1)1,1(='='=y x f f f ,)),(,()(x x f x f x =ϕ,求13)(=x x dxd ϕ.五、(本题满分8分)设()f x = 21a r c t a n 010x x x x x +≠=,将)(x f 展开成x 的幂级数,并求∑∞=--1241)1(n n n的和.六、(本题满分7分) 计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰ ,其中L 是平面 2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f .证明:(1)对于)1,0()0,1( -∈∀x ,存在惟一的)1,0()(∈x θ,使 )(x f =)0(f +))((x x f x θ'成立.(2)5.0)(lim 0=→x x θ.八、(本题满分8分)设有一高度为t t h )((为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?九、(本题满分6分)设12,,,s ααα 为线性方程组=AX O 的一个基础解系,1112221223121,,,s s t t t t t t =+=+=+βααβααβαα ,其中21,t t 为实常数,试问21,t t 满足什么条件时12,,,s βββ 也为=AX O 的一个基础解系?十、(本题满分8分)已知三阶矩阵A 和三维向量x ,使得2,,A A x x x 线性无关,且满足3232=-A A A x x x .(1)记2(,,),=P A A x x x 求B 使1-=A PBP . (2)计算行列式+A E .十一、(本题满分7分)设某班车起点站上客人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<且中途下车与否相互独立.Y 为中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分)设2~(,)X N μσ抽取简单随机样本122,,,(2),n X X X n ≥样本均值∑==ni i X n X 2121,∑=+-+=ni i n i X X X Y 12)2(,求().E Y2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.(2)已知2e 610y xy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim =∞→n n u n ,则级数)11()1(11+++-∑n n n u u 为(A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(l i m ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数 (C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与2arctan 0e x t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}e x y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y yx dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n nn x x y (+∞<<∞-x )满足微分方程e x y y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x = 1c o s 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体X 的概率分布为X0 1 2 3P2θ)1(2θθ-2θθ21-其中θ(102θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立 (B)n n c b <对任意n 成立 (C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim 2220,0=+-→→y x xyy x f y x ,则 (A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点 (C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 (4)设向量组I:12,,,r ααα 可由向量组II:12,,,s βββ 线性表示,则 (A)当s r <时,向量组II 必线性相关 (B)当s r>时,向量组II 必线性相关(C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①② (B)①③(C)②④(D)③④(6)设随机变量21),1)((~XY n n t X =>,则 (A)2~()Y n χ (B)2~(1)Y n χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin ee e e yx y xLLx dy y dx x dy y dx ---=-⎰⎰ .(2)sin sin 2e e 2.y x Lx dy y dx π--≥⎰六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分) 设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分) 设总体X 的概率密度为()f x =2()2e 0x θ--x x θ>≤其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x . (2)求统计量θˆ的分布函数)(ˆx F θ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110(12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分) 计算曲面积分,)1(322233d x d y z d z d x y d y d z x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数(B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222xu y x u ∂∂=∂∂∂(10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z = (11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为X Y0 1 0 0.4a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==(D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n(B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yφ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx y φ+=+⎰.(2)求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =10 01,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)22120(,)x xdx f x y dy -⎰⎰(B)22120(,)x dx f x y dy -⎰⎰(C)22120(,)y ydy f x y dx -⎰⎰(C)22120(,)y dy f x y dx -⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性相关 (B)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性无关(C)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性相关 (D)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A >(B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x 的幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y =+满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰ .(20)(本题满分9分)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解. (21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X 的概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当0x +→时,与x 等价的无穷小量是(A)1ex-(B)1ln1xx+-(C)11x +-(D)1cos x -(2)曲线1ln(1e )x y x=++,渐近线的条数为 (A)0 (B)1 (C)2(D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设()()xF x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F =(D)5(3)(2)4F F =--(4)设函数()f x 在0x =处连续,下列命题错误的是 (A)若0()limx f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()limx f x x→ 存在,则(0)0f '=(D)若0()()limx f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n == 则下列结论正确的是(A)若12u u >,则{n u }必收敛(B)若12u u >,则{n u }必发散(C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是(A)(,)x y dx Γ⎰(B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是 (A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则A 与B(A)合同,且相似(B)合同,但不相似 (C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为(A)()X f x(B)()Y f y(C)()X f x ()Y f y (D)()()X Y f x f y二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______.(12)设(,)f u v 为二元可微函数,(,)y x z f x y =,则zx∂∂=______. (13)二阶常系数非齐次线性方程2''4'32e x y y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵01000010********⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则3A 的秩为________.(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤) (17)(本题满分11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值.(18)(本题满分10分) 计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中∑为曲面221(01)4y z x z =--≤≤的上侧.(19)(本题满分11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=. (20)(本题满分10分) 设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+ (2)求()y x 的表达式. (21)(本题满分11分)设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321,x x x a ++=-有公共解,求a 的值及所有公共解. (22)(本题满分11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)T λλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (1)求{2}.P X Y >(2)求Z X Y =+的概率密度. (24)(本题满分11分)设总体X 的概率密度为1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ.(2)判断24X 是否为2θ的无偏估计量,并说明理由.。

2000年数学一真题

2000年数学一真题

2000年普通高等学校招生全国统一考试考试时间120分钟。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l 表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a (B)(C)4a (D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)二、填空题:本大题共4小题,每小题4分,共16分。

2000年考研数学真题

2000年考研数学真题

2000年考研数学真题一、填空题(1)设=∂∂⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=xg f x yg y x xy f z z,,,均可微,则其中________. (2)设=+⎰+∞-12xx e e dx________.(3)若4阶矩阵A 和B 相似;矩阵为A 的特征值,,,,51413121则性列式=|E -B |-1________.(4)设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈其他,,,0]6,3[,92]1,0[,31)(x x x f 若k 使得{},32=≥k X P 则k 的取值范围是________.(5)设随机变量X 在区间[]2,1-上服从均匀分布,随机变量⎪⎩⎪⎨⎧<-=>=0,10,00,1X X X Y 则方差DY =________. 二、选择题(1)设对任意的x ,总有)(lim ,0)]()([lim ),()(x x x f x x g x g x f x ∞→∞→=-≤≤则且)(ϕϕ( )(A)存在且等于零 (B)存在但不一定为零 (C)一定不存在 (D)不一定存在(2)设函数)(x f 在点a x =处可导,则函数|)(|x f 在点a x =处不可导的充分条件是( )(A)0a 0)(='=)(且f a f (B)0a 0)(≠'=)(且f a f(C)0a 0)(>'>)(且f a f (D) 0a 0)(<'<)(且f a f (3) 设321,,a a a 是四元非齐次线形方程组b AX =的三个解向量,且C a a a A r T T ,)3,2,1,0(,)4,3,2,1(,3)(321=+==表示任意常数,则线形方程组==X b AX 得通解( )(A)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C (C)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C(4)设A 为n 阶实矩阵,A A T 是的转置矩阵,则对于线性方程组(Ⅰ):0=AX 和(Ⅱ):0=AX A T ,必有( )(A)(Ⅱ)的解都是(Ⅰ)的解,(Ⅰ)解也是(Ⅱ)的 (B)(Ⅱ)的解都是(Ⅰ)的解,但(Ⅰ)解不是(Ⅱ)的 (C)(Ⅰ)解不是(Ⅱ)的,(Ⅱ)的解不是(Ⅰ)的解 (D)(Ⅰ)解是(Ⅱ)的,但(Ⅱ)的解不是(Ⅰ)的解 (5)在电炉上安装4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,设)4()3()2()1(T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于事件( )(A) {}0)1(t T ≥ (B){}0)2(t T ≥ (C) {}0)3(t T ≥ (D){}0)4(t T ≥ 三、(本题满分6分)求微分方程022=-'-''x e y y 满足条件1)0(,1)0(='=y y 的解。

2000年全国硕士研究生统一考试数学一真题及答案解析

2000年全国硕士研究生统一考试数学一真题及答案解析

.
(2)验证
η1
4
1
,
η2
1
1

A
的两个线性无关的特征向量,并求出相应的特征值.
1
(3)当
x1 y1
2 1 2
时,求
xn1 yn1
.
十二、(本题满分 8 分)
某流水线上每个产品不合格的概率为 p(0 p 1) ,各产品合格与否相对独立,当出现 1 个不合 格产品时即停机检修.设开机后第 1 次停机时已生产了的产品个数为 X ,求 X 的数学期望 E( X ) 和方 差 D(X ) .
S
S1
(C) zdS 4 xdS
S
S1
(3)设级数 un 收敛,则必收敛的级数为 n1
(B) ydS 4 xdS
S
S1
(D) xyzdS 4 xyzdS
S
S1
(A) (1)n un
n1
n
(B) un2 n1
(C) (u2n1 u2n ) n1
(D) (un un1) n1
2000 年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)
(1) 1 2x x2 dx =_____________. 0
(2)曲面 x2 2 y2 3z2 21在点 (1, 2, 2) 的法线方程为_____________.
故正确选项为(B)。
三、(本题满分 6 分)
2
e
1 x

lxim0
1
e
4 x
sin x
x
.
【详解】因为
2
e
1 x

考研数学历年真题(2000-2010)年数学一1

考研数学历年真题(2000-2010)年数学一1

2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)1202x x dx -⎰=_____________.(2)曲面2222321x y z ++=在点(1,2,2)--的法线方程为_____________.(3)微分方程30xy y '''+=的通解为_____________.(4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = _____________.(5)设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 、()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,有 (A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x >(C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >(2)设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有 (A)14SS xdS xdS =⎰⎰⎰⎰(B)14SS ydS xdS =⎰⎰⎰⎰(C)14SS zdS xdS =⎰⎰⎰⎰(D)14SS xyzdS xyzdS =⎰⎰⎰⎰(3)设级数1n n u ∞=∑收敛,则必收敛的级数为(A)1(1)nn n un ∞=-∑(B)21nn u∞=∑(C)2121()n n n uu ∞-=-∑(D)11()nn n uu ∞+=+∑(4)设n 维列向量组1,,()m m n <αα 线性无关,则n 维列向量组1,,m ββ 线性无关的充分必要条件为 (A)向量组1,,m αα 可由向量组1,,m ββ 线性表示 (B)向量组1,,m ββ 可由向量组1,,m αα 线性表示(C)向量组1,,m αα 与向量组1,,m ββ 等价(D)矩阵1(,,)m =A αα 与矩阵1(,,)m =B ββ 等价(5)设二维随机变量(,)X Y 服从二维正态分布,则随机变量X Y ξ=+与 X Y η=-不相关的充分必要条件为(A)()()E X E Y = (B)2222()[()]()[()]E X E X E Y E Y -=-(C)22()()E X E Y =(D)2222()[()]()[()]E X E X E Y E Y +=+三、(本题满分6分)求142e sin lim().1exx xxx→∞+++四、(本题满分5分)设(,)()x xz f xy g y y=+,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.z x y ∂∂∂五、(本题满分6分)计算曲线积分224L xdy ydx I x y -=+⎰ ,其中L 是以点(1,0)为中心,R 为半径的圆周(1),R >取逆时针方向.六、(本题满分7分)设对于半空间0x >内任意的光滑有向封闭曲面,S 都有2()()e0,xSxf x dydz xyf x dzdx zdxdy --=⎰⎰其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1,x f x +→=求()f x .七、(本题满分6分) 求幂级数113(2)nn nn x n ∞=+-∑的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为R 的球体0,P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、(本题满分6分)设函数()f x 在[0,]π上连续,且0()0,()cos 0.f x dx f x xdx ππ==⎰⎰试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ⎛⎫⎪⎝⎭(1)求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:11.n n n n x x y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A(2)验证1241,11-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭ηη是A 的两个线性无关的特征向量,并求出相应的特征值. (3)当111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭时,求11.n n x y ++⎛⎫ ⎪⎝⎭十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p <<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X ,求X 的数学期望()E X 和方差()D X .十三、(本题满分6分)设某种元件的使用寿命X 的概率密度为2()2e (;)0x x f x x θθθθ-->⎧=⎨≤⎩,其中0θ>为未知参数.又设12,,,n x x x 是X 的一组样本观测值,求参数θ的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设e (sin cos )(,xy a x b x a b =+为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)222z y x r ++=,则(1,2,2)div(grad )r -= _____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设24+-=A A E O ,则1(2)--A E = _____________.(5)()2D X =,则根据车贝晓夫不等式有估计≤≥-}2)({X E X P _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(A) (B)(C)(D)(2)设),(y x f 在点(0,0)的附近有定义,且1)0,0(,3)0,0(='='y x f f 则 (A)(0,0)|3dz dx dy =+(B)曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}(C)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{1,0,3}(D)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{3,0,1}(3)设0)0(=f 则)(x f 在x =0处可导⇔(A)20(1cos )lim h f h h →-存在(B) 0(1e )lim h h f h→-存在(C)2(sin )limh f h h h →-存在(D)hh f h f h )()2(lim-→存在(4)设1111400011110000,11110000111100⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭A B ,则A 与B (A)合同且相似 (B)合同但不相似 (C)不合同但相似(D)不合同且不相似(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 相关系数为 (A) -1 (B)0(C)12(D)1三、(本题满分6分)求2arctan e exxdx ⎰.四、(本题满分6分)设函数),(y x f z =在点(1,1)可微,且3)1,1(,2)1,1(,1)1,1(='='=y x f f f ,)),(,()(x x f x f x =ϕ,求13)(=x x dxd ϕ.五、(本题满分8分)设()f x = 21a r c t a n 010x x x x x +≠=,将)(x f 展开成x 的幂级数,并求∑∞=--1241)1(n n n的和.六、(本题满分7分) 计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 是平面 2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f .证明:(1)对于)1,0()0,1( -∈∀x ,存在惟一的)1,0()(∈x θ,使 )(x f =)0(f +))((x x f x θ'成立. (2)5.0)(lim 0=→x x θ.八、(本题满分8分)设有一高度为t t h )((为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?九、(本题满分6分)设12,,,s ααα 为线性方程组=AX O 的一个基础解系,1112221223121,,,s s t t t t t t =+=+=+βααβααβαα ,其中21,t t 为实常数,试问21,t t 满足什么条件时12,,,s βββ 也为=AX O 的一个基础解系?十、(本题满分8分)已知三阶矩阵A 和三维向量x ,使得2,,A A x x x 线性无关,且满足3232=-A A A x x x .(1)记2(,,),=P A A x x x 求B 使1-=A PBP . (2)计算行列式+A E .十一、(本题满分7分)设某班车起点站上客人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<且中途下车与否相互独立.Y 为中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分)设2~(,)X N μσ抽取简单随机样本122,,,(2),n X X X n ≥样本均值∑==ni i X n X 2121,∑=+-+=ni i n i X X X Y 12)2(,求().E Y2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________. (2)已知2e 610yxy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim =∞→nn u n ,则级数)11()1(11+++-∑n n n u u 为 (A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数(C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(本题满分7分)已知两曲线)(x f y =与2arctan 0e x t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}e x y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y yxdx xy f y y I ]1)([)](1[1222-++=⎰,(1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n n n x x y (+∞<<∞-x )满足微分方程e xy y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x = 1c o s 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体X 的概率分布为X 0 1 2 3 P2θ)1(2θθ-2θθ21-其中θ(102θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx a x n n ,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x 01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立 (B)n n c b <对任意n 成立 (C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点 (C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 (4)设向量组I:12,,,r ααα 可由向量组II:12,,,s βββ 线性表示,则 (A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关 (C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①②(B)①③(C)②④(D)③④(6)设随机变量21),1)((~XY n n t X =>,则 (A)2~()Y n χ (B)2~(1)Y n χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin e e e e y x y xLLx dy y dx x dy y dx ---=-⎰⎰. (2)sin sin 2ee 2.yx Lx dy y dx π--≥⎰六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为()y y x =满足的微分方程. (2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分) 设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y xf t F σ,⎰⎰⎰-+=t t D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性.(2)证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分) 设总体X 的概率密度为()f x =2()2e 0x θ--x x θ>≤其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x . (2)求统计量θˆ的分布函数)(ˆx F θ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e xxf x -'=,且(1)0f =,则()f x =__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,,(C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n na收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关(B)A 的列向量组线性相关,B 的列向量组线性相关(C)A 的行向量组线性相关,B 的行向量组线性相关(D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(本题满分12分) 计算曲面积分,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有 (A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数(D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222y u x u ∂∂=∂∂(C)222yuy x u ∂∂=∂∂∂(D)222xuy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xzxy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则 (A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为X Y0 1 0 0.4a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b ==(B)0.4,0.1a b ==(C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则 (A))1,0(~N X n(B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx y φ+=+⎰.(2)求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 1001,02x y x<<<<其它 求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X .(2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =.(2)1Y 与n Y 的协方差1Cov(,).n Y Y2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = . (6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)22120(,)x xdx f x y dy -⎰⎰(B)22120(,)x dx f x y dy -⎰⎰(C)22120(,)y ydy f x y dx -⎰⎰(C)22120(,)y dy f x y dx -⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A)若00(,)0x f x y '=,则00(,)0y f x y '= (B)若00(,)0x f x y '=,则00(,)0y f x y '≠ (C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性相关 (B)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性无关(C)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性相关 (D)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T =C P AP(D)T =C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A > (B)()()P A B P B >(C)()()P A B P A =(D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分)设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x=+-展开成x 的幂级数. (18)(本题满分12分)设函数()()0,,f u +∞在内具有二阶导数且()22z fx y =+满足等式22220z zx y∂∂+=∂∂.(1)验证()()0f u f u u'''+=.(2)若()()10,11,f f '==求函数()f u 的表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰ .(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解. (21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X 的概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当0x +→时,与x 等价的无穷小量是 (A)1ex-(B)1ln1xx+-(C)11x +-(D)1cosx -(2)曲线1ln(1e )x y x=++,渐近线的条数为 (A)0 (B)1 (C)2(D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设0()()xF x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F =(D)5(3)(2)4F F =--(4)设函数()f x 在0x =处连续,下列命题错误的是(A)若0()limx f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()lim x f x x→ 存在,则(0)0f '=(D)若0()()lim x f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n == 则下列结论正确的是(A)若12u u >,则{n u }必收敛(B)若12u u >,则{n u }必发散(C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是(A)(,)x y dx Γ⎰ (B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是(A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫⎪=-- ⎪⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则A 与B(A)合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为(A)()X f x(B)()Y f y(C)()X f x ()Y f y (D)()()X Y f x f y二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______. (12)设(,)f u v 为二元可微函数,(,)yxz f x y =,则zx∂∂=______.(13)二阶常系数非齐次线性方程2''4'32e xy y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵01000010********⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则3A 的秩为________.(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤)(17)(本题满分11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值. (18)(本题满分10分)计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中 ∑为曲面221(01)4y z x z =--≤≤的上侧. (19)(本题满分11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=. (20)(本题满分10分) 设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+ (2)求()y x 的表达式. (21)(本题满分11分)设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321,x x x a ++=-有公共解,求a 的值及所有公共解. (22)(本题满分11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)T λλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2}.P X Y >(2)求Z X Y =+的概率密度.(24)(本题满分11分) 设总体X 的概率密度为1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ.(2)判断24X 是否为2θ的无偏估计量,并说明理由.。

2000-历年考研数学一真题(答案+解析)

2000-历年考研数学一真题(答案+解析)

--历年考研数学一真题1987-2017(答案+解析)(经典珍藏版)最近三年+回顾过去 最近三年篇(2015-2017)2015年全国硕士研究生入学统一考试数学(一)试卷一、选择题 1—8小题.每小题4分,共32分.1.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B)1 (C)2 (D)3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点0x =.但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C)2.设21123()x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则(A)321,,a b c =-==- (B )321,,a b c ===- (C)321,,a b c =-== (D)321,,a b c ===【详解】线性微分方程的特征方程为20r ar b ++=,由特解可知12r =一定是特征方程的一个实根.如果21r =不是特征方程的实根,则对应于()x f x ce =的特解的形式应该为()x Q x e ,其中()Q x 应该是一个零次多项式,即常数,与条件不符,所以21r =也是特征方程的另外一个实根,这样由韦达定理可得213212(),a b =-+=-=⨯=,同时*x y xe =是原来方程的一个解,代入可得1c =-应该选(A) 3.若级数1nn a∞=∑条件收敛,则33,x x ==依次为级数11()nnn na x ∞=-∑的(A)收敛点,收敛点 (B)收敛点,发散点 (C)发散点,收敛点 (D )发散点,发散点--【详解】注意条件级数1n n a ∞=∑条件收敛等价于幂级数1n n n a x ∞=∑在1x =处条件收敛,也就是这个幂级数的收敛为1,即11limn n na a +→∞=,所以11()n n n na x ∞=-∑的收敛半径111lim()nn n na R n a →∞+==+,绝对收敛域为02(,),显然33,x x ==依次为收敛点、发散点,应该选(B )4.设D 是第一象限中由曲线2141,xy xy ==与直线3,y x y ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( )(A)1321422sin sin (cos ,sin )d f r r rdrπθπθθθθ⎰⎰(B)231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(C )1321422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)231422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰【详解】积分区域如图所示,化成极坐标方程:221212122sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=22141412222sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=也就是D:432sin sin r ππθθθ⎧<<⎪⎪⎨<<22所以(,)D f x y dxdy =⎰⎰23422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰,所以应该选(B ).5.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A),a d ∉Ω∉Ω (B),a d ∉Ω∈Ω(C ),a d ∈Ω∉Ω (D),a d ∈Ω∈Ω【详解】对线性方程组的增广矩阵进行初等行变换:--22221111111111111201110111140311001212(,)()()()()B A b ad a d a d a d a d a a d d ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭方程组无穷解的充分必要条件是3()(,)r A r A b =<,也就是120120()(),()()a a d d --=--=同时成立,当然应该选(D).6.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A)2221232y y y -+ (B )2221232y y y +- (C)2221232y y y -- (D ) 2221232y y y ++【详解】()()132123100100001001010010,,,,Q e e e e e e P ⎛⎫⎛⎫ ⎪ ⎪=-== ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,100001010T T Q P ⎛⎫⎪=- ⎪ ⎪⎝⎭211T T T T f x Ax y PAPy y y ⎛⎫ ⎪=== ⎪ ⎪-⎝⎭所以100100100210001001001100010*********T T Q AQ P AP ⎛⎫⎛⎫⎛⎫⎛⎫⎛ ⎪ ⎪ ⎪⎪=-=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝故选择(A ).7.若,A B 为任意两个随机事件,则( )(A)()()()P AB P A P B ≤ (B)()()()P AB P A P B ≥(C )2()()()P A P B P AB +≤(D)2()()()P A P B P AB +≥【详解】()(),()(),P A P AB P B P AB ≥≥所以2()()()P A P B P AB +≤故选择(C).8.设随机变量,X Y 不相关,且213,,EX EY DX ===,则2(())E X X Y +-=( )(A)3- (B )3 (C ) 5- (D)5【详解】22222(())()()()E X X Y E X E XY EX DX EX EXEY EX+-=+-=++---故应该选择(D).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.20ln(cos )limx x x →=【详解】200122ln(cos )tan lim lim x x x x x x →→-==-. 10.221sin cos x x dx xππ-⎛⎫+= ⎪+⎝⎭⎰ .【详解】只要注意1sin cos xx+为奇函数,在对称区间上积分为零,所以22202214sin .cos x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰11.若函数(,)z z x y =是由方程2cos ze xyz x x +++=确定,则01(,)|dz = .【详解】设2(,,)cos zF x y z e xyz x x =+++-,则1(,,)sin ,(,,),(,,)z x y z F x y z yz x F x y z xz F x y z e xy '''=+-==+且当01,x y ==时,z =,所以010101001010010010(,)(,)(,,)(,,)|,|,(,,)(,,)y x z z F F z zx y F F ''∂∂=-=-=-=∂∂'' 也就得到01(,)|dz =.dx -12.设Ω是由平面1x y z ++=和三个坐标面围成的空间区域,则23()dxdydz x y z Ω++=⎰⎰⎰ .【详解】注意在积分区域内,三个变量,,x y z 具有轮换对称性,也就是dxdydz dxdydz dxdydz x y z ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰1120236631()dxdydz dxdydz ()zD x y z z zdz dxdy z z dz ΩΩ++===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰13.n 阶行列式2002120200220012-=- .【详解】按照第一行展开,得1111212122()()n n n n n D D D +---=+--=+,有1222()n n D D -+=+由于1226,D D ==,得11122222()n n n D D -+=+-=-.14.设二维随机变量(,)X Y 服从正态分布10110(,;,;)N ,则--{}0P XY Y -<= .【详解】由于相关系数等于零,所以X,Y 都服从正态分布,1101~(,),~(,)X N Y N ,且相互独立. 则101~(,)X N -.{}{}{}{}1111101001001022222(),,P XY Y P Y X P Y X P Y X -<=-<=<->+>-<=⨯+⨯=三、解答题 15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值.【详解】当0x →时,把函数1()ln()sin f x x a x bx x =+++展开到三阶的马克劳林公式,得233332331236123()(())(())()()()()x x f x x a x o x bx x x o x a aa xb x x o x =+-+++-+=++-+++ 由于当0x →时,(),()f x g x 是等价无穷小,则有10023a ab a k ⎧⎪+=⎪⎪-+=⎨⎪⎪=⎪⎩,解得,11123,,.a b k =-=-=-16.(本题满分10分)设函数)(x f y =在定义域I 上的导数大于零,若对任意的0x I ∈,曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且02()f =,求()f x 的表达式.【详解】)(x f y =在点00(,())x f x 处的切线方程为000()()()y f x x x f x '=-+令0y =,得000()()f x x x f x =-' 曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积为--00000142()()(()()f x S f x x x f x =--='整理,得218y y '=,解方程,得118C x y =-,由于02()f =,得12C =所求曲线方程为84.y x=- 17.(本题满分10分)设函数(,)f x y x y xy =++,曲线223:C x y xy ++=,求(,)f x y 在曲线C 上的最大方向导数.【详解】显然11,f fy x x y∂∂=+=+∂∂. (,)f x y x y xy=++在(,)x y 处的梯度()11,,f f gradf y x x y ⎛⎫∂∂==++ ⎪∂∂⎝⎭(,)f x y 在(,)x y 处的最大方向导数的方向就是梯度方向,最大值为梯度的模gradf =所以此题转化为求函数2211(,)()()F x y x y =+++在条件223:C x y xy ++=下的条件极值.用拉格朗日乘子法求解如下:令2222113(,,)()()()L x y x y x y xy λλ=++++++-解方程组22212021203()()x y F x x y F y y x x y xy λλλλ⎧'=+++=⎪⎪'=+++=⎨⎪++=⎪⎩,得几个可能的极值点()11112112,,(,),(,),(,)----,进行比较,可得,在点21,x y ==-或12,x y =-=处,方向导数取到最3.= 18.(本题满分10分)(1)设函数(),()u x v x 都可导,利用导数定义证明(()())()()()()u x v x u x v x u x v x '''=+;(2)设函数12(),(),,()n u x u x u x 都可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【详解】(1)证明:设)()(x v x u y=)()()()(x v x u x x v x x u y -++=∆∆∆()()()()()()()()u x x v x x u x v x x u x v x x u x v x =+∆+∆-+∆++∆---v x u x x uv ∆∆∆)()(++=xux u x x v x u x y ∆∆∆∆∆∆∆)()(++= 由导数的定义和可导与连续的关系00'lim lim[()()]'()()()'()x x y u uy v x x u x u x v x u x v x x x x∆→∆→∆∆∆==+∆+=+∆∆∆(2)12()()()()n f x u x u x u x =1121212()()()()()()()()()()()n n nf x u x u x u x u x u x u x u x u x u x u x ''''=+++19.(本题满分10分)已知曲线L的方程为z z x ⎧=⎪⎨=⎪⎩,起点为0()A ,终点为00(,)B ,计算曲线积分2222()()()Ly z dx z x y dy x y dz ++-+++⎰.【详解】曲线L的参数方程为cos ,cos x ty t z t =⎧⎪=⎨⎪=⎩起点0()A 对应2t π=,终点为00(,)B 对应2t π=-.22222222()()()cos )(cos )))(cos )cos Ly z dx z x y dy x y dzt t d t t d t t d tππ-++-+++=+++-⎰⎰2202sin .tdt π==20.(本题满分11分) 设向量组123,,ααα为向量空间3R 的一组基,113223332221,,()k k βααβαβαα=+==++.(1)证明:向量组123,,βββ为向量空间3R 的一组基;(2)当k 为何值时,存在非零向量ξ,使得ξ在基123,,ααα和基123,,βββ下的坐标相同,并求出所有的非零向量.ξ【详解】(1)()12312321020201(,,),,k k βββααα⎛⎫⎪= ⎪ ⎪+⎝⎭, 因为201212024021201k k kk ==≠++,且123,,ααα显然线性无关,所以123,,βββ是线性无关的,当然是向量空间3R 的一组基.--(2)设非零向量ξ在两组基下的坐标都是123(,,)x x x ,则由条件112233112233x x x x x x αααβββ++=++可整理得:1132231320()()x k x x k ααααα++++=,所以条件转化为线性方程组()1321320,,k k x ααααα++=存在非零解.从而系数行列式应该等于零,也就是12312310110101001002020(,,)(,,k k k k αααααα⎛⎫⎪== ⎪ ⎪⎝⎭由于123,,ααα显然线性无关,所以10110020kk=,也就是0k =.此时方程组化为()112121312230,,()x x x x x x ααααα⎛⎫⎪=++= ⎪ ⎪⎝⎭,由于12,αα线性无关,所以13200x x x +=⎧⎨=⎩,通解为1230x C x x C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭,其中C 为任意常数.所以满足条件的0C C ξ⎛⎫ ⎪= ⎪ ⎪-⎝⎭其中C 为任意不为零的常数.21.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.【详解】(1)因为两个矩阵相似,所以有trA trB =,A B =.也就是324235a b a a b b +=+=⎧⎧⇒⎨⎨-==⎩⎩. (2)由2120050150031()()E B λλλλλλ--=-=--=--,得A ,B的特征值都为12315,λλλ===解方程组0()E A x -=,得矩阵A的属于特征值121λλ==的线性无关的特征向量为12231001.ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;--解方程组50()E A x -=得矩阵A 的属于特征值35λ=的线性无关的特征向量为3111ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭令()123231101011,,P ξξξ--⎛⎫ ⎪== ⎪ ⎪⎝⎭,则1100010005.P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭22.(本题满分11分)设随机变量X 的概率密度为22000ln ,(),x x f x x -⎧>=⎨≤⎩ 对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为次数.求Y 的分布函数;(1) 求Y 的概率分布; (2) 求数学期望.EY 【详解】(1)X进行独立重复的观测,得到观测值大于3的概率为313228()ln x P X dx +∞->==⎰显然Y 的可能取值为234,,,且2211117171234888648()(),,,,k k k P Y k C k k ---⎛⎫⎛⎫==⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2)设22322221111()()(),()n nn n n n x S x n n xx x x x x ∞∞∞-===''''⎛⎫⎛⎫''=-====< ⎪ ⎪--⎝⎭⎝⎭∑∑∑2221717116648648()()()k k n E Y kP Y k k k S -∞∞==⎛⎫⎛⎫===-== ⎪⎪⎝⎭⎝⎭∑∑ 23.(本题满分11分) 设总体X 的概率密度为1110,(;),x f x θθθ⎧≤≤⎪=-⎨⎪⎩其他其中θ为未知参数,12,,,n X X X 是来自总体的简单样本.(1)求参数θ的矩估计量;(2)求参数θ的最大似然估计量. 【详解】(1)总体的数学期望为111112()()E X xdx θθθ==+-⎰ 令()E X X =,解得参数θ的矩估计量:21ˆX θ=-. (2)似然函数为12121110,,,,()(,,,;),n nn x x x L x x x θθθ⎧≤≤⎪-=⎨⎪⎩其他显然()L θ是关于θ的单调递增函数,为了使似然函数达到最大,只要使θ--尽可能大就可以,所以参数θ的最大似然估计量为12ˆmin(,,,).n x x x θ=2016年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选前的字母填在答题纸指定位置上。

2000年全国硕士研究生入学统一考试数学一二试题(word版)

2000年全国硕士研究生入学统一考试数学一二试题(word版)

2000年全国硕士研究生入学统一考试理工数学一试题详解及评析一、填空题(1)0=⎰ . (2)曲面2222321x y z ++=在点()1,2,2-的法线方程为 .(3)微分方程'''30xy y +=的通解为 . (4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = . (5)设两个相互独立的事件A 和B 都不发生的概率为1,9A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A = .二、选择题(1)设()(),f x g x 是恒大于零得可导函数,且()()()()''0f x g x f x g x -<,则当a xb <<时,有(A )()()()()f x g b f b g x > (B )()()()()f x g a f a g x >(C )()()()()f x g x f b g b > (D )()()()()f x g x f a g a >(2)设()22221:0,S x y z az S ++=≥为S 在第一卦限中的部分,则有 (A )14S S xdS xdS =⎰⎰⎰⎰ (B )14S S ydS xdS =⎰⎰⎰⎰ (C )14SS zdS xdS =⎰⎰⎰⎰ (D )14S S xyzdS xyzdS =⎰⎰⎰⎰ (3)设级数1n n u∞=∑收敛,则必收敛的级数为(A )()11.n n n u n ∞=-∑ (B )21n n u ∞=∑(C )()2121.n n n uu ∞-=-∑ (D) ()11.n n n u u ∞+=+∑(4)设n 维列向量组()1,,m m n αα<线性无关,则n 维列向量组1,,m ββ线性无关的充分必要条件为 (A ) 向量组1,,m αα可由向量组1,,m ββ线性表示. (B ) 向量组1,,m ββ可由向量组1,,m αα线性表示. (C ) 向量组1,,m αα与向量组1,,m ββ等价. (D ) 矩阵()1,,m A αα=与矩阵()1,,m B ββ=等价.(5)设二维随机变量(),X Y 服从二维正态分布,则随机变量X Y ξ=+与X Y η=-不相关的充分必要条件为(A)()().E X E Y =(B)()()()()2222.E X E X E Y E Y -=-⎡⎤⎡⎤⎣⎦⎣⎦ (C)()()22.E X E Y =(D)()()()()2222.E X E X E Y E Y +=+⎡⎤⎡⎤⎣⎦⎣⎦ 四、设,,x x z f xy g y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.z x y ∂∂∂ 五、计算曲线积分22,4L xdy ydx I x y -=+⎰其中L 是以点()1,0为中心,R 为半径的圆周()1R >,取逆时针方向.六、设对于半空间0x >内任意的光滑有向封闭曲面,S 都有()()20,x S xf x dydz xyf x dzdx ezdxdy --=⎰⎰其中函数()f x 在()0,+∞内具有连续的一阶导数,且()0lim 1,x f x +→=求()f x . 七、求幂级数()1132n n n n x n∞=+-∑的收敛区域,并讨论该区间断电处的收敛性. 八、设有一半径为R 的球体,0P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、设函数()f x 在[]0,π上连续,且()()000,cos 0,f x dx f x xdx ππ==⎰⎰试证:在()0,π内至少存在两个不同的点12,ξξ,使()()120f f ξξ==.十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦且113,ABA BA E --=+其中E 为4阶单位矩阵,求矩阵.B十一、某试验性生产线每年一月份进行熟练工与非熟练工得人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐,新、老非熟练工经过培训及之间实践至年终考核有25成为熟练工.设第n 年一月份统计的熟练工和非熟练工所占百分比分别为n x 和n y ,记为向量n n x y ⎛⎫ ⎪⎝⎭. (1) 求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:1111;n n n n x x A y y ++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2) 验证1241,11ηη-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭是A 的两个线性无关的特征向量,并求出相应的特征值;(3) 当111212x y ⎡⎤⎢⎥⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎣⎦时,求11n n x y ++⎛⎫ ⎪⎝⎭. 十二、某流水生产线上每一个产品不合格的概率为()01p p <<,各产品合格与否相互独立,当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了产品的个数为,X 求X 的数学期望()E X 和方差()D X .十三、设某种元件的使用寿命X 的概率密度为()()22,,0, x e x f x x θθθθ--⎧>⎪=⎨≤⎪⎩其中0θ>为未知参数,又设12,,,n x x x 是X 的一组样本观测值,求参数θ的最大似然估计值.2000年全国硕士研究生入学统一考试理工数学二试题一. 填空题(1)()30arctan lim ln 12x x x x →-=+ . (2)设函数()y y x =由方程2xy x y =+所确定,则0|x dy == . (3)2+∞=⎰ . (4)曲线()121x y x e =-的斜渐近线方程为 .(5)设10002300,04500067A E ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦为4阶单位矩阵,且()()1B E A E A -=+-,则()1B E -+= .二、选择题(1)设函数()bxx f x a e =+在(),-∞+∞内连续,且()lim 0x f x →-∞=,则常数,a b 满足 (A ) 0,0a b << (B )0,0a b >>(C )0,0a b ≤> (D )0,0a b ≥<(2)设函数()f x 满足关系式()()2''',f x f x x ⎡⎤+=⎣⎦且()'00f =,则 (A )()0f 是()f x 的极大值(B )()0f 是()f x 的极小值(C )点()()0,0f 是曲线()y f x =的拐点(D )()0f 不是()f x 的极值,点()()0,0f 不是曲线()y f x =的拐点(3)设函数()(),f x g x 是大于零的可导函数,且()()()()''0,f x g x f x g x -<则当a x b <<时,有(A )()()()()f x g b f b g x > (B )()()()()f x g a f a g x >(C )()()()()f x g x f b g b > (C )()()()()f x g x f a g a >(4)若()30sin 6lim 0,x x xf x x →+=则()206lim x f x x→+为 (A )0 (B )6 (C )36 (D )∞(5)具有特解123,2,3x x x y e y xe y e --===的3阶常系数齐次微分方程是(A )''''''0y y y y --+= (B )''''''0y y y y +--=(C )''''''61160y y y y -+-= (D )''''''220y y y y --+=三、设()()ln 1ln ,x f x x+=计算().f x dx ⎰四、设xOy 平面上有正方形(){},|01,01D x y x y =≤≤≤≤及直线():0l x y t t +=≥若()S t 表示正方形D 位于直线l 的左下方部分的面积,试求()()00.x S t dt x ≥⎰五、求函数()()2ln 1f x x x =+在0x =处的n 阶导数()()()03n f n ≥六、设函数()0cos ,xS x t dt =⎰ (1) 当n 为正整数,且()1n x n ππ≤<+时,证明()()221;n S x n ≤<+(2) 求()lim x S x x→+∞ 七、某湖泊的水量为,V 每年排入湖泊内含污染物A 的污水量为6V ,流入湖泊内不含A 的污水量为6V ,流出湖泊的水量为3V ,已知1999年底湖中A 的含量为05m ,超过国家规定指标,为了治理污染,从2000年初起,限制排入湖泊中含A 污水的浓度不超过0.m V 问至多需要经过多少年,湖泊中污染物A 的含量才可降至0m 以内?(注:设湖水中A 的浓度时均匀的)八、设函数()f x 在[]0,π上连续,且()()000,cos 0,f x dx f x xdx ππ==⎰⎰试证明:在()0,π内至少存在两个不同的点12,ξξ,使()()120.f f ξξ==九、已知()f x 是周期为5的连续函数,它在0x =的某个邻域内满足关系式()()()1sin 31sin 8f x f x x a x +--=+其中()a x 是当0x →时比x 高阶的无穷小,且()f x 在1x =处可导,求曲线()y f x =在点()()6,6f 处的切线方程.十、设曲线()20,0y ax a x =>≥与21y x =-交于点,A 过坐标原点O 和点A 的直线与曲线2y ax =围成一平面图形,问a 为何值时,该图形绕x 轴旋转一周所得的旋转体的体积最大?十一、函数()f x 在[]0,+∞上可导,()01f =,且满足等式()()()'010.1x f x f x f t dt x +-=+⎰ (1) 求导数()'f x ;(2) 证明:当0x ≥时,不等式()1x e f x -≤≤成立.十二、设11012,,0,,2180T T A B B αβγαβα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦,其中T β是β的转置,求解方程 22442.B A x A x B x γ=++十三、已知向量组12301,2,1110a b βββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦与向量组1231392,0,6317ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦具有相同的秩,且3β可由123,,ααα线性表示,求,a b 的值.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000 年全国硕士研究生入学统一考试数学一试题解析
一、填空题
(1)【答案】
4
【详解】 I 1 2x x2 dx 1 1 (x 1)2 dx
0Байду номын сангаас
0
解法 1:用换元积分法:设 x 1 sin t ,当 x 0 时,sin t 1,所以下限取 ;当 x 1 2
时, sin t 0 ,所以上限取 0 .
f
(x,
y,
z)dS
若f (x, y, z)关于y为奇函数 若f (x, y, z)关于y为偶函数
其中 S1 S {y 0} .
性质 3:设 f (x, y, z) 在分块光滑曲面 S 上连续, S 关于 xoy 平面对称,则
0
S
f
(x,
y,
z)dS
2
S1
f
(x,
y,
z)dS
若f (x, y, z)关于z为奇函数 若f (x, y, z)关于z为偶函数
性无关知, r 1,, m r 1,, m m, 因此 1,, m 线性无关,充分性成立;当m
= 1时,考虑1 (1, 0)T , 1 (0,1)T 均线性无关,但1 与 1 并不是等价的,必要性不成立.
(D) 剩下(D)为正确选项. 事实上,矩阵 A 1,, m 与矩阵 B 1,, m 等价 ⇔ r A =r B ⇔ r 1,, m r 1,, m m, 因此是向量组 1,, m 线性无关的充要
1
lim
x0
2 1
ex
4
ex
sin x
x
1.
四【详解】根据复合函数的求导公式,有
z x
f1 ' y
f
2
'
1 y
g '
y x2
于是
2 z xy
f11x
f12
x y2
y
f1
f21x
f
22
x y2
1 y
f2
1 y2
g
1 x
y x2
g
1 x2
f1 '
即有 P( A)1 P(B) 1 P( A) P(B) ,
可得 P( A) P(B) , P(A) P(B)
从而
P(AB)
P( A)P(B)
P( A)2
1
P( A)2
1 9
,
解得 P(A) 2 . 3
二、选择题 (1)【答案】A 【分析】由选项答案可知需要利用单调性证明,关键在于寻找待证的函数. 题设中已知
2 8 12
1 4 6
(3)【答案】
y
C1 x2
C2
【分析】此方程为二阶可降阶的微分方程,属于 y" f (x, y ') 型的微分方程.
【详解】令 p y ' ,有 y " dp .原方程化为: x dp 3p 0 , dp 3 p 0
dx
dx
dx x
分离变量: dp 3 dx
Q 数,且
P
.

x y
P(x, y)dx Q(x, y)dy P(x, y)dx Q(x, y)dy
L1
L2
解:以点 1, 0 为中心, R 为半径的圆周的参数方程是: x 1 R cos, y R sin ,逆
时针方向一周为从 t 0 到 t 2 ,代入曲线积分
I xdy ydx
(4)【答案】(D) 【详解】用排除法.
(A)为充分但非必要条件:若向量组1,,m 可由向量组 1,, m 线性表示,则一定
可推导 1,, m 线性无关,因为若 1,, m 线性相关,则 r 1,,m m, 于是1,,m
必线性相关,矛盾. 但反过来不成立,如当m =1时,1 (1, 0)T , 1 (0,1)T 均为单个非零 向量是线性相关的,但1 并不能用 1 线性表示.
Fx ' 1, -2, 2 2x |1, -2, 2 2, Fy ' 1, -2, 2 4 y |1, -2, 2 8, Fz ' 1, -2, 2 6z |1, -2, 2 12.
所以曲面在点 (1, 2, 2) 处的法线方程为: x 1 y 2 z 2 . 即 x 1 y 2 z 2 .
1 y2
f2
'
xyf11
x y3
f22
1 x2
g ' y x3
g"
五【详解】 方法 1:(复连通条件下的封闭曲线积分)
设:(1) L1 与 L2 是两条分段光滑的简单封闭曲线,具有相同的走向,(2)在 L1 与 L2 所包
围的有界闭区域 D1 与 D2 的内部除一些点外, P(x, y) 与 Q(x, y) 连续并具有连续的一阶偏导
f (a) f (x) f (b) g(a) g(x) g(b) 得 f (x)g(b) f (b)g(x), a x b , (A) 为正确选项.
(2)【答案】C 【性质】第一类曲面积分关于奇偶性和对称性的性质有: 性质 1:设 f (x, y, z) 在分块光滑曲面 S 上连续, S 关于 yoz 平面对称,则
n1
n1
un un1 un un1 . 选项 (D) 成立.
n1
n1
n1
方法 2:间接法. 找反例:
(A) :取 un
(1)n
1 ln(1 n)
,级数
un
n1
收敛,但 (1)n
n1
un n
(1)n
n1
1 nln(1 n)
是发散的;(关于上述结束的敛散,有下述结果:
1
收敛 当p 1
L 4x2 y2
由于分母很繁,计算不方便. 由曲线封闭,可以考虑使用格林公式,但在 L 所包围的区 域内部有点 O(0,0) ,该点处分母为 0,导致被积函数不连续,格林公式不能用.
其中
S 1
S
{z
0}
.
【详解】 方法 1:直接法:
本题中 S 在 xoy 平面上方,关于 yoz 平面和 xoz 平面均对称,而 f (x, y, z) z 对 x, y 均为偶函数,则
性质1
性质2
zdS 2 zdS 4 zdS
S
S {x0}
S1
又因为在 S1 上将 x 换为 y , y 换为 z , z 换为 x ,S1 不变(称积分区域 S1 关于 x, y, z
()
(A) 1n un .
n1
n
(B) un2. n1
(C) (u2n1 u2n ). n1
【答案】D 【详解】
(D) (un un1). n1
方法 1:直接法. 由 un 收敛,所以 un1 也收敛.由收敛级数的性质(如果级数 un 、
n1
n1
n1
vn 分 别 收 敛 于 s 、 , 则 级 数 un vn 也 收 敛 , 且 其 和 为 s ). 知
S1
曲面 S 关于 zox 平面对称, y 为 y 的奇函数,所以 ydS 0 ,而 xdS 0 ,所
S
S1
以 (B) 不成立.
曲面 S 关于 zox 平面对称,xyz 为 y 的奇函数,所以 xyzdS 0 ,而 xyzdS 0 ,
S
S1
所以 (D) 不成立.
(3)设级数 un 收敛,则必收敛的级数为 n1
1 a 2 0 0 a 2 3 1
1 2
1
1
0 1
a
1
0 0 (a 3)(a 1) a 3
当a = −1时,系数矩阵的秩为2,而增广矩阵的秩为3,根据方程组解的判定,其系数矩 阵与增广矩阵的秩不同,因此方程组无解.
当a = 3时,系数矩阵和增光矩阵的秩均为2,由方程组解的判定,系数矩阵的秩等于增 广矩阵的秩,而且小于未知量的个数,所以方程组有无穷多解.
所以
x1sin t 0
I cost cos tdt 2
由于在区间[ , 0] ,函数 cos t 非负,则 2
I
0
cos 2
tdt
2
2
cos2
t
0
4
解法 2:由于曲线 y 2x x2 1 (x 1)2 是以点 (1, 0) 为圆心,以 1 为半径的上半圆
周,它与直线 x 1 和 y 0 所围图形的面积为圆面积的 1 ,故答案是
等,则极限值存在且等于其极限值,否则极限不存在. 【详解】
1
1
lim
x0
2 1
ex
4
ex
sin x
x
lim
x0
2 1
ex
4
ex
sin x
x
2 1
1 1 ;
1
1
lim
x0
2 1
ex
4
ex
sin x x
lim
x0
2 1
ex
4
ex
sin x x
011;
左极限与右极限相等,所以
Cov X , X CovY ,Y D X D Y
可见 Cov, 0 D X DY 0 D X DY
E( X 2 ) E( X )2 E(Y 2 ) E(Y )2 (由方差定义 DX EX 2 (EX )2 )
故正确选项为(B).
1
三【分析】由于极限中含有 e x 与 x ,故应分别求其左极限与右极限,若左极限与右极限相
(5)【答案】 2 3 (由 A, B 独立的定义: P(AB) P( A)P(B) ) 【详解】由题设,有 P(AB) 1 , P( AB) P( AB)
9 因为 A 和 B 相互独立,所以 A 与 B , A 与 B 也相互独立.
相关文档
最新文档