(人教版)八年级下册:20.2《数据的波动程度》ppt课件
20.2数据的波动 课件(人教版八年级下册) (2)
A.甲品牌销售量较稳定 B.乙品牌销售量较稳定
C.甲、乙品牌销售量一样稳定
D.不能确定哪种品牌销售量稳定
【解析】选B.读图可得甲品牌的平均数为(7+10+8+10+12+13) ÷6=10,乙品牌的平均数为(9+10+11+9+12+9)÷6=10,故
s甲2 13 4 由于s甲2>s乙2,则销售量较稳定的是乙. ,s乙 2 ; 3 3
.
【解析】甲的方差约为0.011;乙的方差约为0.029,比较可得: 乙的方差较大,故乙种股票波动较大. 答案:乙
10.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统 计表和扇形统计图如下:
命中环数 命中次数 10 9 3 8 2 7
(1)根据提供的信息,补全统计表及扇形统计图.
(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如
s乙2,∴质量最稳定的是乙.
答案:乙
9.今年5月甲、乙两种股票连续10天开盘价格如下:(单位:元)
甲 乙 5.23 6.3 5.28 6.5 5.35 6.7 5.3 6.52 5.28 6.66 5.2 6.8 5.08 6.9 5.31 6.83 5.44 6.58 5.46 6.55
则在10天中,甲、乙两种股票波动较大的是
知识点 方差的实际应用 【例】为选派一名学生参加全市实践活动技能竞赛,A,B两位同 学在校实习基地现场进行加工直径为20mm的零件的测试,他俩 各加工的10个零件的相关数据见表格和统计图:
平均数 A 20 方差 0.026 完全符合要求的个数 2
B
20
sB2
5
根据测试得到的有关数据,试解答下列问题:
人教版八年级数学下册《数据的分析——数据的波动程度》教学PPT课件(3篇)
利用公式求出甲、乙两种甜玉米产量的两组数据的
方差并说明哪种甜玉米种子的产量比较稳定.
s2 甲
(7.657.537)2( 7.507.537)2 10
( 7.417.537)2 0.010,
s2 乙
(7.557.515)2( 7.567.515)2 10
( 7.497.515)2 0.002.
1 10
(6.11 6)2 (6.08 6)2 (5.83 6)2 (6.21 6)2
0.02434
答:乙的成绩更稳定 .
第二十章 数据的分析
数据的波动程度
第1课时
我们常用平均数、中位数来刻画数据的“平均 水平”,但在有些情况下“平均水平”是不够的, 如评价选手的射击水平、机器的加工零件的精度、 手表的日走时误差时,还需要用一新的数来刻画一 组数据的波动情况.
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
(1)甜玉米的产量可用什么量来描述?请计算后说明.
x甲 7.54,x乙 7.52
说明在试验田中,甲、乙两种甜玉米的平均产量 相差不大.
可估计这个地区种植这两种甜玉米的平均产量相 差不大.
(2)如何考察一种甜玉米产量的稳定性呢?
①请设计统计图直观地反映出甜玉米产量的分布情况.
甲种甜玉米的产量
乙种甜玉米的产量
产量波动较大
产量波动较小
(3)观察(2)题图,你发现了什么? 乙种甜玉米的产量集中在平均值附近,而甲种 甜玉米的产量与其平均值比较波动较大. 通常,如果一组数据与其平均值的离散程度较 小,我们就说它比较稳定.
20.2数据的波动 课件(人教版八年级下册) (1)
甲、乙两人射箭成绩折线图
(1)a=_______, x乙 =________. (2)请完成图1中表示乙变化情况的折线. (3)①请观察图1可看出_________的成绩比较稳定(填“甲”或 “乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你 的判断.
成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估
计这两人中的新手是
.
【解析】根据方差的意义,方差是用来衡量一组数据波动大小 的量,方差越大,波动越大,数据越不稳定.根据图中的信息可知, 小李的成绩波动性大,则这两人中的新手是小李. 答案:小李
题组二:方差的应用
1.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进
数据的波动程度 第1课时
1.了解方差的定义和计算公式.(重点)
2.会用方差比较两组数据的波动大小.(重点、难点)
1.方差的概念: 差 的_____ 平方 的_______ 平均数 , 方差:各个数据与平均数___
2 2 2 1 [ x1 x x 2 x x n x ] 2 s =________________________________. n
棉农甲
棉农乙
.
69
69
68
69
70
71
72
71
71
70
【解析】甲的平均产量 x 1 =(68+70+72+69+71)÷5=70, 乙的平均产量 x 2 =(69+71+71+69+70)÷5=70, s12= 1 [(68-70)2+(70-70)2+(72-70)2+(69-70)2+(71-70)2]
20.2数据的波动程度——方差+课件+2023-2024学年人教版数学八年级下册
(1)求甲被抽取的5个零件直径的方差;
解:
—
1
2
甲 = ×(10.0+10.3+9.7+10.1+9.9)=10.0(mm),甲
5
1
= ×[(10.0 - 10.0)2 +(10.3 - 10.0)2+(9.7 - 10.0)2+(10.1 - 10.0)2
甲班
a
96
96
乙班
95
b
c
(2)已知乙班学生竞赛成绩的方差为11.2,请计算甲班学生竞赛成绩的
方差,并回答哪个班的学生竞赛成绩更稳定.
1
解 : 甲 班 学 生 竞 赛 成 绩 的 方 差 为 ×[(92 - 95)2 + (94 - 95)2 + (96 -
5
95)2×2+(97-95)2]=3.2.
∵乙班学生竞赛成绩的方差为11.2,11.2>3.2,∴甲班学生竞赛成绩更
稳定.
基础训练
1.某校篮球队队员中最高队员的身高是192 cm,最矮队员的身高是174
18
cm,则队员身高的极差是____cm.
11
3
8
2.数据5,6,10,8,9,10的平均数为___,方差为____.
3.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们
6
2
1
2
2
2
2
乙 = ×[2×(10-9) +2×(8-9) +2×(9-9) ]= .
6
3
2
(2)你认为谁的成绩比较稳定?请说明理由.
解:乙的成绩比较稳定,因为乙的方差较小.
4.某轮滑队所有队员的年龄(岁)只有12,13,14,15,16五种情况,其中部
初二数学20.2 数据的波动程度(1)课件
根据这些数据估计,农科院应该选择哪种甜玉米种 子呢?
探究新知
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
(2)如何考察一种甜玉米产量的稳定性呢? ①请设计统计图直观地反映出甜玉米产量的分布情况.
甲种甜玉米的产量
产量波动较大
乙种甜玉米的产量
产量波动较小
探究新知
②统计学中常采用下面的做法来量化这组数据的波动大 小:
设有n个数据x1,x2,…,xn,各数据与它们的平均
数 x 的差的平方分别是(x1-x)2,(x2 -x)2, ,(xn -x)2 ,
来判断它们的波动情况.
课后作业
作业:教科书第128页复习巩固第1题.
③请利用方差公式分析甲、乙两种甜玉米的波动程度.
两组数据的方差分别是:
s甲2
=(7.65-7.54)2 +(7.50-7.54)2 + 10
0.01
s乙2
=(7.55-7.52)2 +(7.56-7.52)2 + 10
0.002
+(7.41-7.54)2 +(7.49-7.52)2
探究新知
成绩/环
11
10
9
8
7
6
甲
乙
0 1 2 3 4 5 6 7 8 9 10
《数据波动程度的几种度量》课件
流程2:展示学习目标
学习目标
1.掌握方差的定义和计算公式; 2.理解方差概念的产生和形成的 过程; 3.会用方差计算公式来比较两组 数据的波动大小.
流程3:展示自学指导
认真自学课本P124—P126练习之上的内 容,思考:
1.什么是方差?方差能反映一组数据的什 么情况?
2.方差的计算公式是什么?方差与数据的 波动情况有什么关系?
教材分析 教学目标分析 教学过程分析 教法分析 学法分析 课堂评价
教教法法分分析析
实际问题 (引入新课)
数学方法 (方差的定
义)
实际问题(理论与 实际相结合,应用 于实际)
学法分析
评价分析
1.自主探究—— 本节课都是通过学生的动手计
算、观察、猜想、推理、验证等活动得出的,使 学生亲历了知识的发生、发展、形成的全过程, 从而变被动接受为主动探究。
2.合作学习——教学中鼓励学生积极合作,充分
交流,帮助学生在学习活动中获得最大的成功, 促使学生学习方法的改变。
教材分析 教学目标分析 教学过程分析 教法分析 学法分析 课堂评价
教学过程分析:教学流程
小结本课 布置作业
巧设问题 引发思考
引入新课
拓展拔高 挑战自我
展示学 习目标
应用概念 公式 小试 牛刀
较为整齐的班级是_(_1__)班.
3.甲、乙、丙、丁四人进行射箭测试,每人10次射箭
成绩的平均数均是9环,方差分别是s2甲=0.55,s2乙=0.65,
s2丙=0.50, s2丁=0.45,则应派( D )去参加比赛.
A.甲
B.乙
C.丙
D.丁
方差越大,说明数据的波动越大,越不稳定. 方差越小,说明数据的波动越小,越稳定.
八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时方差的实际应用与变化规律课件新版新人教版
第2课时 方差的实际应用与变化规律
(3)①乙车间样品的合格率比甲车间的高,所以乙车间生产的新产品更好. ②甲、乙两车间样品的平均数相等,且均在合格范围内,而乙车间样品的方 差小于甲车间样品的方差,说明乙车间生产的产品比甲车间的稳定,所以乙 车间生产的新产品更好.(其他理由合理也可)
第2课时 方差的实际应用与变化规律
第二十章 数据的分析
20. 2 方差的实际应用与变 化规律
第二十章 数据的分析
第2课时 方差的实际应用与 变化规律
A知识要点分类练
B规律方法综合练
C拓广探究创新练
第2课时 方差的实际应用与变化规律
A知识要点分类练
知识点 1 方差的实际应用
1.甲、乙、丙、丁四名跨栏运动员在为某运动会积极准备.在 某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平 均成绩都是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11, 0.03,0.05,0.02.则当天这四名运动员“110 米跨栏”的训练成绩 最稳定的是( D ) A.甲 B.乙 C.丙 D.丁
图 20-2-4
第2课时 方差的实际应用与变化规律
解:(1)∵A 种品牌冰箱各月的销售量(单位:台)分别为 13,14,15,16,17;B 种 品牌冰箱各月的销售量(单位:台)分别为 10,14,15,16,20, ∴该商场这段时间内 A,B 两种品牌冰箱月销售量的中位数分别为 15 台、15 台. ∵ xA=51(13+14+15+16+17)=15(台),xB=15(10+14+15+16+20)=15(台), ∴sA2=15 [(13-15)2+(14-15)2+(15-15)2+(16-15)2+(17-15)2]=2,
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
【精品课件】人教版八年级数学下册20.2数据的波动程度(1)(25张PPT)
x甲 7.54,x乙 7.52
说明在试验田中,甲、乙两种甜玉米的平均产量相 差不大.
可估计这个地区种植这两种甜玉米的平均产量相差 不大.
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
20.2 数据的波动程度(1)
探究
统计学中常采用下面的做法来量化这组数据的波动大小:
设有n个数据x1,x2,…,xn,各数据与它们的平均
数 x 的差的平方分别是(x1学-科网x学科)网 2,(x2 -x)2, ,(xn -x),2
我们用这些值的平均数,即用
s2=
1 n
[(x1-x)2+(x2 -x)2+
2.用条形图表示下列各组数据,计算并比较 它们的平均数和方差,体会方差是怎样刻 画数据的波动程度的:
(1)6 6 6 6 6 6 6 (2)5 5 6 6 6 7 7 (3)3 3 4 6 8 9 9 (4)3 3 3 6 9 9 9
x 解: (1) =6
s 2 =0
(3)x =6
s2 =
44 7
③请利用方差公式分析甲、乙两种甜玉米的波动程度.
两组数据的方差分别是:
s甲2
=(7.65-7.54)2 +(7.50-7.54)2 + 10
0.01
s乙2
=(7.55-7.52)2 +(7.56-7.52)2 + 10
0.002
+(7.41-7.54)2 +(7.49-7.52)2
20.2数据的波动-20.2.2方差2(人教版八下) 2
知识技能 教 学 目 标 过程与方 法
运用方差知识,解决实际问题,在 解题过程中提高运用数学能力 自主探究、实践解题,会用统计学 的知识,分析解决问题。
情感态度 价值观
进一步体会数学应用科学性
重点
难点
计算样本数据方差,并用方差分析问题
用方差来比较分析问题
问题1:什么叫做方差? 设有n 个数据x1,x2,…,xn ,各数据与它们的平均数的差的平方分
从方差看,s2甲=14.4, s2乙=34,甲的成绩比 乙相对稳定;
从甲、乙的中位数、平均数看,中位数、平均 数都是84分,两人成绩一样好; 从频率看,甲85分以上的次数比乙少,乙的成 绩比甲好。
例2:甲、乙两人在相同条件下各射靶10次,每次射靶的 成绩情况如图所示:
(1)填写下表: 平均数 方差 甲 7 乙 1.2 5.4 中位数 命中9环及9环以 上的次数
中位数 7 7.5
命中9环及9环以 上的次数 1 3
1.2 7 5.4
甲的成绩在平均数上下波动,而乙处于上升趋势,从第四次以后就没有 比甲少的情况发生,所以乙较有潜力。
例3:甲、乙两支篮球队在集训期内进行了五场比赛, 将比赛成绩进行统计后,绘制成图20-2-7、图20-2-8的 统计图
20-2-8
乙 75 73 79 72 76 71 73 7278 74 77 78 80 71 75 根据上面的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?
74 74 75 74 72 73 x甲 74.7 15 75 73 79 72 71 75 x乙 74.9 15
问题2:方差的统计意义是什么?
刻画数据的波动程度,方差越大,数据的波动越大;方差越小, 数据的波动就越小
人教八年级数学下册-数据的波动程度(附习题)
2
≈0.002 s2甲>s2乙 ∴乙种甜玉米的产量比较稳定
例1 在一次芭蕾舞比赛中,甲、乙两个芭 蕾舞团都表演了舞剧《天鹅湖》,参加表演的 女演员的身高(单位:cm)如下图所示:
甲 163 164 164 165 165 166 166 167 乙 163 165 165 166 166 167 168 168
2. 从甲、乙两种农作物中各抽取10株苗,分别 测得它的苗高如下:(单位:cm) 甲:9,10,11,12,7,13,10,8,12,8 乙:8,13,12,11,10,12,7,7,9,11 问:(1)哪种农作物的苗长得比较高? (2)哪种农作物的苗长得比较整齐?
解:(1) x甲 x乙 10,∴两种农作物的苗长得一样高 (2) s2甲=3.6,s2乙=4.2,∵s2甲<s2乙 ∴甲种农作物的苗长得比较整齐
x甲
=
7
2
8
2 10
9
5
10
8.5
x乙
=
7
3
8
2
9 102Fra bibliotek103
8.5
方差分别是
S甲2
=(7
8.5)2
2
(8
8.5)2
2 (9 10
8.5)2
5
(10
8.5)2
0.85
S乙2
=(7
8.5)2
3
(8
8.5)2
2
(9 10
8.5)2
2
(10
8.5)2
3
1.35
S甲2 S乙2
基础巩固
随堂演练
166)2 8
(168
166)2
2.5.
数学人教版八年级下册20.2数据的波动程度(1)课件.ppt
数学人教版八年级下册20.2数据的波动程度(1)课件.ppt1、八年级下册20.2 数据的波动程度〔1〕内蒙古通辽市奈曼旗张立杰甲、乙、丙三名射击手现要选择一名射击手参与竞赛.若你是教练,你认为选择哪一位比较适合?教练的苦恼?甲、乙、丙三名射击手的测试成果统计如下:第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068丙命中的环数96587我们已经学过描述一组数据的集中趋势的统计量,他们分别是什么?请你设计一种简洁易行的选拨方案第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068甲,乙两名射击手的测试成果统计如下:⑴请分别计算两名射手的平均成果;教练的苦恼?=8〔环〕=8〔环〕甲x学习目标:1、理解方差的意义;2、把握方差的计算公式;3、会初步运2、用方差解决实际问题。
自学探究、合作沟通:自学课本124页—125页例1以上内容,回答以下问题:1、当平均数相差不大时,你能否用一个量来刻画一种甜玉米的稳定性呢?2、什么叫做方差?3、方差的计算公式是什么?4、看哪个小组能解决教练的苦恼?问题1 农科院打算为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关怀的问题.为了解甲、乙两种甜玉米种子的相关状况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量〔单位:t〕如下表:生活中的数学生活中的数学甲7.657.507.627.597.657.647.507.407.417.41乙7.557.567.537.447.497.5273、.587.467.537.49依据这些数据估计,农科院应当选择哪种甜玉米种子呢?反馈点拨:1、当平均数相差不大时,你能否用一个量来刻画一种甜玉米的稳定性呢?2、什么叫做方差?3、方差的计算公式是什么?4、看哪个小组能解决教练的苦恼?方差越大,说明数据的波动越大,越不稳定.方差用来衡量一批数据的波动大小.(即这批数据偏离平均数的大小).方差:各数据与它们的平均数的差的平方的平均数.概括:你能解决教练的苦恼了吗?第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成果统计如下:成果〔环〕射击次序⑴请分别计算两名射手的平均成果;⑵请依据这两名射击手的成果在下列图中画4、出折线统计图;教练的苦恼?第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成果统计如下:成果〔环〕射击次序⑴请分别计算两名射手的平均成果;⑵请依据这两名射击手的成果在下列图中画出折线统计图;⑶现要选择一名射击手参与竞赛,若你是教练,你认为选择哪一位比较适合?为什么?教练的苦恼?归纳方差的计算公式:设一组数据x1、x2、…、xn中,各数据与它们的平均数的差的平方分别是(x1-x)2、(x2-x)2、…(xn-x)2,那么我们用它们的平均数,即用S2=[(x1-x)2+(x2-x)2+…+(xn-x)2]1n计算方差的步骤可概括为“先平均,后求差,平方后,再平5、均”.第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成果统计如下:成果〔环〕射击次序⑴请分别计算两名射手的平均成果;⑵请依据这两名射击手的成果在下列图中画出折线统计图;⑶现要选择一名射击手参与竞赛,若你是教练,你认为选择哪一位比较适合?为什么?教练的苦恼?甲团163164164165165166166167乙团163165165166166167168168 哪个芭蕾舞团女演员的身高更整齐?应用新知例在一次芭蕾舞竞赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参与表演的女演员的身高〔单位:cm〕分别是:稳固新知练习1 计算以下各6、组数据的方差:〔1〕6666666;〔2〕5566677;〔3〕3346899;〔4〕3336999.稳固新知练习2 如图是甲、乙两射击运动员的10次射击训练成果的折线统计图.观看图形,甲、乙这10次射击成果的方差哪个大?成果/环次数甲乙10119876021345678910〔1〕方差怎样计算?计算规律:先平均,后求差,平方后,再平均〔2〕你如何理解方差的意义?方差越大,数据的波动越大;方差越小,数据的波动越小.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来推断它们的波动状况.课堂小结感谢再见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你认为应该选择哪名运动员参赛?为什么?
三、研读课文
解:我认为应该选择甲运动员参赛。
理由是: 甲、乙运动员10次测验成绩的平均数分别为:
x甲 =
5.85
5.93
6.00 10
6.19
6.01
x乙
=
6.11
6.08
10
5.85
6.21
=6.00
甲、乙运动员10次测验成绩的方差分别为:
s
2 甲
5.85 6.012
三、研读课文
练一练 某跳远队准备从甲、乙两名运动员中选取成 绩稳定的一名参加比赛.下表是这两名运动员 10次测验成绩(单位:m).
5.85 甲
6.13 6.11 乙 5.81
5.93 5.98 6.08 6.18
6.07 6.05 5.83 6.17
5.91 6.00 5.92 5.85
5.99 6.19 5.84 6.21
s2
波动的大小,并把它叫做这组数据的方差,记做______.
三、研读课文
2、方差的计算公式
s 2
1 n
( x1
x)2
(x2
x)2
(xn
x) 2 .
知
=————————————————————
识 点 一
3、方差的意义 方差越大,___波_动__性_____越大;
方
方差越小,__波_动__性_____越小.
6.9
0
2
4
6
8
10
12
0
2
4
6
8
10
12
乙种玉米产量图
甲种玉米产量图
由上图可以看出,甲种甜玉米在试验田的产量的 波动性较大,乙种甜玉米产量在平均值附近。 为了刻画一组数据的波动大小,我们可以采用很多统 计的方法,例如方差。
二、学习目标
1 了解方差的定义和计算公式;
会用方差的计算公式比较两组数据的 2 波动大小.
填一填 1、利用计算器的__统__计____功能可以求方差, 一般操作的步骤是: (1)按动有关键,使计算器进入__统__计___ 状态; (2)依次输入数据x1,x2,……,xn; (3)按动求方差的功能键(例如___σ_x_2___ 键),计算器显示结果.
三、研读课文
用
知计
识 点 一
算 器 求 方
3、甲、乙两名战士在射击训练中,打靶的次数相同,
且打中环数的平均数
,如果甲的射击成绩比
较稳定,那么方差的大小关系是 S2甲 < S2乙。
二、学习目标
1 能用计算器求一组数据的方差; 2 能用样本的方差估计总体的方差.
用
知计
识 点 一
算 器 求 方
差
三、研读课文
认真阅读课本第126至127页的内容, 完成下面练习并体验知识点的形成过程.
三、研读课文
:
认真阅读课本第124页至第126页的内
知
容,完成下面练习,并体验知识点的
识
形成过程。
点
一 方 差
1、方差的定义
设有x1,x2, ,xnn个数据,各数据与它们的平均数
x 的差的平方分别是_(_x_1___x_)_2_,
(x2
x)
2
,…
_( _x_n___x__)_2,我们用这些值的平均数,来衡量这组数据
组成一个样本,样本数据的平均数分别是:
74 74 72 73
x 甲 =________1_5__________≈_7____
75 73 71 75
5
x 乙 =________1_5___________≈_7_5___
样本数据的方差分别是:
74 752 74 752 72 752 73 752
=__1_6_5_
一
:
方
x 乙=__(1_6_3__1_6_5__1_6_5__16_6__1_6_6__1_6_7__1_6_8_168) 8
差
=___1_6_6
的
应
用
三、研读课文
方差分别是
知 识 点
s2 甲
=_81__(1_6_3__16_5_)2__(_16_4__1_65_)_2 _ ___(1_6_7_165)2
说明在试验田中,甲、乙两种甜玉米的平群产量相差 不大,由此可以估计这种地区种植这两种甜玉米,它 们的产量相差不大。
一、新课引入
为了可以直观地甲、乙看出这两种玉米的产量情况, 我们根据这两组数据画成下面的图
7.7
7.7
7.6
7.6
7.5
7.5
7.4
7.4
7.3
7.3
7.2
7.2
7.1
7.1
7
7
6.9
用条形图表示下列各组数据,计算并比较 它们的平均数和方差,体会方差是怎样刻 画数据的波动程度的:
(1)6 6 6 6 6 6 6 (2)5 5 6 6 6 7 7 (3)3 3 4 6 8 9 9 (4)3 3 3 6 9 9 9
三、研读课文
解:
知
x (1) =6
识 点
s 2 =0
(3)x =6
44
7+9+7+8+9 x乙= 5 =8
方差为:s2乙
7 82
9
82
7 82
5
8 82
9 82
0.8
2我认为应该选乙队员去参加3分球投篮大赛。
因为s2甲 =3.2,s2乙 =0.8,所以s2甲s2乙,说明乙队员进球数更稳定。
Thank you!
s2 甲=_________________1_5__
______≈_3____
答因:为s,快2 乙s_餐_2=公_甲___司_7_<5应___7该s__52__选2_乙___购__7_,3甲_所_7_5以加2 ,工15_产____生7甲_1__产__7__的5加_2鸡_工_腿_产7_5.的__7鸡_5_2腿__质≈_量_8更__稳_ 定.
差
4.正如用样本的平均数估计总体的平均数一
样,也可以用样本的方差来估计_整__体__的_方__差.
:
三、研读课文
例1 在一次芭蕾舞比赛中,甲、乙两个
知
芭蕾舞团都表演了舞剧《天鹅湖》,
识
参加表演的女演员的身高(单位:cm)
点 二
如表所示.
:
甲 163 164 164 165 165 166 166 167
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41
乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
一、新课引入
根据这些数据估计,农科院应该选择哪种甜 玉米种子呢?
上面两组数据的平均数分别是
x 7.54 x 7.52
差
练一练
2、请用计算器求下列各组数据的方差. (1)6 6 6 6 6 6 6
解:=___0______
(2)5 5 6 6 6 7 7 解:=_7_4_______ (3)3 3 4 6 8 9 9 解:=_4_74_______ (4)3 3 3 6 9 9 9 解:=_5_4_______
7
三、研读课文
s2 = 7
二
: 方 差 的 应 用
x (2) =6
s2
=
4 7
x (4)
s2
=6
54 =7
方差越大,数据波动越大;
方差越小,数据波动越小
四、归纳小结
1、方差的计算公式
s 2 =____1n_(_x_1 __x_)2___(x_2__x_)_2_____(_x_n __x_)_2.______;
5.93 6.012
6.00 6.012
10
6.19 6.012
0.009504
s
2 乙
=
6.11
6.002
6.08
6.002
10
5.85
6.002
6.21
6.002
=0.02434
由s
2 甲
s2乙可知,甲运动员10次测验成绩更稳定。
因此,我认为应该选择甲运动员参赛。
四、归纳小结
1、利用计算器的__统__计____功能可以 求方差。
3、甲、乙两台编织机纺织一种毛衣,在5天中 两台编织机每天出的合格品数如下(单位:件): 甲:7 10 8 8 7 ; 乙:8 9 7 9 7 . 计算在这5天中,哪台编织机出合格品的波动较小? 解:
因为
所以是乙台编织机出的产品的波动性较小。
Thank you!
“引导学生读懂数学书”课题 研究成果配套课件
=__1_._5_
二 : 方
s乙2 ==__81__2__(.__156__3__1_66_)_2 _(_16_5__1_66_)_2 ____(1_6_8_166)2
差 的
s s 2
2
所以,____甲___<_____乙__.
应
用
答:__甲____芭蕾舞团女演员的身高更整齐.
三、研读课文
练一练:
“引导学生读懂数学书”课题 研究成果配套课件
x2
新课引入 展示目标 研读课文 归纳小结 强化训练
20.2 数据的波动程度 第六课时 20.2 数据的波动程(一)
一、新课引入
问题 农科院计划为某地选择合适的甜玉米种子. 选择种子时,甜玉米的产量和产量的稳定性 是农科院所关心的问题.为了解甲、乙两种 甜玉米种子的相关情况,农科院各用10块 自然条件相同的试验田进行试验,得到各 试验田每公顷的产量(单位:t)如表所示.