音响放大器的设计分析

合集下载

高保真音频功率放大器设计

高保真音频功率放大器设计

高保真音频功率放大器设计高保真音频功率放大器是一种能够放大电信号的设备,用于驱动扬声器或头戴耳机等音响设备。

它的设计目标是尽可能地保持输入信号的原始特性,同时输出高质量的音频信号。

本文将介绍高保真音频功率放大器的设计中的关键因素和步骤。

首先,设计一个高保真音频功率放大器的关键因素之一是选择合适的放大器拓扑结构。

通常使用AB类放大器作为高保真音频功率放大器的基本拓扑结构。

AB类放大器有两个工作状态,A类状态用于低功率操作,而B类状态用于高功率操作,这可以提供高效率和低失真的输出。

其次,使用线性化技术对放大器进行线性化处理也是关键因素之一、线性化技术的目的是减小失真并提高放大器的线性度。

常见的线性化技术包括负反馈、反噪音技术、温度补偿技术等。

负反馈是一种将输出信号与输入信号相比较的技术,通过调节放大器的增益和频率响应来减小失真。

反噪音技术通过消除输入信号中的噪音来提高放大器的信噪比。

温度补偿技术可以有效地消除温度对放大器性能的影响。

另外,选取合适的元件和电路参数也是设计高保真音频功率放大器的重要步骤之一、首先,选取合适的功率管要求其具有低失真、高带宽等特性。

其次,电源的设计也很关键。

音频功率放大器的电源设计需要保证输出信号的稳定性和供电的整洁性,以避免电源噪声对音频信号的干扰。

辅助电路、滤波器、阻抗匹配网络等也需要合理选取和设计。

最后,进行实际的电路实现和调试是设计过程的最后一步。

设计者需要通过仿真和实际测量来验证设计的性能和指标。

同时,还需要不断地调整电路参数和元件选择,以达到设计要求。

综上所述,设计高保真音频功率放大器需要考虑到拓扑结构的选择、线性化技术的应用、元件和电路参数的选取等关键因素。

通过合理设计和调试,可以实现高保真和低失真的音频放大效果。

音响放大器实验报告

音响放大器实验报告

REPORTING2023 WORK SUMMARY音响放大器实验报告目 录CATALOGUE •实验目的•实验设备与材料•实验步骤与操作•实验结果与分析•实验总结与建议PART01实验目的0102了解音响放大器的基本原理放大器主要由输入级、电压放大级、功率放大级和输出级组成,各部分协同工作,实现对音频信号的放大和输出。

音响放大器的基本原理是利用电子元件将微弱的音频信号进行放大,然后推动扬声器发声。

学习音响放大器的设计和制作在设计和制作音响放大器时,需要考虑电路设计、元件选择、布局布线等因素,以确保放大器的性能和稳定性。

掌握音响放大器的性能测试方法音响放大器的性能测试主要包括频率响应、失真度、动态范围等指标的测量。

频率响应是指放大器在不同频率下的增益变化情况,失真度是指放大器对音频信号的畸变程度,动态范围是指放大器能够处理的最低信号和最高信号之间的范围。

通过这些性能指标的测试,可以全面评估音响放大器的性能和表现,为进一步优化和改进提供依据。

PART02实验设备与材料用于产生不同频率和幅度的正弦波信号,作为音频放大器的输入信号。

音频信号源信号发生器如LM386等,具有低噪声、高带宽、低失真等特点。

集成放大器芯片将放大后的音频信号进行功率放大,驱动扬声器发声。

功率输出级电路音频功率放大器模块电容、电阻、电感等电子元件电容用于滤波、耦合、去耦等,以改善音频信号质量。

电阻用于限制电流、调节音量等。

电感用于扼流圈、滤波等。

面包板用于搭建电路,便于连接和调试。

杜邦线用于连接各个电子元件的引脚。

面包板、杜邦线等搭建工具示波器、万用表等测量工具示波器用于观察信号波形,分析电路性能。

万用表用于测量电压、电流、电阻等参数,确保电路正常工作。

PART03实验步骤与操作准备所需元件电阻、电容、电感、二极管、晶体管等。

搭建电路按照电路图将各个元件连接起来,搭建音响放大器电路。

设计电路图根据音响放大器原理图,绘制详细的电路图。

音频放大器 实验报告

音频放大器 实验报告

音响放大器的设计一、 设计任务1) 功能要求:具有话筒扩音、音调控制、音量控制,卡拉OK 伴唱2) 已知条件:集成功率放大器LM386 1个,10K 欧姆高阻话筒一个(咪头,要加上拉电阻),输出电压为5mV ,集成运放LM324一只, +VCC = +9V ,8Ω/2W 负载电阻RL 1只,8Ω/4W 扬声器1只,MP3一台(连接输入线一条)3) 主要技术指标:额定功率 Po ≥0.3W(γ <3%);4) 负载阻抗 RL=8Ω;5) 截止频率fL=50Hz ,fH=20kHz ;6) 音调控制特性 1kHz 处增益为0dB ,125Hz 和8kHz 处有±12dB 的调节范围,A VL=A VH ≥20dB ;7) 话放级输入灵敏度 5mV ;8) 输入阻抗 Ri>>10K Ω。

二、 实验器材实验所需元件、示波器、万用表、覆铜板、函数发生器、热转印机、钻孔机、环保腐蚀液、变压器、MP3、喇叭等等三、 功能模块组成和增益分配图 1功能模块组成 话筒输入5mv 话音放大器(4.7倍)音频输入100mv 混合前置放大(3倍)音调控制器(0.8倍)功率放大器(30倍)扬声器+9V 电源四、功能模块设计(一)工作电源(+9V)电源模块由实验室稳压试验箱经过J1、J2接入电路模块,S1为电源开关,W1是7809稳压芯片,期中C3、C4为电源输入的滤波电容,C5、C6为电源输出的滤波电容,D1为发光二极管做上电指示用,P2为4个短接到地上的排针接口,作为测试用的接口。

图2稳压模块(二)话筒输入和话音放大器由于话筒的输出信号一般只有5mV左右,输出阻抗高。

所以话音放大器用来不失真地放大声音信号,输入阻抗需远大于话筒的输出阻抗,且符合阻抗匹配。

第一级设计成增益为:A V1=1+R2/R4=47K/10K=4.7,R2 =75KΩ; R4=10KΩ,放大后输出电压为V o1按设计要求应该达到24mv,原理图如下:图3话音放大器(三)音频输入和混合前置放大器混合前置放大器的作用是将MP3输出的音乐信号与话音混合放大,音频信号输出100MV,话音信号放大3倍,此级电路的电压放大倍数可以表示为:VO2 = - [ (R1/R5)*VO1 + (R1/R9)*V12 ]A V2= VO2/VO1=3其中R11为调节此级电路的输入阻抗的变阻器,用以控制此级电路的音量调控。

音响系统放大器设计.

音响系统放大器设计.

音响系统放大器设计一、设计任务与要求1.一般说明:音响系统中的放大器决定了整个音响系统放音的音质、信噪比、频率响应以及音响输出功率的大小。

高级音响中的放大器通常分为前置放大器和功率放大及电源等两大部分。

前置放大器又可分为信号前置放大器和主控前置放大器。

信号前置放大器的作用是均衡输入信号并改善其信噪比;主控前置放大器的功能是放大信号、控制并美化音质;功率放大器及电源部分的主要功能是提供整机电源及对前置放大器来的信号作功率放大以推动扬声器。

其组成框图如图所示:2.设计任务:设计一个音响系统放大器。

具体要求如下:⑴ 负载阻抗 Ω=4L R ;⑵ 额定功率 W P O 10=;⑶ 带宽 BW ≥kHz Hz 15~50;⑷ 失真度 %1<γ;⑸ 音调控制 低音(100Hz )±12dB;高音(10kHz )±12dB;⑹ 频率均衡特性符合RIAA 标准;均衡放大器话筒放大器 音调控制放大器噪声滤波器 功率放大器 电源 信号前置放大器主控前置放大器 唱机 话筒 调谐器 扬声器 平衡调节 音量调节⑺ 输入灵敏度 话筒输入端≤5mV;调谐器输入端≤100mV;⑻ 输入阻抗 R i ≥500k Ω;⑼ 整机效率 η≥50%;二、方案设计与论证本设计由语音放大器、电子混响器、混合前置放大器、音调控制器及功率放大器五部分组成。

此设计方案具有使用元件少,电路简单明了等特点。

其工作原理如下:当语音信号由话筒输出后,进入语音放大器放大并传入电子混响器产生混响效果。

混响后的信号连同磁带放音机产生的信号一同进入混合前置放大器,并进行放大。

放大后的信号进入音调控制器,然后进入功率放大器进行功率放大后,由扬声器输出声音[1]。

晶体管放大器具有细腻动人的音色、较低的失真、较宽的频响及动态范围等特点,因此本设计采用晶体管件设计放大器。

还可以配合来自声源特别是数码声源的音质而设计和使用。

它不会使声音降级。

此外它还具有效率高,电力损失小等优点。

音响放大器 实验报告

音响放大器 实验报告

音响放大器实验报告音响放大器实验报告一、引言音响放大器是音频信号放大的关键设备,用于将低电平的音频信号放大到适合扬声器的水平。

本实验旨在通过搭建一个简单的音响放大器电路并进行测试,了解放大器的工作原理和性能。

二、实验步骤1. 实验器材准备本实验所需器材包括:电源、信号发生器、示波器、电阻、电容、晶体管、扬声器等。

2. 搭建电路按照电路图搭建音响放大器电路,确保连接正确可靠。

3. 调试电路将电源接入电路,调节电源电压,确保电路工作在正常范围内。

通过示波器观察输出信号波形,调节信号发生器的频率和幅度,观察放大器对不同频率和幅度的信号的响应情况。

4. 测试性能使用示波器测量放大器的增益、频率响应和失真等性能指标。

通过改变输入信号的频率和幅度,观察输出信号的变化情况,并记录相关数据。

三、实验结果与分析1. 增益测试通过改变输入信号的幅度,测量输出信号的幅度变化情况,计算出放大器的增益。

根据实验数据绘制增益-频率曲线图,分析放大器在不同频率下的增益变化情况。

2. 频率响应测试通过改变输入信号的频率,测量输出信号的幅度变化情况,计算出放大器的频率响应。

根据实验数据绘制频率响应曲线图,分析放大器在不同频率下的响应情况。

3. 失真测试通过改变输入信号的幅度和频率,观察输出信号的波形变化情况,判断放大器是否存在失真现象。

使用示波器测量输出信号的失真程度,计算出失真率,并与理论值进行比较,分析放大器的失真情况。

四、实验结论通过本次实验,我们成功搭建了一个简单的音响放大器电路,并对其进行了测试。

根据实验结果分析,我们得出以下结论:1. 放大器在不同频率下的增益存在差异,频率响应不均匀。

2. 放大器对于低幅度的输入信号具有较高的增益,但在高幅度下可能出现失真。

3. 放大器的失真率与输入信号的频率和幅度有关,需要根据实际需求进行调整。

五、实验改进与展望本实验仅搭建了一个简单的音响放大器电路,未考虑到更复杂的电路结构和性能优化。

LM1036音频功率放大器的设计

LM1036音频功率放大器的设计

LM1036音频功率放大器的设计
LM1036音频功率放大器是一种集成电路,适用于汽车音响、家用音
响等音频放大器设计。

它具有调音功能,可以通过调节音量、低音、高音
等参数来实现音频效果的调节。

在设计音频功率放大器时,需要考虑电路
的稳定性、音质、功率输出等因素。

下面我将介绍LM1036音频功率放大
器的设计步骤。

首先,确定设计要求。

在设计音频功率放大器时,需要确定输入电压、输出功率、失真度等参数。

根据设计要求选择LM1036作为音频放大器的
芯片。

其次,设计电路图。

根据LM1036的数据手册,设计音频放大器的电
路图。

电路图主要包括LM1036芯片、输入输出接口、电源接口、音量控
制接口等部分。

在设计电路图时,需要考虑电路的稳定性和抗干扰能力。

接着,制作PCB板。

根据电路图设计PCB板,布线和焊接电路元件。

在制作PCB板时,要留意布线的合理性和元件的连接正确性。

确保电路的
连接正确,没有短路或断路。

然后,调试电路。

制作好PCB板后,进行电路的调试。

连接电源并测
试音频输入输出接口,调节音量、低音、高音等参数。

在调试电路时,可
以通过示波器等仪器来监测输出波形,调节参数,使输出波形符合设计要求。

最后,测试音频效果。

经过电路调试后,进行音频效果的测试。

播放
不同音频文件,测试音频效果的清晰度、音质等参数。

根据测试结果调整
参数,达到最佳音频效果。

毕业设计作用于高保真音响设备的音频放大器

毕业设计作用于高保真音响设备的音频放大器

毕业设计作用于高保真音响设备的音频放大器1. 引言在高保真音响设备中,音频放大器是一个至关重要的组件,它负责将信号放大,以驱动扬声器产生高质量的声音。

对于毕业设计的学生来说,设计一个适用于高保真音响设备的音频放大器是一个具有挑战性和实践意义的任务。

本文将详细介绍如何设计一个功能强大且高保真的音频放大器,并深入探讨其在高保真音响设备中的作用。

2. 音频放大器的基本原理音频放大器的基本原理是将输入的音频信号放大至足够的功率,以驱动扬声器产生声音。

其主要包括输入级、放大级和输出级。

•输入级:负责接收来自音频源的弱信号,并将其放大到适量的电压水平。

•放大级:负责对输入信号进行进一步放大,以增加功率。

•输出级:负责将放大后的信号通过输出装置(如扬声器)输出。

3. 设计要求在设计一个毕业设计作用于高保真音响设备的音频放大器时,需考虑以下几个方面的要求:3.1 高保真度高保真度是指音频放大器在放大过程中,能够尽量保持原始音频信号的准确性和纯净度。

为达到高保真度的要求,设计中需注意以下因素:•频率响应:放大器应具有平坦的频率响应特性,能够均匀地放大不同频率的信号。

•谐波失真:放大器应尽量减少谐波失真,保证音频信号的原始波形不被破坏。

•信噪比:放大器应具有较低的噪声水平,以保证音频信号的清晰度和细节表现。

3.2 功率输出能力高保真音响设备通常需要具备较大的功率输出能力,以满足各类音乐风格的要求和大场合的需求。

因此,在设计中要考虑放大器的功率输出特性,以保证其能够驱动扬声器产生足够的音量和动态范围。

3.3 低失真放大器的失真度直接影响音频信号的质量。

因此,设计中要注重降低失真,尤其是非线性失真的程度。

通过选择合适的电子元件和设计合理的电路结构,可有效降低失真水平,并提高音频信号的准确性和真实感。

4. 设计方法为实现一个功能强大且高保真的音频放大器,可以采用以下设计方法:4.1 选择合适的电子元件在设计中,选择合适的电子元件是至关重要的一步。

音响放大器的实验报告

音响放大器的实验报告

音响放大器的实验报告篇一:实验5 音响放大器报告东南大学电工电子实验中心实验报告课程名称:电子线路实践第5次实验实验名称:院(系):专业:姓名:学号:实验室:103实验组别: \同组人员: \ 实验时间:XX年6月3日评定成绩:审阅教师:实验五音响放大器设计【实验内容】设计一个音响放大器,性能指标要求为:功能要求话筒扩音、音量控制、混音功能、音调可调(选作) 额定功率≥0.5W(失真度THD≤10%) 负载阻抗10Ω频率响应fL≤50Hz fH≥20kHz 输入阻抗≥20kΩ话音输入灵敏度≤5mV音调控制特性(扩展) 1kHz处增益为0dB,125Hz和8kHz 处有±12dB的调节范围1. 基本要求功能要求话筒扩音、音量控制、混音功能额定功率≥0.5W(失真度THD≤10%) 负载阻抗10Ω频率响应fL≤50Hz fH≥20kHz 输入阻抗≥20kΩ话音输入灵敏度≤5mV2. 提高要求音调控制特性 1kHz处增益为0dB,125Hz和8kHz处有±12dB的调节范围。

3. 发挥部分可自行设计实现一些附加功能【实验目的】1. 了解实验过程:学习、设计、实现、分析、总结。

2. 系统、综合地应用已学到的模拟电路、数字电路的知识,在单元电路设计的基础上,利用multisim软件工具设计出具有一定工程意义和实用价值的电子电路。

3. 通过设计、调试等环节,增强独立分析与解决问题的能力。

【报告要求】(1) 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。

1)音响放大器电路包含4个模块:话音放大器、混合前置放大器、音调控制器及功率放大器。

电路设计框图如下:2)各级电路增益分配3)话音放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20k。

所以话音放大器的作用是不失真地放大声音信号(最高频率达到20kHz)。

其输入阻抗应远大于话筒的输出阻抗。

音响放大器的设计实验报告

音响放大器的设计实验报告

音响放大器的设计实验报告姓名:黄巧华04麦妙仪16郭焕贤25林晓强05 专业班级:10电子信息工程课题名称:音响放大器的设计内容摘要:㈠了解音响放大器的基本组成和总体设计㈡了解音响放大器各组成部分的具体设计㈢了解Multisim 的基本操作和命令㈣利用Multisim 设计实验电路并进行仿真验证㈤音响放大器的实物安装与调试第一部分设计任务一设计任务及要求设计一个音响放大器,要求具有音调输出控制,对话筒输出信号进行扩音。

已知话筒的输出电压为5mV,电路要求达到的主要技术指标如下:1 额定功率Po=0.5W(失真度<10%);2负载阻抗R=20Ω(Vs=15V);3 频率响应fl~fH=40Hz~10KHz;4音调控制特性:1KHz处增益为0dB,40Hz和10KHz处有±12dB的调节范围,A VL=AVH>=+20dB;输入阻抗Ri>>20Ω设计方案的分析论证简述这次的课题设计。

我们根据这学期对模电知识的学习,和上一学期电路知识的学习的应用。

对要求进行设计。

第二部分设计方案根据要求,我们初步设计了一个电路原理,首先我们用12v的单电源的输入,输入5mv的交流信号,经过,语音放大——混合前置放大——音调控制电路——功率放大,最后输出6v的电压。

所以我们根据20lg(6/0.005)=62dB 语音一级音调放大5mv——10倍——2.5倍——0.8倍——45倍——6V20dB 8dB -2dB 36dBAvf=1+Rf/R1Avf=-Rf/R1Rp=Rf//R1运放集成块我们用lm324它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端V o 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的与该输入端的相位相同。

由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

音频功率放大器设计详解

音频功率放大器设计详解

音频功率放大器设计一、设计任务设计一个实用的音频功率放大器。

在输入正弦波幅度≤5mV,负载电阻等于8Ω的条件下,音频功率放大器满足如下要求:1、最大输出不失真功率P OM≥8W。

2、功率放大器的频带宽度BW≥50Hz~15KHz。

3、在最大输出功率下非线性失真系数≤3%。

4、输入阻抗R i≥100kΩ。

5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围。

二、设计方案分析根据设计课题的要求,该音频功率放大器可由图所示框图实现。

下面主要介绍各部分电路的特点及要求。

图1 音频功率放大器组成框图1、前置放大器音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。

声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。

一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。

所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。

另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。

对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。

对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。

前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。

音响放大器设计报告

音响放大器设计报告

模电课程设计实验报告(音响放大器)姓名:陈立专业班级:电信二班学号:2009221105200182 指导老师:钟志峰一 设计课题:音响放大器(简单音频通带放大电路)(输入语音信号-麦克风)注:功放电路原则上不使用功放集成电路。

二 设计要求:1前置放大、功放:输入灵敏度不大于10mV ,f L ≤500Hz,f H ≥20kHz ; 2有音量控制功能;3额定输出功率 P O ≥5W(测试频率:1kHz);4负载:扬声器(8 、5W)。

5主要测量内容:最大输出功率,输出电阻,输入灵敏度,f L ,f H三 设计原理:1输入可用差分放大电路,用高放大倍数三极管增大放大倍数,中间级采用共射放大增大倍数,输出采用消除交越失真的互补输出,同时作为功放电路。

2采用阻容耦合电路,即利用电容的隔直流的特性将电路的三级分隔开来。

(一)差分电路:第一级作为输入放大,不需要太大的放大倍数,一般只需要几十变能达到要求。

射级电流 :IRE=2IEQ差分电路仿真波形:(二)共射放大电路:电源电压分别为+18V和-18V经过仿真得到最佳值=27k =4.3k =2.4k =620仿真结果如下:(三)互补输出电路:因为采用了阻容耦合,所以前级对后级的影响较小,只有在输出与输入的反馈电路上有影响。

互补输出级最显著的特点:(1)就是在上述电路图中,Q4与Q5之间的电压应该为0。

调结R9,R10便能做到。

(2)Q6和Q7的基极电压分别为+1V和-1V,调节 R10便能做到。

四仿真分析:(一)静态工作点:(二) 动态分析:五 PCB制作:1布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修。

2各元件排列,分布要合理和均匀,力求整齐,美观,结构严谨的工艺要求。

焊接注意事项:焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

音响放大器设计PPT课件

音响放大器设计PPT课件

音响放大器在音乐领域的应用
音乐演出
音响放大器在音乐演出中扮演着至关重要的角色,它能够将原始声 音放大,并通过音响设备传递给听众,营造出震撼的音响效果。
录音棚
在录音棚中,音响放大器用于将声音信号放大,以便在录制过程中 进行精确的调整和编辑。
音乐制作
音乐制作过程中,音响放大器用于调整和优化声音信号,使音乐作品 达到预期的效果。
音响放大器设计的主要目的是提高音质,使声音更加清晰、逼真,同时确保系统 的稳定性。在背景方面,音响放大器的发展历程、相关技术和市场趋势也是重要 的考虑因素。
放大器的基本概念
放大器是一种电子设备,用于将微弱的电信号放大,以便驱 动更大的负载。在音响系统中,放大器将微弱的音频信号放 大,驱动扬声器产生足够响亮的声音。
总结词
放大器性能测试是验证音响放大器性能 的重要手段。
详细描述
放大器性能测试包括输入输出电压、电流、功率、效率、失真度等参数的测量。通过测试,可以全面了解放大器 的性能指标,发现潜在的问题并进行改进。测试过程中需要使用专业的测试仪器和设备,确保测试结果的准确性 和可靠性。
05
音响放大器应用与实例
详细描述
静态工作点调试的目的是找到放大 器输入信号为零时,放大器的最佳 工作点。通过调整静态工作点,可 以确保放大器在无输入信号时处于 线性放大区,避免出现失真和自激 振荡。
总结词
动态性能优化是提高音响放大器性能的关键步骤。
详细描述
动态性能优化主要涉及调整放大器的增益、 带宽、响应速度等参数。通过合理的动态性 能优化,可以减小放大器的失真、提高频率 响应的平坦度,从而获得更好的音质效果。
音响放大器设计
• 引言 • 音响放大器原理 • 音响放大器设计 • 音响放大器调试与优化 • 音响放大器应用与实例 • 未来音响放大器的发展趋势

音响放大器设计报告参考

音响放大器设计报告参考

低频电子线路课程设计课题:音响放大器的设计姓名:刘志昌武前进指导老师:陈松系别:物电系班级:0706班学号:1407220021314072202843目录主要技术指标 (3)功能要求 (3)一、音响放大器的基本组成 (3)1、话音放大器 (3)2、混合前置放大电路 (4)3、音调控制器 (4)4、功率放大器 (7)二、PCB版图及实物图 (8)1、整机电路 (8)2、做成PCB板图 (9)3、实物图 (9)三、音响放大器主要技术指标及测试方法 (10)(1)额定功率 (10)(2)音调控制特性 (10)(3)频率响应 (11)(4)输入阻抗 (11)(5)输入灵敏度 (11)(6)噪声电压 (11)(7)整机效率 (12)四、电路安装与调试技术 (12)五、整个设计过程应注意的地方 (12)六、整机功能试听 (13)音响放大器设计主要技术指标额定功率P 0≥1W;负载阻抗R L =8;截止频率f L =40Hz,f H =10kHz;音调控制器特性为,1kHz 处的增益为0dB , 100Hz 和10kHz 处有±12dB 的调节范围;话放级输入灵敏度为5mV ;输入阻抗R I 》20k 。

功能要求具有话筒扩音、音调控制 、音量控制、卡拉ok 伴唱等功能。

一、音响放大器的基本组成音响放大器的基本组成框图如图1,各级电压增益分配见图2。

图1 音响放大器的基本组成框图话放级混放级音调级18.5dB9.5dB–2dB29.5dBA V =612倍(56dB)功放级图2 各级电压增益分配1、话音放大器话音放大器的主要作用是将话筒输入的信号不失真的放大,由于话筒的输出信号一般只有5mv ,而输出阻抗达到20k ,所以其输入阻抗应远大于话筒的输出阻抗。

其中放大倍数为A=R2/R1. C1、C2、C3隔直电容,具体设计见图3。

图3 话音放大器2、混合前置放大电路实质就是一个反向加法电路。

利用:202021105oR RV V VR R⨯+⨯=-(其中V1、V2话筒经放大器的电压和录音机的输入电压.V0前置放大级的输出电压)。

课程设计-音响放大器设计

课程设计-音响放大器设计
输出电压。
话筒放大
二阶低通 滤波器I
BB D 延时器
二阶低通 滤波器II
时钟脉冲产生器
缓冲级
图9.2 电子混响器组件框图
1) 混合前置放大器 混合前置放大器的作用是将磁带放音机输出音乐信号与电子混 响后的声音信号进行混合放大。其电路如图9.4所示,这是一 个反相加法器电路,输出与输入电压间的关系为:
+UCC
+12
I0
R4
R10 IC2
R P1
11K
47K
A
T1
3DG6
T2
3DD01
R2
10K
R3 + C1 1K
ui
+
R1
47K
2-
7
A
3+ C2
4
uA741
10uF
RP2
1K
D1 6C
2CP10*2 D2
B
R6
240
R11 T3
3CG21
R8 1O
R12
30
RL 8
T4 +
R5
3DD01 C3
11K
R7
240
0.1u
R9
-UCC
1
-12
图9.7 集成运放与晶体管组成的功率放大器
(1)电路工作原理简述
三极管T1、T2为相同类型的NPN管,所组成的复合管仍为NPN型。 T3、T4为不同类型的晶体管,所组成的复合管的导电极性由第一 只管决定,即为PNP型。R4、R5、RP2及二极管D1、D2所组成的 支路是两对复合管的基极偏置电路,静态时支路电流I0可由下式
3.功率放大器
功率放大器的作用是给音响放大器的负载RL(扬声器)提供

模电实验_音响放大器设计

模电实验_音响放大器设计

模电实验_音响放大器设计音响放大器设计是模拟电路实验的一个重要内容,本实验旨在让学生通过实践掌握音响放大器的设计原理与方法。

音响放大器是音频信号放大的装置,能够将低电平的音频信号放大为适合扬声器输出的音频信号。

本实验分为基本放大器设计和功率放大器设计两个部分。

基本放大器设计是音响放大器设计中的基础,本实验采用共射放大器作为基本放大器电路。

首先,我们需要选择放大器的工作点。

工作点的选择需要满足以下几个条件:静态工作点电流适中,能够使晶体管正常工作;输出电压波形对称,能够提供丰富的音乐信息;输出电压不过大,以避免过载。

具体的工作点选择需要根据晶体管的参数和特性曲线进行计算。

首先,我们需要找到晶体管参数手册,根据手册中给出的参数和特性曲线,确定晶体管的Vbe,Vce-Sat和β值。

然后,根据设计要求,选择工作点电流Icq。

接下来,根据以下公式计算出Rb和Rc的取值:Rb = (Vbe - Vcc/2) / IcqRc = (Vcc - Vce-Sat) / Icq其中,Vcc为供电电压,Vbe为基极-发射极的电压,Vce-Sat为集电极-发射极的饱和电压,Icq为工作点电流。

完成工作点选择后,我们可以开始进行电路的构建。

首先,连接输入信号源到放大器的输入端,接上输入耦合电容C1、然后,向放大器的输入端接入直流偏置电压,以使放大器达到工作点。

接下来,连接静态偏置电路,包括电阻R1和R2,用于提供基极电流。

最后,连接输出负载电阻Rc和输出耦合电容C2,以使放大器能够输出电信号。

功率放大器是音响放大器的重要组成部分,它能够将基本放大器输出的信号进一步放大到足够大的电平,以驱动扬声器。

本实验采用双管共射极功率放大器电路。

与基本放大器设计类似,我们首先需要选择输出级的工作点。

工作点的选择需要满足以下几个条件:静态工作点电流适中,能够使晶体管正常工作;电流冲击能力强,能够满足音响放大器的功率输出要求;功率放大器的平稳度好,能够提供稳定的输出功率。

模电课程设计-音响放大器

模电课程设计-音响放大器

琼州学院本科生课程设计《模拟电子技术》课程设计设计题目:音响放大器学院:电子信息工程学院专业:电子信息科学与技术年级:学生姓名:学号:指导老师:2012年6月音响放大器的设计(琼州学院电子信息工程学院,海南三亚572022)摘要:音响放大器所需要设计的电路为话筒放大器,音调控制器及功率放大器。

话音放大器的作用是不失真的放大声音信号(最高信号达到10kHz)。

其输入阻抗应远大于话筒的输出阻抗;音调控制器主要是控制、调节音响放大器的幅频特性,因此音调控制器的电路可由低通滤波器与高通滤波器组成。

关键词:音响放大器;话放级;音调控制级;功放级1设计内容1.1设计目的(1)学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。

(2)学会音响放大器的设计方法和性能指标测试方法。

(3)培养实践技能,提高分析和解决实际问题的能力。

1.2设计要求(1)设计并制作一个音响放大器,主要技术指标要求:①额定功率:P。

>=1W②负载阻抗:R=8Ω③频率范围:40Hz~10kHz④话放级输入灵敏度:5mV⑤输入阻抗:R>>20Ω⑥系统的总电压增益A>560倍(55dB)(2)设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。

(3)自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。

(4).批准后,进实验室进行组装、调试,并测试其主要性能参数。

1.3参考方案(1).电路图设计①确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出音响放大器方框图。

②系统分析:根据系统功能,选择各模块所用电路形式。

③参数选择:根据系统指标的要求,确定各模块电路中元件的参数。

④总电路图:连接各模块电路。

(2).电路安装、调试①为提高学生的动手能力,学生自行焊接电路板。

②在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子技术(综合)课程设计题目名称:音响放大器的设计班级:电气1302班学号:姓名:指导教师:吴建国日期:2015.6.27音响放大器的设计1. 设计任务和要求:(1) 具有对话筒与录音机输出信号进行扩音、音调控制、卡拉OK 伴唱等功能。

(2) 主要技术指标:额定功率O W P ≥1(γ<3%);负载阻抗L 8R =Ω;截止频率L 40f z =H ,H k 10f z =H ;音调控制特性:k 1z H 处增益为0dB ;z H 100处和k 10z H 处有12±dB 的调节范围;VL LH 20A A =≥dB ;话筒放大级输入灵敏度mV 5;录音机的输出信号电压为mV 100;输入阻抗i 20R >>Ω。

(为了保证设计内容的多样性,技术指标部分可另取值)。

(3) 主要器件:CC V =+9V ;话筒(低阻20Ω)电子混响模块一个;集成功放LA4102一只;集成运放LM324一只(或μA741 3只);W 8/2Ω负载电阻L R 一只;W 8/4Ω扬声器一只。

题目分析或内容摘要:这个音响放大器的设计过程为:首先确定整机电路的级数,再根据各级的功能及技术指标要求分配电压增益,然后分别计算各级电路参数,通常从功放级开始向前级逐级计算。

只需给定电子混响器电路模块,需要设计的电路为话筒放大器,混合前置放大器,音调控制器及功率放大器。

根据题意要求,输入信号为5mV 时输出功率的最大值为lW ,因此电路系统的总电压增益∑uA =L PoP/Ui=566(55dB),由于实际电路中会有损耗,故取∑uA =600(55·6dB),各级增益分配如图4所示。

功放级增益4u A 由集成功放块决定,取4u A =100(40dB),音调控制级在fo=lkHz 时,增益应为1(0dB),但实际电路有可能产生衰减,取3u A =0.8 (一2dB)。

话放级与混合级一般采用运算放大器,但会受到增益带宽积的限制,各级增益不宜太大,取1u A =7.5(17.5dB),2u A =l(OdB)。

2. 设计方案甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器输入音 频信号前置放大级电路共射-共基电路共射-共基电路恒压源电路推动级反馈电路至末级 功放沃尔漫电路它有吸引人的音质。

甲类放大器输出电路本身具有抵消奇次谐波失真,且甲类放大器管子始终工作在线性曲线内,晶体管自始自终处于导通状态。

因此,不存在开关失真和交越失真等问题。

甲类放大器始终保持大电流的工作状态。

所以对猝发性声音瞬间升降能迅速反映。

因而输出功率发生急剧变化时,电源电流变化微乎其微。

由这种强大的驱动者来推动扬声器就能轻而易举的获得高保真的重放效果。

为了能得到好的音质,在设计时,我采用了前后级分离。

前置低放和末级功放完全分离,甚至分开供电。

电路的方框图如图1所示。

3 电路组态与频响的关系经过一期的学习,我们学了各种放大电路及其组合形式。

由于所选器件和组合形式的不同,不可避免地要造成诸如输入阻抗、频响、失真、信噪比等方面性能的指标差异,并且最终以音质方面的差异体现出来。

3.1 组态与频响的关系选择电路时,我们希望其频响应尽量平坦宽阔,在整个音频范围内平衡度好。

电路的转换速率和失真也相对低。

通过第五章的学习,我们了解到晶体管C be、Ccb和C o的反馈或分流效应,造成输入、输出信号中的高频分量减少,其中以Ccb的影响最大。

高频信号经该电容反馈主生的“密勒效应”,相当于在放大器输出端并接了一个容量等于Cm(密勒电容)的电容。

Cm和Ccb的关系是:Cm=(1+Kv)C cb (1)可以认为C m是影响放大器高频响应的主要因素。

而耦合电容的容抗主要影响放大器低频频响。

这些因素与电路组态有关。

3.2 共射-共基差分的频响3.2.1 共射-共基电路通过学习我们知道共基放大器由于基极交流接地,集电极电容Ccb的反馈条件被破坏,Ccb转化为C O(共基接地时晶体管的输出电容)。

其影响比Cm自然小得多,而集电极与发射极之间的寄生电容基电路有很好的高频响应。

在音频放大电路中,共一般极小,管子内部反馈的影响也小得多。

所以共基电路不单独作用,而是与共射或场效应管共源放大器直接耦合组成共射-共基或共源-共基放大器。

共射-共基差分电路如T1T2R31.5kR51.5kR P11kVCCUiVbOUTT3T4图2 共射-共基差分电路T1C224T2C2240Q2K170Q1K170R31.5kR51.5kVCCVbOUT图2所示。

这种放大器取两种放大器之长而避其短,不仅有很好的高频响应和较高的增益,而且使共射管有恒定的UCE 。

因T1有很高的输出阻抗,T3有很低的输入阻抗,所以T3可将T1的电流变化转化成电压的变化。

如图2示,这就为T1提供了恒定的UCE 。

U CE 恒定,可明显改善T1的β值线性度,避免了上下半周放大量不一致而导致的失真。

所以共射-共基电路是一款性能优良的放大器。

3.2.2 共源-共基电路众所周知,场效应管具有输入阻抗高,动态范围大,噪声系数小且与工作电流基本无关的特点。

所以由场效应管和三极管组成的共源-共基差放电路在现代高保真放大器中应用更为广泛。

共源-共基差放电路3所示。

3.3 互补对称放大器的失真互补对称放大器是用不同极性的放大器件(N 型或P 型)构成的高保真放大器中最常用的放大器。

其结构有互补对称双管放大器和互补对称差分放大器两种。

信号由不同极性的器件分别放大后在其输出端合成。

由于它们工作在对称放大状态,具有类似差分的特性抵消失真中的偶次谐波,获得较低的失真度。

鉴于此,我在这里用了沃尔漫电路。

形式如图4所示。

共射-共基电路有诸多优点,在信噪比方面的表现也不逊色。

4 功放优化设计4.1 DC 化无大环路负反馈功放电路为消除非线性失真和抑制零飘,一般晶体管功放的输出端与输入级之间加有大环路负反馈。

研究表明,由于功放输出端信号会因为晶体管极间电容的充电过程而被延迟,使输出信号相位滞后于输入信号。

加环路负反馈后产生TIM 失真。

虽然晶体管的极间电容很小,相移的影响主要表现在高频段。

但对波形前沿很陡的音频信号仍然产生明显的影响。

要避免TIM 失真,减少电路相移量的方法为治本之策。

在功放电路中,输出级晶体管的极间电容最大,可达几百皮法上千皮法。

若使反馈环路避开输出级,反馈信号的相移将会明显减少。

TIM 失真也可明显改善。

于是设计时可将T1C 2240T2C 2240T4A 970T3A 970Q 2K 170Q 1K 170Q 3J 77Q 4J 77R 11k R 2100kR 31.5kR 420kR 51.5kR 611kR 711k R 81.5kR 920kR 101.5kR P 11kI NC1R11-VCC+VCCo uto uto ut o ut图4 沃尔漫电路反馈信号的提取点移至电压驱动级的输出端,使输出级不介入环路负反馈(即所谓无大环路负反馈)。

这样就缩短了反馈路经。

使反馈信号的相移量尽可能小,同时又保留了负反馈给电路带来的好处。

输出级介入反馈,还可以防止感性负载(即扬声器)反向感应电动势带入输入级,引起交叉调制失真。

综合分析主电路部分如图5所示,音频信号经R1缓冲进入Q1和Q2组成的双差分输入电路。

C1和R2对输入信号中的高频干扰起到旁路的作用。

R2作为输入电阻.Q1、T1,Q2、T2,Q3、T3和Q4、T4构成共射-共基电路(也称沃尔漫电路)这种电路最显著的特点是具有失真低、频响宽、增益高、线性好。

R4、R6、RP1、R7、R9构成分压电路给T1、T2、T3、T4的基极提供 12V 基极偏压。

这样,Q1~Q4四只结型场效应管的漏极工作电压只有11.3V (12-0.7)左右,保证了结型场效应管安全可靠地工作,这是因为结型 场效应管的工作电压较低,不能直接工作在较高的电压下。

RP1(兼作输出级输出中点电位的调节)为输入电路静态电流的调节电阻,设计时输入级静态电流设定在1.4mA 左右。

这样,R3、R8上产生2.1V 压降作为下一级电路的偏置电压。

电压放大级同样是由T5、T6、T7、T8构成共射—共基电路。

D1、R16、D2为T6、T8的基极供基准工作电压。

调节RP3将该级的电流设定在4.8mA 左右,R36上电压降为1.45V 。

正负半周的信号经T9 T13共射放大电路后由其集电极进入T10、 T12组成的共基电路,并从两 管的集电极输出,经R37、R38缓冲送入Q5、Q6组成的末级电路。

T1C 2240T2C 2240T9D 667T7D 669T8D 667T5B 647T6B 647T4A 970T3A 970Q 2K 170Q 1K 170Q 3J 77Q 4J 77Q 5K 214Q 6J 77R 11kR 2100kR 31.5kR 420kR 51.5kR 611kR 711k R 81.5kR 920kR 101.5kR 111k R 121M R 1310k R 14150R 15300R 1639k /1WR 176.8kR 1820/2W *2R 19470R 20470R 21R P11kR P21kR P310kD 1D 27.5v D 31N 4148C 1100pC 20.1uC 30.1u C 42.2u C 5C 60.1uC 7C 80.1uC 968pC 1068pI NOUTOUT图5 前置低放电路图T7、 R17、 D3 、RP3 构成恒压电路,调节RP3可以改变Q5, Q6两管栅极电位差,从而改变末级静态工作电流。

C6、C7及输入级的C2、C3为高频退耦电容,减少了电源的调频内阻过大引起自激的可能。

关于末级管Q5、Q6电流到底设计在多大,以前有人作过探讨,结论是静态电流大于80mA 后,胆味才更浓郁。

为了获得10W 左右的功率,本设计中将Q5、Q6的静态电流设计在80mA 左右。

如果想得到更大一点的功率,我们可以改变末级功放的电源电压,把场效应管的漏极电流调到100mA 左右。

这样,不仅有大的功率,而且有胆机的味道。

场效应管属电压控制器件,栅极输入阻抗高,静态电流调大时,会产生寄生振荡,解决的办法是在Q5、Q6的栅—漏之间并联C10、C9来消除。

R18、R21为末级管的源级电阻,当该级电流为100mA 时,其上的压降为2V 左右。

R11、R12、R13、C4、C5组成电压反馈网络,这种反馈的特点是:通频带、转换速率等指标最优(在该电路中)。

R11、R13将整机的闭环电压放大倍数定在10倍左右,这也是前级电路常规的放大倍数设定方法。

至于相位补偿电容C5的使用,有一个原则是能小则小,能不用则不用。

相关文档
最新文档