工程材料力学性能整理加强版重点
材料力学性能复习重点
![材料力学性能复习重点](https://img.taocdn.com/s3/m/b040f07ae418964bcf84b9d528ea81c758f52e8b.png)
第一章包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(P)或屈服强度(S)增加;反向加载时弹性极限(P)或屈服强度(S)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面一一解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
可以从河流花样的反“河流”方向去寻找裂纹源。
解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。
5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力一一派拉力、位错运动交互作用产生的阻力)决定。
派拉力:位错交互作用力aGb(a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。
)2.晶粒大小和亚结构晶粒小f晶界多(阻碍位错运动)一位错塞积一提供应力一位错开动一产生宏观塑性变形。
晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。
屈服强度与晶粒大小的关系:霍尔一派奇(Hall-Petch)s= i+kyd-1/23.溶质元素加入溶质原子一(间隙或置换型)固溶体一(溶质原子与溶剂原子半径不一样)产生晶格畸变一产生畸变应力场一与位错应力场交互运动一使位错受阻一提高屈服强度(固溶强化)。
4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力一绕过第二相一留下位错环一两质点间距变小f流变应力增大。
工程材料力学性能各章节复习知识点
![工程材料力学性能各章节复习知识点](https://img.taocdn.com/s3/m/f1624b51876fb84ae45c3b3567ec102de2bddf0f.png)
工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
工程材料力学性能复习全
![工程材料力学性能复习全](https://img.taocdn.com/s3/m/aca973ec900ef12d2af90242a8956bec0975a56c.png)
工程材料力学性能复习全第一章1.弹性比功:指金属材料吸收弹性变形功的能力。
它通常表示为金属开始塑性变形前每单位体积吸收的最大弹性变形功。
2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
3、循环韧性:金属材料在交变载荷作用下吸收不可逆变形功的能力。
4.包辛格效应:材料在预加载后产生少量塑性变形,然后强度沿同一方向增加,沿相反方向降低。
5、解理刻面:大致以晶粒大小为单位的解理面.6、塑性:指金属材料断裂前发生塑性变形的能力。
脆性:指金属材料在应力作用下不发生塑性变形而直接断裂的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。
7、解理台阶:解理断裂的裂纹要跨越若干相互平行的而且位于不同高度的解理面,从而在同一刻面内部出现了解理台阶与和河流花样。
8.河流型:解理台阶沿裂纹前缘滑动并相互会聚,相同数量的台阶会聚并生长。
当汇合台阶的高度足够大时,它就变成了河流模式。
9、解理面:金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生穿晶断裂,此种晶体学平面即为解理面。
穿晶断裂:裂纹通过晶粒扩展,可以是韧性的,也可以是脆性的。
沿晶断裂:裂纹沿晶界扩展,多为脆性,是由于晶界上有夹杂,第二相以及杂志偏聚引起晶界弱化。
11.韧性转变:当某些金属材料低于一定温度时,它们从韧性状态转变为脆性状态,即低温脆性。
12.弹性模量E:它被称为材料的刚度,代表金属材料对弹性变形的阻力。
13.弹性模量:钢210gpa,铝72gpa,氧化铝380gpa。
第二章1、应力状态软性系数:τmax与σmax的比值。
2.缺口效应:由于缺口的存在,在静载荷作用下,缺口界面上的应力状态会发生变化。
3.缺口敏感性:缺口图案抗拉强度σBN和等截面尺寸光滑试样的抗拉强度σB的比率记录为NSR。
4、布氏硬度:此试验的原理是用一定直径d的硬质合金球为压头,施以一定的试验力f,将其压入试样表面,经规定时间t后卸除试验力,试样表面将残留压痕,布氏硬度值就是试验力f除以压痕球形表面积a。
工程材料复习总结超棒
![工程材料复习总结超棒](https://img.taocdn.com/s3/m/32d48415647d27284b73519e.png)
1、力学性能⑴刚度:材料抵抗弹性变形的能力——指标为弹性模量:E=σ/ε⑵强度:材料抵抗变形和破坏的能力。
指标:抗拉强度σ b—材料断裂前承受的最大应力。
屈服强度σ s—材料产生微量塑性变形时的应力。
条件屈服强度σ 0.2—残余塑变为0.2%时的应力。
疲劳强度σ -1—无数次交变应力作用下不发生破坏的最大应力。
⑶塑性:材料断裂前承受最大塑性变形的能力。
指标为δ、ψ。
⑷硬度:材料抵抗局部塑性变形的能力。
指标为HB、HRC。
⑸冲击韧性:材料抵抗冲击破坏的能力。
指标为αk.材料的使用温度应在冷脆转变温度以上。
⑹断裂韧性:材料抵抗内部裂纹扩展的能力。
指标为K1C。
2、化学性能⑴耐蚀性:材料在介质中抵抗腐蚀的能力。
⑵抗氧化性:材料在高温下抵抗氧化作用的能力。
3、耐磨性:材料抵抗磨损的能力。
㈡工艺性能1、铸造性能:液态金属的流动性、填充性、收缩率、偏析倾向。
2、锻造性能:成型性与变形抗力。
3、切削性能:对刀具的磨损、断屑能力及导热性。
4、焊接性能:产生焊接缺陷的倾向。
5、热处理性能:淬透性、耐回火性、二次硬化、回火脆性二、晶体结构㈠纯金属的晶体结构1、理想金属⑴晶体:原子呈规则排列的固体。
晶格:表示原子排列规律的空间格架。
晶胞:晶格中代表原子排列规律的最小几何单元.⑶立方晶系的晶面指数和晶向指数①晶面指数:晶面三坐标截距值倒数取整加()②晶向指数:晶向上任一点坐标值取整加[ ]立方晶系常见的晶面和晶向⑷晶面族与晶向族指数不同但原子排列完全相同的晶面或晶向。
⑸密排面和密排方向——同滑移面与滑移方向在立方晶系中,指数相同的晶面与晶向相互垂直。
2、实际金属⑴多晶体结构:由多晶粒组成的晶体结构。
晶粒:组成金属的方位不同、外形不规则的小晶体.晶界:晶粒之间的交界面。
⑵晶体缺陷—晶格不完整的部位①点缺陷空位:晶格中的空结点。
间隙原子:挤进晶格间隙中的原子。
置换原子:取代原来原子位置的外来原子。
②线缺陷——位错晶格中一部分晶体相对另一部分晶体沿某一晶面发生局部滑移, 滑移面上滑移区与未滑移区的③面缺陷——晶界和亚晶界亚晶粒:组成晶粒的尺寸很小、位向差也很小的小晶块。
材料力学性能知识要点
![材料力学性能知识要点](https://img.taocdn.com/s3/m/8c0f6cc458f5f61fb73666ec.png)
1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。
2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。
3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。
4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。
1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。
2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。
3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。
4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。
5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。
6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。
请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。
dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。
材料力学性能总结(2篇)
![材料力学性能总结(2篇)](https://img.taocdn.com/s3/m/c0beb4899fc3d5bbfd0a79563c1ec5da51e2d65b.png)
材料力学性能总结第一章二节.弹变1。
弹性变形。
材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微____,因此,弹性模量是对____不敏感的性能指标。
4.比例极限σp。
应力与应变成直线关系的最大应力。
5.弹性极限σe。
由弹性变形过渡到弹性塑性变形的应力。
6.弹性比功。
表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。
7.力学性能指标。
反映材料某些力学行为发生能力或抗力的大小。
8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性。
在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。
10.循环韧性。
指在塑性区加载时材料吸收不可逆变形功的能力。
11.循环韧性应用。
减振、消振元件。
____包申格效应。
金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。
____包申格应变。
指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。
14.消除包申格效应:预先进行较大的塑性变形。
在第二次反向受力前先使金属材料于回复或再结晶温度下退火。
三节:塑性晶粒小可以产生细晶强化。
都会使强度增加。
3.溶质原子:溶质元素溶入金属晶格形成固溶体,产生固溶强化应变速率越高强度越高。
3.细晶强化。
晶界是位错运动的阻碍,晶粒小相界多。
减少晶粒尺寸会减少晶粒内部位错塞积的数量,减少位错塞积群的长度,降低塞积点处的应力,相邻晶粒中位错源开动所需的外加切应力提高,屈服强度增加。
4.固溶强化。
在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度,此即为固溶强化。
溶质原子与基体原子尺寸差别越大,引起的弹性畸变越大,溶质原子浓度越高,引起的弹性畸变越大,对位错的阻碍作用越强,固溶强化作用越大。
材料力学性能复习要点
![材料力学性能复习要点](https://img.taocdn.com/s3/m/6fa9a05f8f9951e79b89680203d8ce2f01666552.png)
材料力学性能复习要点材料力学性能一、名词解释1. 内耗:加载时,有一部分变形功被材料所吸收,这部分被吸收的功成为内耗。
2. 塑性:是指材料断裂前产生塑性变形的能力3. 韧性:是材料的力学性能。
是指材料断裂前吸收塑性变形功和断裂功的能力。
4. 脆性断裂:是材料断裂前,基本不产生明显的宏观塑性变形,无明显预兆,突然发生的快速断裂过程。
5. 韧性断裂:是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。
6. 解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶现象。
7. 剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离而造成的断裂。
8. 应力状态软性系数:在一定加载方式下τmax和σmax的比值称为应力状态软性系数。
9. 缺口效应:①缺口造成应力应变集中②使材料所受的应力由原来单向拉伸改变为两向或三向拉伸③使塑性材料得到强化。
10. 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb 的比值作为材料的缺口敏感性指标,并称为缺口敏感度。
11. 压入法硬度:是材料表面抵抗另一物体局部压入时所引起的塑性变形能力①动载压入法:超声波硬度、肖氏硬度、锤击、布氏硬度。
②静载压入法:布氏硬度、洛氏硬度、维氏硬度、显微硬度。
12. 低温脆性:当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理。
断口特征由纤维状变为结晶状。
13. 韧脆转变温度:当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理。
转变温度tk称为韧脆转变温度。
14. 冲击韧性:单位A吸收冲击功的能力。
15. 低应力脆断:高强度钢超高强度钢的机件,中低强度钢的大型机件常常在工作应力低于屈服极限的情况下,发生脆性断裂现象。
16. 应力场强度因子:反映了裂纹尖端区域应力场的强度KI17. 断裂韧性:KI随a或σ单独或共同增加而增加,当KI达到一定值时,裂纹失稳扩展断裂。
工程材料的力学性能
![工程材料的力学性能](https://img.taocdn.com/s3/m/ed97802530126edb6f1aff00bed5b9f3f90f72e6.png)
第一章工程材料的力学性能本章要点:力学性能是指材料在外力作用时表现出来的性能。
力学性能包括强度、塑性、硬度、韧性及疲劳强度等。
硬度值可以间接地反映材料的强度、塑性和韧性以及材料在化学成分、金相组织和热处理工艺上的差异,因而硬度试验在工程上应用十分广泛。
生产中常用的硬度试验是布氏硬度、洛氏硬度和维氏硬度。
熟悉和掌握工程材料力学性能的重要性:在机械设备及工具的设计、制造中选用工程材料时,大多以力学性能为主要依据。
一、载荷的概念:材料在加工及使用过程中所受的外力。
载荷分类:1.根据作用性质不同分静载荷:静载荷是指大小不变或变动很慢的载荷;冲击载荷:冲击载荷是指突然增加的载荷;疲劳载荷:疲劳载荷是指所经受的周期性或非周期性的动载荷也称循环载荷。
2.根据载荷作用方式不同分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭转载荷等,如图1-1所示。
二、变形的概念:材料受不同载荷作用而发生的几何形状和尺寸的变化。
变形的分类:弹性变形塑性变形内力为材料受外力作用后,为保持其不变形,在材料内部作用着与外力相对抗的力。
应力为单位截面积上的内力。
材料受拉伸载荷或压缩载荷作用时,其横截面积上的应力(按下式计算:F 式中SF——外力N;S——横截面积m2;σ——应力Pa,应力单位是Pa,1Pa=1N/m2。
当面积用mm2时,则应力可用MPa为单位。
1MPa1N/mm2=106Pa §1.1 静载荷条件下材料的力学性能一、强度材料抵抗塑性变形或断裂的能力称为强度,强度大小通常用应力来表示。
根据载荷作用方式不同,强度可分为抗拉强度σb、抗压强度σbc、抗弯强度σbb、抗剪强度τb和抗扭强度τt等五种。
一般情况下多以抗拉强度作为判别材料强度高低的指标。
抗拉强度是通过拉伸试验测定的。
拉伸试验的方法是用静拉力对标准试样进行轴向拉伸,同时连续测量力和相应的伸长,直至断裂。
根据测得的数据,即可求出有关的力学性能。
下面把试验作一简单介绍:1拉伸试样拉伸试样的形状一般有圆形和矩形两类。
材料的力学性能重点总结
![材料的力学性能重点总结](https://img.taocdn.com/s3/m/9338ba7abf23482fb4daa58da0116c175e0e1e51.png)
材料的力学性能重点总结名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
材料力学性能重点总结
![材料力学性能重点总结](https://img.taocdn.com/s3/m/1bf57d8d9fc3d5bbfd0a79563c1ec5da51e2d66d.png)
材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。
强度越高,材料越能承受外部载荷。
2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。
材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。
3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。
硬度可以衡量材料的耐磨性和耐磨损能力。
4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。
弹性模量越大,材料的刚性越高。
5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。
延展性高的材料可以更好地适应复杂应力和形状变化。
6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。
它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。
7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。
材料的蠕变性能评估了其在高温和持续应力下的稳定性。
8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。
疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。
9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。
它可以评估材料在极端工作条件下的抗冲击性能。
10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。
材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。
以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。
通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。
工程材料力学性能每章重要知识点
![工程材料力学性能每章重要知识点](https://img.taocdn.com/s3/m/9e095ade58f5f61fb73666f8.png)
第一章1.应力-应变曲线(拉伸力-伸长曲线)。
拉伸力在Fe以下阶段,为弹性变形阶段,到达Fa后,试样开始发生塑性变形,最初试样局部区域产生不均匀屈服塑形变形,曲线上出现平台或锯齿,直至C点结束。
继而进入均匀塑形变形阶段。
达到最大拉伸Fb时,试样在此产生不均匀塑形变形,在局部区域产生缩颈。
最终,在拉伸力Fk处,试样断裂。
2.弹性变形现象及指标弹性变形:是可逆性变形,是金属晶格中原子自平衡位置产生可逆位移的反映。
弹性变形指标:①弹性模量,是产生100%弹性变形所需应力。
②弹性比功(弹性比能、应变比能),表示金属吸收弹性变形功的能力。
③滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
④循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
3.塑性变形现象及指标金属材料常见塑性变形方式主要为滑移和孪生。
滑移:金属材料在切应力作用下位错沿滑移面和滑移方向运动而进行切变得过程。
孪生:金属材料在切应力作用下沿特定晶面和特性晶向进行的塑性变形。
塑性变形特点:①各晶粒变形的不同时性和均匀性;②各晶粒变形的相互协调性。
塑性变形指标:⑴屈服强度,屈服强度及金属材料拉伸时,试样在外力不增加(保持恒定)仍能继续伸长时的应力。
屈服现象:金属材料开始产生宏观塑形变形的标志。
屈服现象相关因素:①材料变形前可动位错密度很小;②随塑性变形的发生,位错能快速增殖;③位错的运动速率与外加应力有强烈的依存关系。
屈服现象指标:规定非比例伸长应力;规定残余伸长应力;规定总伸长应力。
影响屈服强度因素:①内在因素:金属本性和晶格类型;晶粒的大小和亚结构;溶质元素;第二相。
②外在因素:温度、应变速率、应力状态。
⑵应变硬化:金属材料阻止继续塑形变形的能力,塑性变形是硬化的原因,硬化是结果。
⑶缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。
抗拉强度:韧性金属试样拉断过程中最大力所对应的应力。
工程材料笔记整理重点
![工程材料笔记整理重点](https://img.taocdn.com/s3/m/e1eda69ad05abe23482fb4daa58da0116c171ffe.png)
工程材料复习笔记整理(重点中的重点)名词解释:1.强度:抵抗塑性变形和破坏屈服强度:抵抗产生塑性变形抗拉强度:抵抗产生断裂前硬度:抵抗局部塑性变形塑性:产生塑性变形而不破坏的能力韧度:材料抵抗冲击载荷作用而不致破坏的极限能力称为冲击韧度疲劳强度:材料在规定的重复次数或交变应力作用下不致发生断裂的能力2.再结晶:升高温度,形成新的晶粒,使原来被拉大的晶粒转变为等轴晶粒,完全消除冷变形强化,力学性能恢复到塑性变形前的状态3.冷变形与热变形:再结晶温度以上进行的塑性变形为热变形,以下的为冷变形4.巴氏合金:铅基轴承合金5.下贝氏体,强度、韧度高,有最佳的综合机械性能,理想的强韧化组织,生产中常采用等温淬火获得下贝氏体组组织6. 一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。
二次渗碳体:指从奥氏体中析出的渗碳体三次渗碳体:从中析出的称为三次渗碳体共晶渗碳体:莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:珠光体中的渗碳体称为共析渗碳体7.纤维组织:热变形使铸态金属的偏析、分布在晶界上的夹杂物和第二相逐渐沿变形方向延展拉长、拉细而形成锻造流线;难以用热处理来消除8.变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
9.索氏体:在650〜600℃温度范围内形成层片较细的珠光体10.屈氏体:在600〜550℃温度范围内形成片层极细的珠光体。
11.马氏体:碳在a-Fe中的过饱和固溶体。
12.过冷度:实际结晶温度与理论结晶温度之差称为过冷度13.玻璃钢:玻璃纤维增强塑料称为玻璃钢。
玻璃钢具有成本低,工艺简单;强度低,绝缘等特点,它可制造壳体、管道、容器等14.加工硬化:随变形量的增加,金属的强度大为提高,塑性却有较大降低产生原因:位错密度升高为了继续变形,退火可消除加工硬化15.调质:调质处理后钢获得回火索氏体组织,其性能特点是具有较高的综合力学性能16.铁素体:(a或F )碳原子溶于a-Fe形成的间隙固溶体性能:固溶强化不明显,强度,硬度低,塑性韧性高17.奥氏体:(Y或A)碳原子溶于丫-Fe形成的间隙固溶体性能:高塑性,是理想的锻造组织18.渗碳体:(Fe3C )由12个铁原子和4个碳原子组成的具有复杂晶体结构间隙化合物性能:高硬度、高脆性、低强度19.珠光体:(P )铁素体和渗碳体的混合物称为珠光体,它具有较高的综合力学性能的特点20.莱氏体Ld 或Ld':组织:Ld : Fe3C ( Fe3C+Fe3CH) + Y Ld‘: Fe3C ( Fe3C+Fe3c口)+ P 机械化合物,性能:高硬度、高脆性。
工程材料力学性能知识点总结
![工程材料力学性能知识点总结](https://img.taocdn.com/s3/m/36f5a18cbceb19e8b8f6ba2b.png)
第五章,金属疲劳
1,变动载荷是引起疲劳破坏的外力,它是指载荷大小,甚至方向随时间变化的载荷。
2,按照断裂寿命和应力高低不同,可分为高周疲劳,低周疲劳,这是最基本的分类方法。
3,典型疲劳断口具有三种形貌不同的区域,疲劳源,疲劳区,瞬断区。
4,疲劳极限是材料抵抗无限次应力循环也不疲劳断裂的强度指标。
5,金属材料抵抗疲劳过载损伤的能力用过载损伤界或过载损伤区表示。
1,观察并记录疲劳长度a随N循环扩展增长的情况,便可作出疲劳裂纹扩展曲线。
2,疲劳裂纹不扩展的临界值称为疲劳裂纹扩展门槛值。
3,。
材料力学性能重点总结
![材料力学性能重点总结](https://img.taocdn.com/s3/m/453f930d842458fb770bf78a6529647d2628347f.png)
材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。
强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。
2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。
具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。
韧性材料通常具有较高的延展性和断裂韧性。
3.硬度:硬度是材料抵抗刮擦或压痕的能力。
硬度高的材料具有较强的抗刮擦能力和耐磨损性能。
常用的硬度测试方法有洛氏硬度和布氏硬度等。
4.延展性:延展性是指材料在受力时的塑性变形程度。
延展性高的材料能够在受力后产生大的形变而不发生断裂。
材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。
5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。
材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。
6.温度效应:材料在高温或低温环境下的性能表现。
高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。
温度效应的了解对于材料的设计和应用非常重要。
除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。
因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。
综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。
材料力学性能重点总结
![材料力学性能重点总结](https://img.taocdn.com/s3/m/4176776e580102020740be1e650e52ea5418ce53.png)
材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。
常用于评估材料抗拉强度、抗压强度、抗弯强度等。
强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。
2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。
韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。
韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。
3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。
硬度可以用于评价材料的耐磨性和抗划伤性能。
通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。
硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。
4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。
塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。
材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。
5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。
疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。
疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。
6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。
脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。
与韧性材料相比,脆性材料更容易发生断裂。
材料的脆性取决于材料中的缺陷结构和应力分布。
总的来说,材料力学性能是评价材料质量的重要指标。
强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。
合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。
最新工程材料力学性能知识点整理
![最新工程材料力学性能知识点整理](https://img.taocdn.com/s3/m/dd0fba79ba1aa8114531d955.png)
最新工程材料力学性能知识点整理第一章弹性比功——材料吸收弹性变形功的能力滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象滞弹性的影响因素(1)材料的成分、组织材料组织越不均匀,滞弹性越明显。
(2)试验条件:a) 温度T↑→滞弹性速率和滞弹性应变↑b) 切应力愈大,滞弹性越明显。
消除办法:采用长期回火回火的作用是使间隙原子到位错空位和晶界去,自身变得比较稳定。
金属的内耗加载时消耗于金属的变形功大于卸载时金属放出的变形功,因而有一部分变形功为金属所吸收,这部分吸收的功就称为金属的内耗。
循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗,表示材料吸收不可逆变形的能力,亦称消振性。
循环韧性的意义是:材料循环韧性愈高,则机件依靠材料自身的消振能力愈好。
包申格(Bauschinger)效应金属材料经过预先加载产生少量塑性变形(残余应变小于1-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
消除方法(1)预先经受较大的塑性变形(2)在第二次反向受力前使金属材料于回复或再结晶温度下退火金属材料常见的塑性变形方式主要为滑移和孪生屈服现象是金属材料开始产生宏观塑性变形时的标志。
屈服点σs:材料的在拉伸过程中试验力不增加(保持恒定)仍能继续伸长时的应力。
σs=Fs/ A0上屈服点σsu:试样发生屈服而试验力首次下降前的最大应力。
σsu =Fsu/A0下屈服点σsl : 当不计初始瞬时效应(指在屈服过程中试验力第一次发生下降)时的屈服阶段的最小应力。
σsl =FsL/ A0影响屈服强度的因素(一) 影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同,单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程, 在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。
剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是 在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。
何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述《工程材料力学性能》课后答案机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形 功表示。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性, 也就是应变落后于应力的现象。
3. 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4. 包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加; 反向加载,规定残余伸长应力降低的现象。
5 •解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6•塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7. 解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为 b 的台阶。
8. 河流花样:解理台阶沿裂纹前端滑动而相互汇合 ,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9. 解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生 的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10. 穿晶断裂: 沿晶断裂: 11.韧脆转变: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
裂纹沿晶界扩展,多数是脆性断裂。
具有一定韧性的金属材料当低于某一温度点时, 冲击吸收功明显下降,断裂方式由原来的韧 性断裂变为脆性断裂,这种现象称为韧脆转变 说明下列力学性能指标的意义。
2、 答:E 弹性模量G 切变模量 cr r 规定残余伸长应力 CT 0.2屈服强度 6gt 金属材料拉伸时最大应力下 3、 的总伸长率n 应变硬化指数【P151金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态 4、 5、 和晶粒大小,但是不改变金属原子的本性和晶格类型。
组织虽然改变了,原子的本性和晶格类型未发 生改变,故弹性模量对组织不敏感。
【P4】试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力 决定金属屈服强度的因素有哪些? 【P121 -伸长曲线图上的区别?为什么?6、 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、 外在因素:温度、应变速率和应力状态。
试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险?溶质元素、第二相。
【P21】7、 【P23】断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率 和受力状态不同而变化。
1佗E Y s ¥I --- I ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。
I 旧丿第二章一、解释下列名词:(2)缺口效应一一 绝大多数机件的横截面都不是均匀而无变化的光滑体,键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在 载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
【P44 P531 (3)缺口敏感度一一缺口试样的抗拉强度 a bn 的与等截面尺寸光滑试样的抗拉强度敏感度,即:羞【P47 P551在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态,在板中心部位处于两向拉伸平面 应力状态。
厚板:在缺口根部处于两向拉应力状态,缺口内侧处三向拉伸平面应变状态。
无论脆性材料或塑性材料,都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向,降低 了机件的使用安全性。
为了评定不同金属材料的缺口变脆倾向,必须采用缺口试样进行静载力学性能试验。
七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理, 并比较布氏、洛氏与维氏硬度试验方法的优缺点。
【P49 P571 原理9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。
【P32】金属在其他静载荷下的力学性能(1)应力状态软性系数一一材料或工件所承受的最大切应力T max 和最大正应力 a max 比值,即:TmaxOt = -------^max26—0.502+^3 )【新书P39旧书P46】往往存在截面的急剧变化,如a b 的比值,称为缺口(4) 布氏硬度一一用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
【P49P58】(5) 洛氏硬度一一采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【维氏硬度一一以两相对面夹角为 136。
的金刚石四棱锥作压头,采用单位面积所承受的试验力计算P51 P60 】。
(6) 而得的硬度。
【P53 P621 二、说明下列力学性能指标的意义(1) (2)be ――材料的抗压强度【P41 P481 bb ――材料的抗弯强度【P42 P501 S ――材料的扭转屈服点【P44 P521 (4) b ――材料的抗扭强度【P44 P521 (5)bn ――材料的抗拉强度【P47 P551(6) NS材料的缺口敏感度【P47 P551(7) HBW —压头为硬质合金球的材料的布氏硬度【 P49 P581(8) (9) HR 材料的洛氏硬度【HR 材料的洛氏硬度【 P52 P611 P52 P611 (10) HRC 材料的洛氏硬度【(11)HV 材料的维氏硬度P52 P611P53 P621五、缺口试样拉伸时的应力分布有何特点? P45 P531布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。
洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。
维氏硬度:以两相对面夹角为 136。
的金刚石四棱锥作压头,计算单位面积所承受的试验力。
布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。
压痕大的一个优点是其 硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。
缺点:对 不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限 制。
洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可 测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。
缺点:压痕较小,代 表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得 的硬度值彼此没有联系,不能直接比较。
维氏硬度优点:不存在布氏硬度试验时要求试验力F 与压头直径D 之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压 痕测量的精度较高,硬度值较为准确。
缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或 查表,因此,工作效率比洛氏硬度法低的多。
第三章金属在冲击载荷下的力学性能:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。
【P571 ::U 形缺口冲击吸收功A KU 除以冲击试样缺口底部截面积所得之商,称为冲击韧度,冲击吸收功:缺口试样冲击弯曲试验中,摆锤冲断试样失去的位能为断裂所消耗的功,称为冲击吸收功,以A K 表示,单位为J 。
P57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金, 低强度结构钢(铁素体-珠光体钢),在试验温度低于某一温度t k 时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
二、(1)A K:冲击吸收功。
含义见上面。
冲击吸收功不能真正代表材料的韧脆程度,但由于它们对材料内部组织变化十分敏感,而且冲击弯曲试验方法简便易行,被广泛采用。
A KV (CVN ) : V 型缺口试样冲击吸收功.A<u : U 型缺口冲击吸收功.(2)FATT50冲击试样断口分为纤维区、放射区(结晶区)与剪切唇三部分,在不同试验温度下,三个 区之间的相对面积不同。
温度下降,纤维区面积突然减少,结晶区面积突然增大,材料由韧变脆。
通常取 结晶区面积占整个断口面积 50%时的温度为t k ,并记为50%FATT 或FATT50%t50。
(新书P61,旧书P71) 或:结晶区占整个断口面积 50%是的温度定义的韧脆转变温度 . 四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。
当温度降低到某一温度时, 屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大, 原子热激活能力下降,因此材料屈服强度增加。
冲击韧性 冲击韧度 a ku=Aku/S (J/cm2 ),反应了材料抵抗冲击载荷的能力,用a KU 表示。
P57 注释 /P67mgH1-mgH2此即为试样变形和特别是工程上常用的中、影响材料低温脆性的因素有(P63, P73):晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。
化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提 咼。
显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。
因为晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减少,有利于降低应力集中; 同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。
②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。
钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变 温度升高。