有限元法基本原理与应用

合集下载

有限元方法的基本原理

有限元方法的基本原理

有限元方法的基本原理
有限元方法是一种数值分析方法,用于求解复杂结构的力学问题。

其基本原理如下:
1. 将结构离散化:首先将结构分割成许多小的单元(有限元),每个单元可视作一个简单的结构部件。

这样可以将原始连续结构的复杂问题简化为每个小单元的简单问题。

2. 定义弯曲关系:对每个单元建立力学模型,包括定义材料的弹性模量、泊松比、截面积等力学性质参数。

3. 建立单元的位移方程:利用有限元方法,采用适当的形函数,建立每个单元的位移方程,一般为不定位移分析。

4. 组装全局方程:将所有单元的位移方程组装成整个结构的全局方程。

5. 求解方程组:通过数值方法(如高斯消元法、迭代法等),求解结构的位移和应力等力学量。

6. 分析结果:根据结构的位移和应力等力学量,可对结构的强度、刚度、振动等进行分析和评价。

有限元方法的基本原理是将复杂结构的力学问题通过离散化处理,化为易于计算的小单元问题,再通过数值方法求解整个结构的力学行为。

计算电磁学中的有限元方法

计算电磁学中的有限元方法

计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。

有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。

本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。

一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。

这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。

有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。

其中建模是有限元方法中最重要的一个环节。

在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。

然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。

一旦有限元模型被建立,我们就可以进行求解了。

具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。

这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。

最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。

二、有限元法应用领域有限元法在计算电磁学中广泛应用。

其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。

有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。

在电力电子领域中,有限元法可用于设计电感元件和变压器等。

另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。

三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。

有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。

此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。

有限元法的基本原理

有限元法的基本原理

有限元法的基本原理
有限元法是一种用于求解物体结构和材料行为的数值分析方法。

它将连续的物理问题离散化为一个由一系列小的单元构成的简化模型,每个单元都有自己的特性和行为。

有限元法的基本原理是将物体分割成离散的有限元素,并在每个元素上建立适当的数学模型。

这些数学模型可以描述元素的行为以及相邻元素之间的相互作用。

然后,通过在元素级别上求解这些模型,得到整个物体的行为。

在有限元法中,首先将物体网格化成一系列有限元素。

常用的有限元素包括三角形、四边形和六面体等。

然后,在每个元素上构建适当的数学模型,通常使用微分方程或代数方程来描述元素的行为。

这些方程可以是弹性、塑性、热传导等物理现象的方程。

为了求解整个物体的行为,有限元法需要在每个元素上求解数学模型。

一般来说,这涉及到在每个元素的内部和边界上施加恰当的边界条件,并使用数值方法进行求解。

常用的数值方法包括有限差分方法、有限体积方法和有限元法等。

通过在每个元素上求解数学模型,并根据元素之间的相互作用来求解整个物体的行为,有限元法可以提供物体的应力、应变、位移等各种物理量的分布和变化情况。

这对于分析和设计工程结构、优化材料性能等都具有重要意义。

总的来说,有限元法的基本原理是将物体离散化,并在每个元
素上构建适当的数学模型,然后通过数值方法求解这些模型,以获得整个物体的行为。

它是一种强大的工具,可以在工程和科学领域中广泛应用。

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程引言电磁场计算是电磁学领域中重要的研究内容之一,广泛应用于电气工程、通信工程、电子技术等领域。

而有限元方法(Finite Element Method,简称FEM)是一种常用的数值计算技术,可以解决电磁场计算中的复杂问题。

本文将介绍有限元方法在电磁场计算中的基本原理、步骤和应用。

一、有限元方法简介有限元方法是一种通过将待求解区域划分成有限数量的小单元,利用单元上的近似函数构造整个区域上的解的数值计算方法。

有限元方法的基本思想是在每个小单元内近似解以建立一个代数方程组,通过将这些方程组联立得到整个区域上的解。

有限元方法具有处理复杂几何形状、边界条件变化和非线性问题的优势,因此被广泛应用于工程和科学计算中。

二、电磁场方程建立在电磁场计算中,关键是建立合适的电磁场方程。

常见的电磁场方程包括静电场方程、恒定磁场方程、麦克斯韦方程等。

根据具体情况选择适用的方程,并根据材料的性质和边界条件确定相应的方程形式。

三、有限元网格划分有限元方法需要将计算区域划分为有限数量的小单元。

在电磁场计算中,通常采用三角形或四边形单元来进行划分,这取决于计算区域的几何形状和分辨率要求。

划分过程需要考虑电场变化的特点和计算精度的需求,合理划分网格对精确计算电磁场起着重要的作用。

四、有限元方程的建立有限元网格划分完成后,需要建立相应的有限元方程组。

以求解静电场问题为例,我们可以利用能量最小原理、偏微分方程等方法建立有限元方程组。

有限元方程组的建立需要考虑电场的连续性、边界条件和材料特性等。

五、有限元方程求解有限元方程组的求解是求解电磁场分布的核心任务。

根据具体的方程形式和计算区域的几何形状,可以采用直接法、迭代法、近似法等方法来求解方程。

在电磁场计算中,常用的求解算法包括高斯消元法、迭代法、有限元法和有限差分法等。

六、计算结果的后处理在得到有限元方法计算的电磁场分布结果后,需要进行相应的后处理,进行数据分析和可视化。

有限元法基本原理及应用课程设计

有限元法基本原理及应用课程设计

有限元法基本原理及应用课程设计简介有限元法(Finite Element Method,FEM)是一种基于数值逼近的工程分析方法,已经成为现代工程设计中不可或缺的一部分,其在结构、流体、电磁等领域广泛应用。

本文主要介绍有限元法基本原理、方法及其在工程计算中的应用。

基本原理有限元法是将要分析的区域(物体)离散化成为若干个小的部分——有限元,这些小的部分可以是固体、流体或电磁场等。

将连续的区域离散化成为有限元后,可以得到一个巨大的矩阵,这个矩阵中有很多的未知数,利用解代数方程的方法求解这个用数值计算得到的矩阵,可以得到每一小块上的数值解,再利用数学方法进行插值回归即可得到计算区域内的解函数。

有限元法的基本流程如下: 1. 划分有限元网格; 2. 建立局部坐标系及本地变量; 3. 建立单元刚度矩阵和全局刚度矩阵; 4. 确定位移边界条件和荷载边界条件; 5. 求解结构刚度方程组; 6. 确定应力、应变及其他工程量。

有限元法的应用结构力学分析有限元法在结构力学分析中的应用,可以计算出构件的应力、应变、变形、自然振动频率和模态形态等,是一种全面分析结构的方法。

有限元法用于结构力学分析过程中,流体介质可以用等效边界方法、密闭法等方法进行处理。

针对工程中常见的均匀悬臂梁、不均匀悬臂梁、悬臂梁等,有限元法都能够比较容易的完成分析。

流体力学分析有限元法在流体力学分析中的应用,可以计算出流场的速度、压力、温度和经过流场的固体或液滴的流动运动情况和流体中的一些特殊现象等,是流体力学计算的主要方法之一。

有限元法在流体流动分析中的应用可以采用有限元法的稳定性运动和耦合运动,基于数值流体力学(Computational Fluid Dynamics,CFD)所设定的流体边界有限元法、流体的单元体系等实现。

电磁场分析有限元法在电磁场分析中的应用,可以计算出电磁场的电场强度、磁场强度、电势、电流分布和电容分布等,是电磁场计算的主要方法之一。

有限元原理与应用

有限元原理与应用

第二节 平面刚架有限元法
二、单元分析
第二节 平面刚架有限元法
二、单元分析
第二节 平面刚架有限元法
二、单元分析
第二节 平面刚架有限元法
二、单元分析
第二节 平面刚架有限元法
二、单元分析
第二节 平面刚架有限元法
三、坐标变换
第二节 平面刚架有限元法
三、坐标变换
第二节 平面刚架有限元法
三、坐标变换
四 载荷移置
第二节 平面问题有限元法
四 载荷移置
第二节 平面问题有限元法
五 约束处理
第二节 平面问题有限元法
五 约束处理
第二节 平面问题有限元法
五 约束处理
第二节 平面问题有限元法
五 约束处理
第二节 平面问题有限元法
六 求解线方程组
七 计算其它物理量
第二节 平面问题有限元法
八 计算结果处理
第二节 轴对称问题有限元法
二、单元分析
第二节 轴对称问题有限元法
第二节 轴对称问题有限元法
第二节 轴对称问题有限元法
第二节 轴对称问题有限元法
第二节 轴对称问题有限元法
三、单元刚度矩阵
第二节 轴对称问题有限元法
三、单元刚度矩阵
第二节 轴对称问题有限元法
三、单元刚度矩阵
第二节 轴对称问题有限元法
第二节 平面问题有限元法
3 总刚矩阵的特点
第二节 平面问题有限元法
3 总刚矩阵的特点
第二节 平面问题有限元法
四 载荷移置
第二节 平面问题有限元法
四 载荷移置
第二节 平面问题有限元法
四 载荷移置
第二节 平面问题有限元法
四 载荷移置
第二节 平面问题有限元法

有限元法及其应用 pdf

有限元法及其应用 pdf

有限元法及其应用 pdf标题:有限元法及其应用引言概述:有限元法是一种数值分析方法,广泛应用于工程领域。

本文将介绍有限元法的基本原理和应用领域,并详细阐述其在结构分析、流体力学、热传导、电磁场和生物力学等方面的具体应用。

正文内容:1. 结构分析1.1 结构力学基础1.1.1 杆件和梁的有限元分析1.1.2 平面和空间框架的有限元分析1.1.3 壳体和板的有限元分析1.2 结构动力学分析1.2.1 振动问题的有限元分析1.2.2 地震响应分析1.2.3 结构非线性分析2. 流体力学2.1 流体流动的有限元分析2.1.1 稳态流动问题的有限元分析2.1.2 非稳态流动问题的有限元分析2.1.3 多相流动问题的有限元分析2.2 流体结构耦合分析2.2.1 气动力和结构响应的有限元分析2.2.2 液固耦合问题的有限元分析2.2.3 流体流动与热传导的有限元分析3. 热传导3.1 热传导方程的有限元分析3.1.1 稳态热传导问题的有限元分析3.1.2 非稳态热传导问题的有限元分析3.1.3 辐射传热问题的有限元分析3.2 热结构耦合分析3.2.1 热应力分析3.2.2 热变形分析3.2.3 热疲劳分析4. 电磁场4.1 静电场和静磁场的有限元分析4.1.1 静电场的有限元分析4.1.2 静磁场的有限元分析4.2 电磁场的有限元分析4.2.1 电磁场的有限元分析方法4.2.2 电磁场与结构的耦合分析4.2.3 电磁场与流体的耦合分析5. 生物力学5.1 生物组织的有限元分析5.1.1 骨骼系统的有限元分析5.1.2 软组织的有限元分析5.1.3 生物材料的有限元分析5.2 生物力学仿真5.2.1 运动学分析5.2.2 力学分析5.2.3 生物仿真与设计总结:有限元法是一种广泛应用于工程领域的数值分析方法。

本文从结构分析、流体力学、热传导、电磁场和生物力学五个大点详细阐述了有限元法的应用。

通过对各个领域的具体应用介绍,我们可以看到有限元法在工程领域中的重要性和广泛性。

有限元法基本原理及应用教学设计

有限元法基本原理及应用教学设计

有限元法基本原理及应用教学设计一、引言有限元法作为结构力学、流体力学、热力学等学科中最常用的数值分析方法之一,已经广泛地用于工程领域。

本文将介绍有限元法的基本原理,并结合教学实践,提出一些应用场景下的教学方法。

二、有限元法基本原理有限元法是一种通过将连续体分割成一系列互相联系的单元,再在每个单元内进行局部近似的方法。

其基本步骤如下:1.确定问题的几何形状,将其离散化为有限数量的单元。

2.寻找适当的函数形式,用于单元内的场函数近似。

3.根据边界条件、本构关系等确定模型中所需的参数。

4.利用有限元法求解离散模型中的场函数,获得结果。

其中,第一步和第二步是离散化的过程,第三步是确定问题的物理参数,第四步是利用有限元方法来求解局部近似的结果。

三、教学设计3.1 教学目标通过本教学,学生应该能够:1.理解有限元法的基本原理。

2.能够根据问题特点选择有限元法模型,熟练掌握其求解方法。

3.能够独立地完成一定的有限元法计算,掌握基本的讨论和分析技巧。

3.2 教学内容教学内容的设计应该以让学生掌握有限元法的基本原理和中小型有限元法计算实验为主。

具体包括:1.有限元法基本概念和基本原理。

2.有限元法求解流程。

3.有限元法中力学问题的处理方法。

4.有限元法计算程序的操作实践及其调试过程。

3.3 教学方法教学方法应该根据教学目标和教学内容来选择。

具体而言,可以采用以下教学方法:1.讲授法:介绍有限元法的基本理论、公式、步骤等。

2.组织实践:每个学生都可以应用所学的有限元法计算流程,通过校内实践检验所得结果,加深学习效果。

3.讨论演示法:引导学生根据教材内容和实践结果展开讨论,举一反三,形成总结性的详细讨论分享现象,并进行比较,以及某些特殊情况的讨论。

4.自学法:学生在自习时间用充足的学习资料在当地的工程和计算机实验室研读,掌握有限元法的道理和方法。

3.4 教学评估教学评估应包括考试成绩和实际计算结果。

在学年末进行考试,考试的内容应该包括基本理论和实践的实际应用以及进行有限元法计算产生结果的分析。

有限元法在工程问题中的应用

有限元法在工程问题中的应用

有限元法在工程问题中的应用有限元法是一种数学模型,它能够在任意细分的大型结构中进行数值计算,根据输入的控制数据,通过分析方程组的解来估算结构的应力、位移和变形情况。

自20世纪中期以来,有限元法已成为广泛应用于工程学和科学中的一种基本分析工具,本文就有限元法在工程问题中的应用进行了详细探讨。

一、有限元法的基本原理有限元法基于工程和数学的原理,它将结构划分为小的有限元部分,通过将结构的连续域离散成离散节点和有限元,将原问题转换为求解节点变量和有限元上产生的“单元”变量的方程组,其中“单元”是指每个单元贡献的力和位移。

这里的方程可以求解相应的应变、应力和动态特性以及温度变化等问题,而有限元法会处理系统性质和外部力。

然后,在满足所有预期行为的条件下找到一组满足约束条件的系数和变量。

有限元方法的算法涉及基本的数学和物理概念和操作。

它涉及特定材料的材料特性,例如弹性模量,泊松比,密度和摩擦系数等;结构的变形;应力分布和荷载方程;和运动方程和动力特性的制定。

通常,要获得准确的数值分析结果,需要做一定的假设和约束条件,例如,每个元素中的变形是线性的、惯性力小于惯性力、等等。

二、有限元法在结构工程中的应用1、金属材料和复合材料的分析在工业制造中,金属材料和复合材料具有广泛应用。

有限元法已成为一种预测任意材料失效、表征复杂耦合场和计算导电性等物理过程的强大工具。

有限元分析可以通过根据特定的驱动因素(例如机械应力、热应力或火焰,或抗冲击性或耐腐蚀性),模拟金属材料和复合材料的行为。

2、建筑物和桥梁的分析有限元法还常用于建筑物和桥梁这些工程结构的分析。

它可以模拟不同的“端口”来描述拱、墙壁、屋顶、梁和板的所有物理属性。

有限元分析可以更好地理解材料的行为和材料间的作用,并预测某个部件是否会破坏或失效。

3、车辆的动力学表现有限元法的另一个应用是在汽车、飞机、火车等各种机动车辆的动力学表现方面。

它跟踪引擎和驱动部件之间的相互作用,并模拟发动机和传动系统的行为。

工程电磁场数值分析(有限元法)

工程电磁场数值分析(有限元法)
使用适当的数值方法求解离散方程组,得到场函数的近似解 。
04
有限元法在工程电磁场中的应用
静电场问题
总结词
有限元法在静电场问题中应用广泛,能够准确模拟和预测静电场 的分布和特性。
详细描述
静电场问题是指电荷在静止状态下产生的电场,有限元法通过将 连续的静电场离散化为有限个单元,对每个单元进行数学建模和 求解,能够得到精确的解。这种方法在电力设备设计、电磁兼容 性分析等领域具有重要应用。
单元分析
对每个单元进行数学建模,包 括建立单元的平衡方程、边界 条件和连接条件等。
整体分析
将所有单元的平衡方程和连接 条件组合起来,形成整体的代 数方程组。
求解代数方程组
通过求解代数方程组得到离散 点的场量值。
有限元法的优势和局限性
02
01
03
优势 可以处理复杂的几何形状和边界条件。 可以处理非线性问题和时变问题。
传统解析方法难以解决复杂电磁场问题,需要采用数值分析方法 进行求解。
有限元法的概述
有限元法是一种基于离散化的数值分 析方法,它将连续的求解域离散为有 限个小的单元,通过求解这些单元的 近似解来逼近原问题的解。
有限元法具有适应性强、精度高、计 算量小等优点,广泛应用于工程电磁 场问题的数值分析。
02
静磁场问题
总结词
有限元法在静磁场问题中同样适用,能够有效地解决磁场分布、磁力线走向等问题。
详细描述
静磁场问题是指恒定磁场,不随时间变化的磁场问题。有限元法通过将磁场离散化为有限个磁偶极子,对每个磁 偶极子进行数学建模和求解,能够得到静磁场的分布和特性。这种方法在电机设计、磁力泵设计等领域具有重要 应用。
有限元法的基本步骤
01

有限元法基本原理及应用 尹飞鸿 课件

有限元法基本原理及应用 尹飞鸿 课件

有限元法基本原理及应用尹飞鸿课件
有限元法基本原理及应用
有限元法是一种数值计算方法,用于求解复杂结构的物理问题。

它可通过将物理系统分割成许多小的有限元素来近似描述系统行为,并根据元素之间的关系和物理方程求解系统的响应。

有限元法的基本原理是建立数学模型,将连续体划分为多个离散的有限元素。

每个有限元素代表了原问题的一个小区域,具有一定的属性和形状。

通过将元素的局部行为进行组装,可以重建出整个物理系统的行为。

有限元法的应用非常广泛,涵盖了许多工程领域。

在结构力学中,有限元法可用于分析和优化建筑、航空航天器、机械设备等的力学性能。

在流体力学中,有限元法可用于模拟流体流动、传热和传质等问题。

在电磁学中,有限元法可用于计算电磁场和电磁波的分布。

有限元法的应用过程包括模型建立、划分网格、选取适当的数值计算方法以及求解和后处理结果等步骤。

模型建立是指将物理问题转化为数学描述,包括确定几何形状、材料性质和加载条件等。

划分网格是将物理模型分割成有限元素,通过合适的网格划分可以提高计算效率和精度。

数值计算方法是选择适当的数值算法来求解离散化的模型方程。

求解和后处理结果是对模拟结果进行分析和可视化展示。

总之,有限元法基于分割和离散化的思想,是一种强大的数值计算方法。

通过应用有限元法,我们可以更好地理解和解决复杂的物理问题,提高工程设计的效率和可靠性。

有限元的基本原理

有限元的基本原理

有限元的基本原理
有限元法的基本原理是建立在表示实际连续体的离散模型的基础上。

该方法的基本思想是将实际连续体分割为有限个较小的、称为有
限元的部分,每个有限元都被认为是相互独立的,而受到软件模型所
描述的一组约束。

有限元法模型求解是通过将所有有限元在一定环境
下的相互作用来描述整个物体。

这些有限元之间相对于解析方法更接
近实际情况,所以解法能够更加精确地检验计算结果。

有限元法的步骤如下:
1. 选定有限元的类型和形状,不同的有限元类型适用于不同的计
算问题。

2. 将整个实际物体离散成为多个有限元,每个元内部的参数、如
位移分布、应变场等等,是用一定的方程求解的。

3. 去掉有限元间间隔,并构造出一个总体联立方程。

4. 利用边界条件得出相应“挤压”量,完成总体应力分布的过程。

5. 通过这些有限元联立方程组,算出整个物体所有部位的应力、
位移和应变,从而得到整个物体的状态分布。

有限元法能以极大程度上模拟多结构系统间的相互作用和这些作
用对物体性质的影响,如形变,热度和应力。

这个方法可被应用广泛,包括航空航天、汽车制造、能源以及生命科学等等。

有限元法的基本原理和应用

有限元法的基本原理和应用

有限元法的基本原理和应用前言有限元法(Finite Element Method,简称FEM)是一种常用的数值分析方法,用于求解工程和物理问题。

它能够将一个复杂的问题分解为许多小的、简单的部分,通过数学方法将这些部分逼近为连续函数,并进行求解。

本文将介绍有限元法的基本原理和应用。

基本原理1.离散化:有限元法将连续域分解为多个离散的小单元,这些小单元称为有限元。

离散化可以将复杂问题简化为易于处理的小部分。

每个有限元由节点和单元组成,节点是问题解的近似点,单元是在节点周围定义的几何形状。

2.变量表示:在有限元法中,通过数学函数对变量进行近似表示。

常用的近似函数有线性、二次、三次等。

通过选择合适的形状函数,可以有效地近似解决问题。

3.形成方程:根据物理方程,将离散域中每个有限元的贡献进行求和,形成一个整体方程。

这个整体方程可以是线性方程、非线性方程、常微分方程等。

通过求解这个整体方程,可以得到问题的解。

应用领域有限元法广泛应用于各个领域,包括但不限于: - 结构分析:有限元法可以用来模拟和分析工程结构的强度、刚度和振动等特性。

通过对结构进行有限元分析,可以预测和优化结构的性能。

- 热传导:有限元法可以用来模拟物体内部的温度分布和热传导过程。

通过对热传导问题进行有限元分析,可以优化物体的热设计和散热能力。

- 流体力学:有限元法可以用来模拟和分析流体的流动和压力分布。

通过对流体力学问题进行有限元分析,可以优化管道、风扇等设备的设计。

- 电磁场:有限元法可以用来模拟和分析电磁场的分布和电磁设备的性能。

通过对电磁场问题进行有限元分析,可以优化电磁设备的设计和电磁干扰问题。

有限元法的优点和局限性•优点:有限元法适用于复杂的几何形状和边界条件,并可以考虑多物理场耦合。

它具有较高的灵活性,可以适应各种问题的求解。

•局限性:有限元法的计算精度和效率受到离散化精度和网格剖分的影响。

对于高度非线性和大变形问题,有限元法可能需要更多的时间和计算资源。

(完整版)有限元法的基本原理

(完整版)有限元法的基本原理

第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。

有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。

2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。

在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。

2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。

同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。

A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。

微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。

所以在以上两式中采用了矩阵形式。

以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。

有限单元法知识点总结

有限单元法知识点总结

有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。

有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。

有限元法广泛应用于工程、材料、地球科学等领域。

2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。

离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。

加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。

形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。

3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。

建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。

建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。

施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。

求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。

后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。

4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。

结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。

板壳单元包括各种压力单元、弹性单元、混合单元等。

梁单元包括梁单元、横梁单元、大变形梁单元等。

壳单元包括薄壳单元、厚壳单元、折叠单元等。

体单元包括六面体单元、锥体单元、八面体单元等。

5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。

有限元法的原理及应用

有限元法的原理及应用

有限元法的原理及应用1. 引言有限元法是一种数值计算方法,广泛应用于工程和科学领域,用于解决复杂的物理问题。

本文将介绍有限元法的基本原理和其在不同领域的应用。

2. 原理有限元法基于数学原理和工程实践,将复杂的连续体分割为许多小的有限元,然后使用离散化的方法对每个有限元进行数值计算。

具体原理如下:2.1 有限元离散化有限元法将连续问题离散化为离散的有限元问题。

首先,将连续域划分为有限个互不重叠的有限元。

每个有限元由一个或多个节点和连接节点的单元组成。

节点是问题的离散点,而单元是问题的局部区域。

2.2 描述方程在每个有限元内,使用形函数来近似描述问题的解。

形函数是定义在某个节点上的函数,它可以以节点为中心表示整个有限元的解。

然后,在每个有限元内,建立描述问题的偏微分方程,通常是通过泛函求解所得。

2.3 组装方程组将每个有限元的形函数和描述方程组装成整个问题的方程组。

通过施加边界条件和合理选择形函数的类型和数量,可以得到与原问题相对应的离散化方程组。

2.4 求解方程组将离散化的方程组转化为代数方程组,并应用数值方法求解。

通常采用矩阵运算等技术,利用计算机进行求解。

3. 应用有限元法在多个领域有重要的应用,以下列举了一些常见的应用:3.1 结构力学有限元法在结构力学领域广泛应用,用于分析和优化结构的强度、稳定性和刚度。

通过建立合适的有限元模型,可以计算结构的应力、应变和变形等重要参数。

有限元法在建筑、航空航天和汽车等工程领域具有广泛应用。

3.2 流体力学有限元法在流体力学领域用于模拟流动的行为,如气体和液体的流动、湍流和传热等。

通过将流体领域离散为小的有限元,可以计算流体的速度、压力和温度分布等参数。

有限元法在船舶设计、空气动力学和燃烧等领域得到了广泛应用。

3.3 热传导有限元法可应用于热传导问题,用于分析材料内部的温度分布和热流。

通过建立材料的有限元模型,可以计算材料的温度变化、热传导和热辐射等参数。

有限元法基本原理与应用

有限元法基本原理与应用

有限元法基本原理与应用有限元法(Finite Element Method, FEM)是一种数值计算方法,广泛应用于工程领域中的结构分析、流体力学、热传导等问题的数值模拟。

它的基本原理是将连续的物理问题转化为离散的有限元组装问题,通过对离散的有限元进行数值计算,得到问题的近似解。

有限元法的基本原理可以简要概括为以下几个步骤:1.建立问题的数学模型:将实际问题抽象为一个数学模型,例如线性弹性力学、热传导方程等。

模型包括物理量的表达式、边界条件和初始条件等。

2.离散化:将连续的物理问题离散化为一系列有限元。

有限元是由一些简单的几何形状(如三角形、四边形)组成的子区域,称为单元。

整个问题区域被划分为许多单元。

3.处理边界条件:在模型中,边界条件是非常重要的,它们描述了问题在边界上的行为。

有限元法通过施加适当的边界条件来模拟实际问题的边界行为。

4.建立单元模型:针对每个单元,建立其适当的数学模型。

常用的有线弹性力学的单元模型有三角形和四边形元素、梁单元、壳单元等。

5.组装方程:通过将所有单元的方程组合在一起,形成整个问题的方程组。

这个方程组通常是一个矩阵方程,可以通过求解该方程组来得到问题的数值解。

6.求解方程:有限元法适用于大规模、复杂的问题,可以通过迭代的方式求解。

常用的求解方法有直接法、迭代法、预处理共轭梯度法等。

7.后处理:对求解结果进行后处理,包括分析和可视化。

这些结果可以用来评估结构的安全性、优化设计等。

有限元法的应用非常广泛,涵盖了许多工程领域。

它可以用于结构分析,例如建筑物、桥梁、飞机等的强度和刚度分析、应变和位移分析等。

在流体力学中,有限元法可以用于模拟空气动力学、水动力学等。

在热传导问题中,有限元法可以用于计算物体在不同温度条件下的热传导情况。

有限元法的优点在于可以处理较为复杂的几何形状和边界条件,能够提供准确的数值结果。

它还具有良好的可扩展性,可以适应不同规模和复杂度的问题。

同时,有限元法还可以与其他数值方法相结合,如有限差分法和有限体积法,以提高数值计算的精度和效率。

第一章概述 有限元法基本原理及应用课件

第一章概述 有限元法基本原理及应用课件
第一章 概述
第一章 概述
有限元法的基本思想 有限元法的特点 有限元法的发展及其应用领域
1.1有限元法的基本思想
2.有限元法是一种应用已知求解未知的思想
在弹性力学领域,已经能用数学偏微分方程将问 题加以表达,但是运用解析方法求解这些方程有时会 很难甚至无法求解。而有限元法是应用人们对事物规 律的已有认识并结合研究对象的各种约束条件,组织 一个运用已知的参量和规律来求解未知问题的有机过 程。
西班牙的Onate E和波兰的Rojek J将DEM 和FEM结合解决地质 力学中的动态分析问题;
瑞典的Birgersson F和英国的Finnveden S针对FEM在频域中的 应用提出了SFEM 。
FEM也从分析比较向优化设计方向发展。印度Mahanty博士用 ANSYS对拖拉机前桥进行优化设计
物体的几何形状可以用大大小小的多种单元进行拼装,所以 有限元法可以分析包括各种特殊结构的复杂结构体。
单元之间材料性质可以有跳跃性的变化,所以能处理许多物 体内部带有间断性的复杂问题,以适应不连续的边界条件和载荷 条件。
三维实体的四面体单元划分
平面问题的四边形单元划分
1.2 有限元法的特点
7.适合计算机的高效计算
20世纪90年代以来,大批FEA系统纷纷向微机移植, 出现了基于各种微机版FEA系统。有限元法向流体力学、 温度场、电传导、磁场、渗流和声场等问题的求解计算 方面发展,并发展到求解一些交叉学科的问题。
1.3.1 有限元法的发展
3.有限元法的研究现状
美国的HeoFanis Strouboulis等人提出用GFEM 解决 分析域内含有大量孔洞特征的问题;比利时的Nguyen Dang Hung 和越南的Tran Thanh Ngoc 提出用HSM解 决实际开裂问题

有限元法在结构力学分析中的应用

有限元法在结构力学分析中的应用

有限元法在结构力学分析中的应用有限元法是一种经典的结构力学分析方法。

在结构力学领域中,有限元法可以用来解决许多静力学和动力学问题。

本文将探讨有限元法在结构力学分析中的应用。

一、有限元法的基本原理有限元法是一种数值分析方法,可以用来解决大型结构的力学问题。

它的基本原理是将结构分割成一个个的单元,每个单元内的力学问题可以用简单的数学公式来描述。

然后将所有单元的力学问题集成到一起,形成一个大的数学模型。

通过数学计算,可以获得结构的应力、应变、变形等力学参数。

有限元法的优点在于它可以解决复杂结构的力学问题。

例如,有限元法可以用来分析汽车、航空器、建筑物等结构中的应力、应变、变形和振动等问题。

此外,有限元法具有高精度、高效率和高灵活性等特点,可以快速、准确地分析各种结构的力学性能。

二、有限元法在结构力学中的应用有限元法在结构力学中的应用非常广泛。

下面我们来具体看一下有限元法在结构力学分析中的应用案例。

1、建筑物结构的力学分析建筑物是大型结构中的一个重要领域。

有限元法可以用来分析各种建筑物的力学性能,例如建筑物的强度、振动、承载能力等。

通过有限元法可以模拟建筑物在地震、风力等环境下的响应,确定建筑物的结构安全性。

2、航空器的强度分析航空器飞行过程中面临各种力学环境,例如重力、空气阻力等。

有限元法可以用来分析航空器结构在高速、高空环境下的应力和变形情况。

从而确定航空器的强度和安全性。

3、机器设备的振动分析机器设备在运行过程中会产生振动,有可能对设备的安全和稳定性带来影响。

有限元法可以用来分析机器设备的振动情况,在设计过程中优化设备结构,避免发生振动破坏的危险。

总之,有限元法在结构力学分析中的应用非常广泛。

有限元法的基本原理简单,但是要想将其用于具体的问题需要进行复杂的计算。

因此,有限元法在结构力学分析中的应用需要具有一定的专业知识和技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法基本原理与应用班级机械2081 姓名方志平指导老师钟相强摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

关键词:有限元法;变分原理;加权余量法;函数。

Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method.Keywords:Finite element method; variational principle; weighted residual method; function。

引言有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。

对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

1.1 有限元单元法的基本思路弹性力学解法的问题弹性力学解法的问题在于:不论是应力函数解法数解法、扭转函数解法、挠曲函数解法、还是基于最小势能原还是基于最小势能原理的瑞利-李兹等方法,其困难在于如何给出一个在全求解区给出一个在全求解区域上均成立的试探函数。

在有限单元法里在有限单元法里,这个问题通过定义分片插值的位移或应力函数得到了巧妙的解决。

对于任意单元对于任意单元(i,j,m),,以结点位移以结点位移(u,u ,u )为待定系数,可以给出该单元的插值函数:线性代数方程组的求解在数学上是极其容易的。

也就是说有限元法通过单元离散和最小势能原理小势能原理,避开了微分方程直接求避微分方程直接求解在数学上的困难,把定解条件下的微分方程组的求解巧妙地转化为线性方程组的运算,实现了任何复杂弹性力学问题轻易分析计算。

1.2有限元单元法求解问题的的基本步骤1.(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2) 区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。

区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

3) 确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4) 单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5) 总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6) 边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。

对于自然边界条件,一般在积分表达式中可自动得到满足。

对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7) 解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

1.3求解计算结果的整理和有限元法后处理有限元方程是一个线性代数方程组,一般有两大类解法,一是直接解法,二是迭代法。

直接法有高斯消元法和三角分解法,如果方程规模比较大时,可用分块解法和波前解法。

迭代法有雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法等。

通过选用合适的的求解法求解经过位移边界条件小处理的公式后,得到整体节点位移列阵,然后根据单元节点位移由几何矩阵和应力矩阵得到单元节点的应变和应力,对于非节点处的位移通过形函数插值得到,再由几何矩阵和应力矩阵求得相应的应变和应力。

应变要通过位移求导得到,精度一般要比位移差一些,尤其对于一次单元,应变和应力在整个单元内是常数,应变和应力的误差会比较大,尤其单元数比较少时,误差更大,因此对于应力和应变要进行平均化处理:(1)绕节点平均法,即依次把围绕节点所有单元的应力加起来平均,以此平均应力作为该节点的应力。

(2)二单元平均法,即吧相邻的两单元的应力加以平均并以此作为公共边的节点出的应力。

整理并对有限元法计算结果进行后处理,一是要得到结构中关键位置力学量得数值(如最大位移、最大主应力和主应变,等效应力等);二是得到整个结构的力学量得分布(根据计算结果直接绘制位移分布图,应力分布图等)。

三是后处理要得到输入量和输出量之间的响应关系。

梁的有限元建模与变形分析计算分析模型如图1所示。

NOTE:要求选择不同形状的截面分别进行计算。

5m梁承受均布载荷:1.0e5 Pa图1 梁的计算分析模型梁截面分别采用以下三种截面(单位:m):矩形截面:圆截面:工字形截面:B=0.1,H=0.2 R=0.1 w1=0.2,w2=0.2,w3=0.2,t1=0.05,t2=0.05,t3=0.05梁的弹性模量为:200GPa,泊松比为:0.3。

试用ANSYS求该梁的挠度及应力分布(包含轴向应力),画出梁的弯矩图和剪力图。

(1)单元类型定义后,设置梁类型与实常数。

(2)设置材料属性。

(3)建立几何模型。

(4)创建线并划分网格与单元。

(5)施加载荷与约束。

(6)求解。

参考文献1张晋红,吴凤林有限元法及其应用现状【J】。

机械管理开发,2009,42樊杰,赵铁,徐清洁有限元法的一般思想【J】。

科技情报开发与经济,2008,3 3杨桂通弹性力学【M】北京:高等教育出版社,19984邵敏有限元法基本原理和数值方法[M]。

北京:清华大学出版社,19975傅永华有限元法分析基础【M】。

武汉:武汉大学出版社,2003。

相关文档
最新文档