功率因数、峰值系数、浪涌系数的概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率因数、峰值系数、浪涌系数的概念
已发布2009/04/23 03:01 下午 | 已更新2009/05/04 04:22 下午 | 解答ID 9867
功率因数、峰值系数、浪涌系数的概念
功率因数、峰值因数和浪涌系数经常用来表述UPS的性能。
功率因数:功率是描述能量传输的参数,直流系统中,功率就是电压与电流的乘积。交流系统中,功率就不是这样一个简简单单的乘积,系统中一部分电流并没有提供给负载,我们称之为谐波电流。由此产生视在功率(VA),大于有功功率。视在功率与有功功率之间存在的系数就是功率因数。考虑到这一点,我们用伏安(VA)来表述视在功率,而用瓦特(W)来表述有功功率。
线形负载的视在功率与有功功率无甚差别,但是对于很多负载来说两者之间的差别很大。计算机设备的功率因数一般为0.65,这就意味着视在功率比有功功率大将近50%。IT类设备,例如服务器,路由器,HUB,存储设备等,电源部分由于采用了功率因数矫正设计,对于电网来说,它们近似于线形负载。相对于日光灯、电机等负载来说,这种负载较为清洁,产生较少的谐波电流。
电池运行时间和UPS的有功功率有关系,但是,很多厂家在注明电池在满载下的运行时间时都标明伏安,而不是瓦特。例如,一台10K的UPS满载下可以运行20分钟,在负载功率因数为0.65的前提下,负载量满载时只有6500W,而此UPS有功功率为9000W,这就意味着实际负载量为6500/9000,即72%。而20分钟的运行时间在实际以瓦特为单位的满负载下就不足20分钟。为了避免造成这种误解,机器的运行时间参数应该以瓦特而不是伏安为基础。
峰值因数:是指电流峰值与平均值的比率,大部分电气设备的峰值因数为1.4,PC 机峰值因数为2至3。若负载的峰值因数大于1.4,前端供电设备必须提供负载所需要的峰值电流,否则供电设备的输出电压波形会产生失真。负载峰值因数因前端供电设备的不同而有差异,甚至当负载从一个输入插口移到另一个插口时,峰值因数也会有所变化。目前大家普遍认为峰值因数是计算机负载所固有的,而实际上,它是负载与电源相互作用的结果。负载的峰值因数数值取决于电网的电压波形,在电源设备输出电压波形为纯正弦波的前提下,没有输入功率因数矫正设计的负载的峰值因数一般为2到3,在电源设备输出电压波形为阶梯波的前提下,此种负载设备的峰值因数一般为1.4至1.9。SU机型在带满载时峰值因数为3,带半载时峰值因数为4,1/4负载时峰值因数为8,BK类产品满载时峰值因数为1.6,半载时为2。
浪涌系数:此参数经常会和UPS系统中所采用的浪涌抑制相混淆。浪涌系数与UPS的瞬间过载能力有关,是用来表述UPS应对负载启动时产生的瞬间启动电流的数值。电机、压缩机等负载浪涌系数较大。对于计算机类负载来说,浪涌系
数是机器正常工作时消耗能量的1.15倍,对于磁盘阵列等负载来说,此数值为正常工作时所消耗能量的1.5倍。
在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S
功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。编辑本段要求
(1) 最基本分析
拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。
(2) 基本分析
每种电机系统均消耗两大功率,分别是真正的有用功(叫kw)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。
(3) 高级分析
在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。
编辑本段对于功率因数改善
电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以KVA 或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见。
编辑本段三者关系
也就是因为这个电感性的存在,造成了系统里的一个KVAR值,三者之间是一个三角函数的关系:〖K_va〗^2=〖K_w〗^2+〖K_var〗^2 一种有源功率因数校正电路
简单来讲,在上面的公式中,如果今天的KVAR的值为零的话,KVA就会与KW 相等,那么供电局发出来的1KVA的电就等于用户1KW的消耗,此时成本效益最高,所以功率因数是供电局非常在意的一个系数。用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。目前就国内而言功率因数规定是必须介于电感性的0.9~1之间,低于0.9时需要接受处罚。
编辑本段好处
供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢?①通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。②藉由良好功因值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。③可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时:补偿前:1000×0.8=800KW 补偿后:1000×0.98=980KW 同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。④减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。谐波污染也会增加电缆等输电线路的损耗。而且谐波污染对通讯质量有影响。当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。
编辑本段改善电能质量的理由
为什么说提高用户的功率因数可以改善电压质量?电力系统向用户供电的电压,是随着线路所输送的有功功率和无功功率变化而变化的。当线路输送一定数量的有功功率时,如输送的无功功率越多,线路的电压损失越大。即送至用户端的电压就越低。如果110KV以下的线路,其电压损失可近似为:
△U=(PR+QX)/Ue 其中:△U-线路的电压损失,KV Ue--线路的额定电压,KV P--线路输送的有功功率,KW Q--线路输送的无功功率,KVAR R—线路电阻,欧姆X--线路电抗,欧姆由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。在直流电路里,电压乘电流就是有功功