初中七年级数学下册期中考试试题
七年级数学下册期中考试题(及参考答案)
七年级数学下册期中考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.4的算术平方根是( )A .-2B .2C .2±D .25.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a|D .127a 6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C.两点确定一条直线D.垂线段最短7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+187+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于________.5.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______.6.如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB ′C ′,则∠B ′AC 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()43203x x --= (2)23211510x x -+-=2.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、C6、D7、B8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、23、15°45、-8、86、17°三、解答题(本大题共6小题,共72分)1、(1)x=9;(2)x=8.52、m>﹣23、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、略5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。
人教版七年级下册数学期中考试试题(含答案)
人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。
七年级数学下册期中考试题【及答案】
七年级数学下册期中考试题【及答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2) C.(﹣1,2)D.(1,2)7.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 28.2019-=()A.2019 B.-2019 C.12019D.12019-9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.一个n边形的内角和为1080°,则n=________.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3=___________度.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3 请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、A6、A7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、垂线段最短.3、30°4、3x=.5、AC=DF(答案不唯一)6、60三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、﹣1≤x<2.3、略4、60°5、()117、20;()22次、2次;()372;()4120人.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
七年级数学下册期中考试卷【附答案】
七年级数学下册期中考试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.长方形如图折叠,D 点折叠到的位置,已知∠FC =40°,则∠EFC =( )A .120°B .110°C .105°D .115°5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )A .B .C .D . 8.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).525.36 5.036,253.6=15.906253600=__________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x的图象于点P .(1)求反比例函数y=k x的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、C7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、1253、15°4、205、503.66、35三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。
初中七年级数学下册期中试卷及答案
初中七年级数学下册期中试卷及答案一、选择题1. 下列选项中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 等边三角形C. 菱形D. 圆{答案:D}2. 已知一组数据:2,4,6,8,10,12,14,16,其中众数是()A. 2B. 4C. 6D. 8{答案:D}3. 下列等式中,正确的是()A. \(a^2 = 2a\)B. \(a^2 = -2a\)C. \(2a = a^2\)D. \(a^2 = a\){答案:C}4. 某数的平方根是3,那么这个数是()A. 3B. -3C. 9D. -9{答案:C}5. 下列各数中,是无理数的是()A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt[3]{2}\)D.\(2\sqrt[3]{2}\){答案:A}二、填空题1. 若 \(a\) 为有理数,且 \(a^2 = 14\),则 \(a\) 的值为______。
{答案:±\(\sqrt{14}\)}2. 已知一组数据:1,3,5,7,9,其中中位数______。
{答案:5}3. 若\(a\) 为实数,且\(a+2>0\),则\(a\) 的取值范围为______。
{答案:\(a>-2\)}4. 下列各数中,是等差数列的是______。
{答案:2,4,6,8,10}5. 若 \(a\) 为实数,且 \(a^2 - 3a + 2 = 0\),则 \(a\) 的值为______。
{答案:1 或 2}三、解答题1. 解方程:\(2x - 5 = 3x + 1\)。
{答案:\(x = -6\)}2. 计算:\(\frac{1}{3} + \frac{2}{5} - \frac{1}{6}\)。
{答案:\(\frac{19}{30}\)}3. 某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
{答案:80元}4. 解不等式:\(3x - 7 > 2x + 3\)。
七年级数学下册期中考试卷【含答案】
七年级数学下册期中考试卷【含答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.3.如图,下列条件中,能判断AB∥CD的是()A.∠FEC=∠EFB B.∠BFC+∠C=180°C.∠BEF=∠EFC D.∠C=∠BFD4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°8.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90B.120C.135D.1809.如图,a,b,c在数轴上的位置如图所示,化简22-++-的结a a c c b()果是()A.2c﹣b B.﹣b C.b D.﹣2a﹣b 10.如图是一个计算程序,若输入a的值为﹣1,则输出的结果应为()A.7 B.﹣5 C.1 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.正五边形的内角和等于______度.4.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x y x y -=-⎧⎨+=⎩ (2)4(1)3(2)833634x y x y --+=⎧⎪++⎨=⎪⎩2.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A 的坐标为(﹣6,3),求点B的坐标.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、A6、D7、C8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、2000,3、5404、①②③5、1 96、10cm三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、1 3 23、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、(1,4).5、(1)作图见解析;(2)120.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。
七年级数学下册期中考试题(完整)
七年级数学下册期中考试题(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.下列说法中,正确..的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.若|a|=|b|,则a与b互为相反数D.整数包括正整数和负整数3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则a-不一定是负数D.零既不是正数也不是负数5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.如果关于x ,y 的方程组437132x y k x y k -=⎧⎪⎨+-=-⎪⎩的解中,x 与y 互为相反数,求k 的值.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、A6、C7、C8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、-13、(-2,0)4、40°5、24.6、-1或5三、解答题(本大题共6小题,共72分)1、3x=.2、x=1,y=-1,k=9.3、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
七年级下册数学期中考试试题及答案
七年级下册数学期中考试试题及答案一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,推断■的值()A.不可能是2B.不可能是1C.不可能是0D.不可能是﹣1 2.(3分)如图,射线AB、AC被直线DE所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角3.(3分)下列计算正确的是()A.a3•a2=a6B.3a3+a=3a C.a2﹣a=a D.(﹣a3)2=a6 4.(3分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为()A.2.5×10﹣7米B.2.5×10﹣6米C.2.5×107米D.2.5×106米5.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.x3﹣xy2=x(x﹣y)2B.(x+2)(x﹣2)=x2﹣4C.a2﹣b2+1=(a﹣b)(a+b)+1D.﹣2x2﹣2xy=﹣2x(x+y)6.(3分)不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A.3元B.5元C.8元D.13元7.(3分)小兰是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,2,x2+1,a,x+1,分别对应下列六个字:州,爱,我,美,游,杭,现将2a(x2﹣1)﹣2b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱美B.杭州游C.我爱杭州D.美我杭州8.(3分)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠l=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AD9.(3分)已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N 的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围10.(3分)已知关于x,y的方程,给出下列结论:①存在实数a,使得x,y的值互为相反数;②当a=2时,方程组的解也是方程3x+y=4+a的解;③x,y都为自然数的解有3对.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题:本大题有8个小题,每小题4分,共32分.11.(4分)将方程5x﹣y=1变形成用含x的代数式表示y,则y=.12.(4分)多项式m2﹣n2和am﹣am的公因式是.13.(4分)若x,y均为整数,且3x•9y=243,则x+2y的值为.14.(4分)如图将一条两边都互相平行的纸带进行折叠,设∠1为45°,则∠2=°.15.(4分)一个多项式与﹣x3y的积为x6y2﹣3x4y﹣x3y4z,那么这个多项式为.16.(4分)若实数a,b满足a﹣2b=4,ab=2,那么a2+4b2=.17.(4分)下列说法中:①若a m=3,a n=4,则a m+n=7;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若(t﹣2)2t=1,则t=3或t=0;④平移不改变图形的形状和大小;⑤经过一点有且只有一条直线与已知直线平行.其中,你认为错误的说法有.(填入序号)18.(4分)一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣9,则小正方形卡片的面积是.三、解答题:本大题有6个小题,共58分)19.(12分)(1)计算:2﹣2+(π﹣3.14)0+(﹣)﹣1(2)计算:(﹣2019)2+2018×(﹣2020)(3)解方程组20.(8分)给出三个多项式:①2x2+4x﹣4;②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.21.(8分)(1)先化简,再求值:(3x﹣6)(x2﹣)﹣6x(x2﹣x﹣6),其中x=﹣.(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.22.(8分)如图,D,E,F,G,H,Ⅰ是三角形ABC三边上的点,且EF∥BC,GH∥AC,DI∥AB,连结EI.(1)判断∠GHC与∠FEC是否相等,并说明理由.(2)若EI平分∠FEC,∠C=54°,∠B=49°.求∠EID的度数.23.(10分)如图,杭州某化工厂与A,B两地有公路,铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.4元/(吨•千米),铁路运价为1.1元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费89100元,求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?24.(12分)长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a度/秒,灯B转动的速度是b度/秒,且a,b满足|a﹣3b﹣1|+(a+b﹣5)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a,b的值;(2)若两灯同时转动,经过42秒,两灯射出的光束交于C,求此时∠ACB的度数;(3)若灯B射线先转动10秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(直接写出答案)2018-2019学年浙江省杭州市四校七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:设■的值为a,方程为ax﹣2y=x+5,整理得:(a﹣1)x﹣2y=5,由方程为二元一次方程,得到a﹣1≠0,即a≠1,则■的值不可能是1,故选:B.2.【解答】解:射线AB、AC被直线DE所截,则∠1与∠2是同位角,故选:A.3.【解答】解:A、a3•a2=a5,故此选项错误;B、3a3+a,无法计算,故此选项错误;C、a2﹣a,无法计算,故此选项错误;D、(﹣a3)2=a6,正确.故选:D.4.【解答】解:2.5微米用科学记数可表示为2.5×10﹣6米.故选:B.5.【解答】解:A选项x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),故A错.B选项不符合因式分解的概念,故B错,C选项不符合因式分解的概念,故C错,D选项﹣2x2﹣2xy=﹣2x(x+y),故D正确,故选:D.6.【解答】解:设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得.解得.所以x+y=5+3=8(元)故选:C.7.【解答】解:原式=2(a﹣b)(x﹣1)(x+1),则呈现的密码信息可能是我爱杭州,故选:C.8.【解答】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=45°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:A.9.【解答】解:∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选:A.10.【解答】解:①若x与y互为相反数,则有,解得,即存在实数a,使得x,y的值互为相反数,①正确②当a=2时,方程组有,解得,将x,y代入3x+y=4+a得,3×﹣=6=4+2,②正确③y的方程,x+2y=3﹣a等式两边同时乘以2,得,整理得,3x+y=6,当x=0时,y=6;当x=1时,y=3;当x=2时,y=0,.共有3组自然数解.③正确故选:D.二、填空题:本大题有8个小题,每小题4分,共32分.11.【解答】解:方程5x﹣y=1,解得:y=5x﹣1,故答案为:5x﹣112.【解答】解:多项式m2﹣n2和am﹣am的公因式是m﹣n,故答案为:m﹣n.13.【解答】解:∵3x•9y=243,∴3x•32y=35=3x+2y=35,∴x+2y=5.故答案为:5.14.【解答】解:由题意:∠1=∠3=45°,由翻折可知:∠4=∠5=(180°﹣45°)=67.5°,∴∠2=∠5=67.5°,故答案为67.5.15.【解答】解:根据题意得:(x6y2﹣3x4y﹣x3y4z)÷(﹣x3y)=﹣x3y+3x+y3z.故答案为:﹣x3y+3x+y3z.16.【解答】解:∵实数a,b满足a﹣2b=4,ab=2,∴a2+4b2=(a﹣2b)2+4ab=42+4×2=24.故答案是:24.17.【解答】解:①a m=3,a n=4,则a m+n=a m×a n=12;故此选项错误;②两条直线被第三条直线所截,如果两直线位置不平行,那么一组内错角的角平分线也不平行;故此选项错误;③若(t﹣2)2t=1,则t=3或t=0或t=1;故此选项错误;④平移只改变图形的位置,不改变图形的形状和大小;故此选项正确;⑤在同一平面内,经过直线外一点有且只有一条直线与已知直线平行,故此选项错误;故答案为:①②⑤.18.【解答】解:由图可得,图2中阴影部分的面积是:(2b﹣a)2,图3中阴影部分的面积是:(a﹣b)(a﹣b),则(a﹣b)(a﹣b)﹣(2b﹣a)2=2ab﹣9,化简,得b2=3,故答案为:3.三、解答题:本大题有6个小题,共58分)19.【解答】解:(1)2﹣2+(π﹣3.14)0+(﹣)﹣1=+1﹣3=﹣(2)(﹣2019)2+2018×(﹣2020)=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣12)=1(3)∵,∴,①﹣②,可得:6y=18,解得y=3,把y=3代入①,可得:3x+12=36,解得x=8,∴原方程组的解是.20.【解答】解:①+②得:2x2+4x﹣4+2x2+12x+4=4x2+16x=4x(x+4);①+③得:2x2+4x﹣4+2x2﹣4x=4x2﹣4=4(x+1)(x﹣1);②+③得:2x2+12x+4+2x2﹣4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.21.【解答】解:(1)原式=3x3﹣x﹣6x2+2﹣3x3+6x2+36x,=35x+2,当x=﹣时,原式=﹣7+2=﹣5;(2)∵y2﹣5y+3=0,∴y2﹣5y=﹣3,原式=2(2y2﹣y﹣2y+1)﹣2(y2+2y+1)+7,=4y2﹣2y﹣4y+2﹣2y2﹣4y﹣2+7,=2y2﹣10y+7,=2(y2﹣5y)+7,=﹣6+7=1.22.【解答】解:(1)∠GHC=∠FEC,理由:∵EF∥BC,∴∠FEC+∠C=180°,∵GH∥AC,∴∠GHC+∠C=180°,∴∠GHC=∠FEC;(2)∵EF∥BC,∠C=54°,∴∠FEC+∠C=180°,∴∠FEC=126°,∵EI平分∠FEC,∴∠FEI=63°,∴∠EIC=63°,∵DI∥AB,∠B=49°,∴∠DIC=49°,∴∠EID=14°.23.【解答】解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)8000×300﹣(1000×400+14000+89100)=1896900(元).答:这批产品的销售款比原料费与运输费的和多1896900元24.【解答】解:(1)∵a、b满足|a﹣3b﹣1|+(a+b﹣5)2=0,∴a﹣3b﹣1=0,且a+b﹣4=0,∴a=4,b=1;(2)同时转动,t=42时,∠PBC=42°,∠MAC=168°,∵PQ∥MN,∴∠ACB=54°,(3)①当0<t<45时,∴4t=10+7,解得t=;②当45<t<90时,∴360﹣4t=10+t,解得t=70;③当90<t<135时,∴4t﹣360=10+t,解得t=;④当135<t<170时,∴720﹣4t=10+t,解得t=142;综上所述:t=或t=70 或t=或t=142;人教版七年级第二学期下册期中模拟数学试卷【含答案】一.选择题(满分30分,每小题3分)1.的相反数是()A.﹣2B.2C.﹣4D.42.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)3.下列等式正确的是()A.±=2B.=﹣2C.=﹣2D.=0.1 4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°5.下列各点中位于第四象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c8.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度10.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5二.填空题(满分18分,每小题3分)11.1﹣的绝对值是,的平方根是.12.若点A的坐标(x,y)满足条件(x﹣3)2+|y+2|=0,则点A在第象限.13.a、b分别表示5﹣的整数部分和小数部分,则a+b=.14.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.15.的整数部分为a,则a2﹣3=.16.将直线y=kx﹣2向下平移1个单位后,正好经过点(2,3),则k=.三.解答题17.计算:+﹣+|1﹣|.18.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.19.如图,EF∥AD,A D∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.20.A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a.b满足b﹣|a|=2.(1)a=;b=;(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t >0)①当PO=2PB时,求点P的运动时间t:②当PB=6时,求t的值:(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值是否为一个定值?如果是,求出定值,如果不是,说明理由.21.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.22.完成下面的证明,如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE ∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥AB,∴∠FDE=∠()∵DF∥CA,∴∠A=∠()∴∠FDE=∠A()23.已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数.24.已知一个正数的平方根是a+3和2a﹣15.(1)求这个正数.(2)求的平方根.25.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.参考答案一.选择题1.解:∵=﹣2∴的相反数是2.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.4.解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.6.解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.解:A、∵a∥b,b∥c,∴a∥c,故本选项符合题意;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合题意;D、当a∥b,b∥c时,a∥c,故本选项不符合题意;故选:A.8.解:把点A(﹣2,3)先向右平移4个单位,再向下平移6个单位得到点A′(2,﹣3).故选:D.10.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.二.填空题11.解:|1﹣|=﹣1,=4,4的平方根为±2,故答案为﹣1,±2.12.解:∵(x﹣3)2+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴A点的坐标为(3,﹣2),∴点A在第四象限.故填:四.13.解:∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴a=2,b=5﹣﹣2=3﹣;∴a+b=5﹣,故答案为:5﹣14.解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.15.解:∵的整数部分为a,3<<4,∴a=3,∴a2﹣3=9﹣3=6.故答案为:6.16.解:将直线y=kx﹣2向下平移1个单位后所得直接解析式为y=kx﹣3,将点(2,3)代入y=kx﹣3,得:2k﹣3=3,解得:k=3,故答案为:3.三.解答题(共9小题,满分19分)17.解:原式=3+2﹣2+﹣1=4﹣1.18.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.19.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥B C,∴∠FEC=∠ECB,∴∠FEC=20°.20.解:(1)∵点A距离原点6个单位长度,点A在原点左边,∴a=﹣6,∵b﹣|a|=2.∴b=8,故答案为﹣6,8.(2)①∵OP=2PB,观察图象可知点P在点O的右侧:2t﹣6=2(14﹣2t)或2t﹣6=2(2t﹣14),解得t=或11.②(14﹣2t)=6或(2t﹣14)=6解得t=4或10.(3)当点P运动到线段OB上时,AP中点E表示的数是=﹣6+t,OB的中点F表示的数是4,所以EF=4﹣(﹣6+t)=10﹣t,则==2.所以的值为定值2.21.解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC面积=8.22.解:证明:∵DE∥AB,∴∠FDE=∠BFD(两直线平行,内错角相等)∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等)∴∠FDE=∠A(等量代换).故答案为:BFD,两直线平行,内错角相等,BFD,两直线平行,同位角相等,等量代换.23.解:∵∠GQC=120°,∴∠DQG=60°∵MN⊥AB,MN⊥CD,∴AB∥CD,∠BGH=90°,∴∠EGB=∠DQG=60°,∠BGQ=∠GQC=120°,∴∠HGQ=120°﹣90°=30°.24.解:(1)∵一个正数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,∴a=4,a+3=7,这个正数为72=49;(2)a+12=4+12=16,∵=4,∴的平方根是=±225.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).七年级下册数学期中考试题【含答案】一、选择题(本大题共10小题,每小题3分,共30分)1、在平面直角坐标系中,点P(-3.2)在( )A.第一象限 B 第二象限 C.第三象限 D.第三象限2、化简|的结果是( )A. B.2 D.23、如图,将△ABC 沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A .42B .96C .84D .484、如图,直线AB 、CD 相交于点O ,若∠1+∠2=100°,则∠BOC 等于A.130°B.140°C.150°D.160°5、下列命题中,真命题的个数是( )①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A .1个B .2个C .3个D .4个6、在实数227-、π ) A.1个B.2个C.3个D.4个7、如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( )A.50°B.60°C.70°D.80°8、实数a 、b 在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为( )A .bB .﹣2a+bC .2a+bD .2a ﹣b9、如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A.75︒B.120︒C.135︒D.无法确定10、雷达二维平面定位的主要原理是:测量目标的两个信息―距离和角度,目标的表示方法为(),m α,其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为()5,30A ︒,目标C 的位置表示为()3,300C ︒.用这种方法表示目标B 的位置,正确的是( )A.(-4, 150°)B.(4, 150°)C. (-2, 150°)D. (2, 150°)二、填空题(本大题共6小题,每小题3分,共18分)11、如图所示,直线AB 、CD 被直线EF 所截,若∠l=∠2,则∠AEF+∠CFE=________.12、点C 在x 轴的下方,y 轴的右侧,距离x 轴3个单位长度,距离y 轴5个单位长度,则点C 的坐标为 .13、若x 、y 为实数,且满足|2x+3|+=0,则xy 的立方根为 .14、如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是15、已知2a =,3b =且ab <0,则a+b=_________.16、如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到1A (0,1),2A (1,1),3A (1,0),4A (2,0),…那么点A 2019的坐标为 .三、解答题(共72分,共9个小题)17、计算:18、已知点A(a,b)满足02-b 1-a =+,将点A 向下平移3个单位长度得到点B.(1)求A 、B 的坐标;(2)若点C(a,-3), 6=ABC S △,求C 点的坐标.19、如图,已知12∠=∠,34180︒∠+∠=,求证://AB EF .20、将△ABC 向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A ′B ′C ′.(2)求出△A ′B ′C ′的面积.21、(1)如图1,已知//AB CD ,60ABC ︒∠=,可得BCD ∠= ;(2)如图2,在(1)的条件下,如果CM 平分BCD ∠,则BCM ∠= ;(3)如图3,在(1)(2)的条件下,如果CN CM ⊥,则BCN ∠= ;(4)尝试解决下面问题:如图4,//AB CD ,40B ∠=,CN 是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数.22、如图,在△ABC 中,AD 平分∠BAC ,点P 为线段AD 上的一个动点,PE ⊥AD 交BC 的延长线于点E .(1)若∠B=35°,∠ACB=85°,求∠E 得度数.(2)当点P 在线段AD 上运动时,设∠B=α,∠ACB=β(β>α),求∠E 得大小.(用含α、β的代数式表示)23、已知:如图,∠DEF :∠EFH=3:2,∠1=∠B ,∠2+∠3=180°,求∠DEF 的度数.24、阅读材料,解答问题:(1)计算下列各式:通过计算,我们可以发现22b a =(2)运用(1)中的结果可以得到:(3)通过(1)(2),完成下列问题: ①化简:18= ;②计算:12+27= ;③a2(a>0,b>0)= :b25、探究规律:我们有可以直接应用的结论:若两条直线平行,那么在一条直线上任取一点,无论这点在直线的什么位置,这点到另一条直线的距离均相等.例如:如图1,两直线m∥n,=.两点H,T在m上,HE⊥n于E,TF⊥n于F,则HE TF如图2,已知直线m∥n,A,B为直线n上的两点,C.P为直线m上的两点.(1)请写出图中面积相等的各对三角形: . (2)如果A,B,C为三个定点,点P在m上移动,那么无论P点移动到任何位置∆的面积相等;理由是: .总有:与ABC解决问题:如图3,五边形ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图4所示的形状,但承包土地与开垦荒地的分界小路(图4中折线CDE)还保留着,张大爷想过点E修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多.请你用以上的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(1)写出设计方案,并在图4中画出相应的图形;(2)说明方案设计理由.参考答案1.B.2.A.3.D.4.A.5.D.6.B.7.D.8.A.9.A.10.B.11.180°;12.(5,-3);13.-1.5;14.3排4号;15.7;16.(1009,1);17.(1)原式=8;(2)原式=3+2;(3)原式=2;(4)原式=-2.75;18.(1)A(1,2),B(1,-1);(2)C(5,-3)或(-3,-3);19.证明:∵∠1=∠2∴AB//CD∵∠3+∠4=180°∴CD//EF∴AB//EF.20.(1)画图略;(2)三角形的面积为20.5;21.(1)60°;(2)30°;(3)60°;(4)∠BCM=20°;22.解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=180°-∠B-∠ACB=60°.∵AD平分∠BAC,∴∠DAC=∠BAD=30°.∴∠ADC=∠B+∠BAD=65°.又∵PE⊥AD,∴∠DPE=90°,∴∠E=90°-∠ADC=25°.(2)∵∠B=α,∠ACB=β,∴∠BAC=180°-α-β.∵AD平分∠BAC,∴∠DAC=∠BAD=(180°-α-β).∴∠ADE=∠B+∠BAD=90°+α-β,又∵PE⊥AD,∴∠DPE=90°,∴∠E=90°-∠ADE=β-α.23.∠DEF=108°;24.解:(1)6,6,20,20;(2)ab ;(3)23,35,b a ;25.(1)△ABC 和△ABP ;△PCA 和△PCB ;△ACD 和△PBD ;(2)△ABP ;同底等高的两个三角形面积相等;(3)画图略;解决问题:连接CE ,过D 作CE//CM ,交于G 点,连接EG ,EG 就是所求的路程.DG//CES △EDC =S △ECGS △EDC +S ABCE =S △ECG +S ABCE路两边的面积相等.。
七年级数学下册期中考试卷(完美版)
七年级数学下册期中考试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.已知三角形三边长为a、b、c,且满足247a b-=,246b c-=-,2618c a-=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定5.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣16.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A .点MB .点NC .点PD .点Q7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.如图是一个计算程序,若输入a 的值为﹣1,则输出的结果应为( )A .7B .﹣5C .1D .5二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =________度.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.若+x x -有意义,则+1x =___________.5.364 的平方根为________.6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x -7(x -1)=3-2(x+3) (2) 12334x x x -+-=-2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=123.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、A5、D6、C7、A8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、803、<4、15、±26、10cm三、解答题(本大题共6小题,共72分)1、(1)x=5(2)x=-22、4ab,﹣4.∠=∠+∠,理由见解析;3、(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα4、(1)略;(2)略.5、(1)50;72;(2)详见解析;(3)330.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级下册数学期中考试试卷
七年级下册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 3x - 5 = 2x + 7C. 4x + 6 = 8x - 2D. 5x - 9 = 10x + 32. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是3. 以下哪个表达式是完全平方?A. x^2 + 2x + 1B. x^2 - 2x + 1C. x^2 + 4x + 4D. x^2 - 4x + 44. 一个三角形的两边长分别为3和4,第三边长x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 75. 以下哪个分数是最简分数?A. 6/8C. 15/20D. 7/146. 如果一个圆的半径是r,那么它的面积是多少?A. πr^2B. 2πrC. πrD. 4πr^27. 下列哪个是不等式?A. 2x + 3 = 5B. 3x - 5 > 2x + 7C. 4x + 6 = 8x - 2D. 5x - 9 < 10x + 38. 一个数的相反数是-a,那么这个数是?A. aB. -aC. a或-aD. 以上都不是9. 以下哪个是二次方程?A. x^2 - 4x + 4 = 0B. x^2 - 4x = 0C. x - 4 = 0D. x^2 - 4x + 410. 如果一个角的补角是120度,那么这个角的度数是?A. 60度B. 30度D. 120度二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______。
12. 如果一个角的余角是30度,那么这个角的度数是______度。
13. 一个等腰三角形的底角是45度,那么顶角的度数是______度。
14. 一个数的立方等于-8,这个数是______。
七年级数学下册期中考试题【含答案】
七年级数学下册期中考试题【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .10032007 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .433.若整数x 满足5+19≤x ≤45+2,则x 的值是( )A .8B .9C .10D .114.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A .0x =B .3x =C .3x =-D .2x =5.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.实数a ,b 在数轴上的对应点的位置如图所示,把﹣a ,﹣b ,0按照从小到大的顺序排列,正确的是( )A .﹣a <0<﹣bB .0<﹣a <﹣bC .﹣b <0<﹣aD .0<﹣b <﹣a7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 10.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若3BC 的长是________.4.若216x mx++是一个完全平方式,则m=________5.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________ 6.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解方程:53211 64x x---=2.已知关于x、y的二元一次方程组352{2718 x y a x y a-=+=-(1)若x,y的值互为相反数,求a的值;(2)若2x+y+35=0,解这个方程组.3.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.4.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC 边上,且BE=BD,连结AE、DE、DC①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、A5、C6、C7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、52、-1或334、±85、-1或-46、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、154x=.2、(1)a的值是8;(2)这个方程组的解是17 {1xy=-=-.3、(1)略;(2)78°.4、①略;②∠BDC=75°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、A饮料生产了30瓶,B饮料生产了70瓶.。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知|x|=5, |y|=2, 且|x+y|=﹣x﹣y, 则x﹣y的值为()A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣72.如图是甲、乙两车在某时段速度随时间变化的图象, 下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题: “一条竿子一条索, 索比竿子长一托.折回索子却量竿, 却比竿子短一托“其大意为: 现有一根竿和一条绳索, 用绳索去量竿, 绳索比竿长5尺;如果将绳索对半折后再去量竿, 就比竿短5尺.设绳索长x尺, 竿长y尺, 则符合题意的方程组是()A. B. C. D.4.若ax=6, ay=4, 则a2x﹣y的值为()A. 8B. 9C. 32D. 405.如图, AB∥CD, ∠1=58°, FG平分∠EFD, 则∠FGB的度数等于()A. 122°B. 151°C. 116°D. 97°6. 下列运算正确的是()A. B. C. D.7.已知关于x的不等式组的整数解共有5个, 则a的取值范围是()A. ﹣4<a<﹣3 B. ﹣4≤a<﹣3 C. a<﹣3 D. ﹣4<a<8.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.一副直角三角板如图放置, 点C在FD的延长线上, AB//CF, ∠F=∠ACB=90°, 则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°10.已知关于x的方程2x-a=x-1的解是非负数, 则a的取值范围为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a、b为实数, 且b=+4, 则a+b=________.2.如图, 在△ABC中, BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°, 则∠A=________.3. 已知点A(0, 1), B(0 , 2), 点C在x轴上, 且, 则点C的坐标________.4. 若x2+kx+25是一个完全平方式, 则k的值是__________.5.若关于x的方程有增根, 则m的值是________.6. 一个正多边形的一个外角为30°, 则它的内角和为________.三、解答题(本大题共6小题, 共72分)1. 解方程(1)- =1- (2)2. 已知关于x的方程m+ =4的解是关于x的方程的解的2倍, 求m的值.3. 如图,已知在△ABC中,EF⊥AB,CD⊥AB,G在AC边上,∠AGD=∠ACB, 求证:∠1=∠2.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 央视热播节目“朗读者”激发了学生的阅读兴趣. 某校为满足学生的阅读需求, 欲购进一批学生喜欢的图书, 学校组织学生会成员随机抽取部分学生进行问卷调查, 被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类, 根据调查结果绘制了统计图(未完成), 请根据图中信息, 解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人, 估计该校喜欢“社科类”书籍的学生人数.6. 如图, 阶梯图的每个台阶上都标着一个数, 从下到上的第1个至第4个台阶上依次标着﹣5, ﹣2, 1, 9, 且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、C3、A4、B5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.(4,0)或(﹣4,0)4、±10.5、0.6.1800°三、解答题(本大题共6小题, 共72分)1.(1);(2)2、m=0.3、略。
七年级数学下册期中考试试卷(附带答案)
七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
七年级第二学期数学期中考试试题含答案
七年级第二学期数学期中考试(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)1.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A.0.43×10﹣4B.0.43×104C.4.3×10﹣5D.0.43×1052.(3分)2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.3.(3分)3.下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a54.(3分)4.下列各题可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(x﹣y)(﹣x+y)D.(x﹣2)(x+1)5.(3分)5.下列分解因式中,正确的是()A.3m2﹣6m=3m(m﹣3)B.a2b+ab+a=a(ab+b)C.x2+y2=(x+y)2D.﹣x2+2xy﹣y2=﹣(x﹣y)26.(3分)6.二元一次方程5x﹣y=2的一个解为()A.B.C.D.7.(3分)7.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°8.(3分)8.已知3a=10,9b=5,则3a﹣2b的值为()A.5 B.C.D.29.(3分)9.小明到药店购买了一次性医用口罩和N95口罩共40个,其中一次性医用口罩数量比N95口罩数量的3倍多4个,设购买一次性医用口罩x个,N95口罩y个,根据题意可得方程组()A.B.C.D.10.(3分)10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5B.2a+8C.2a+3D.2a+2二、填空题(本题共计6小题,总分18分)11.(3分)11.计算:x(x﹣2y)=.12.(3分)12.如图,直线a∥b,直线c与直线a、b相交,∠1=135°,∠2=.13.(3分)13.已知是二元一次方程7x+2y=10的一组解,则m的值是.14.(3分)14.若关于x,y的二元一次方程组,则x+y=.15.(3分)15.如图,将△ABC沿BC方向平移至△DEF处,若EC=2BE=4,则CF的长为.16.(3分)16.(x﹣a)(x2+ x +b)的结果中不含x的一次项,则a-b的值是.三、解答题(本题共计8小题,总分52分)17.(6分)17.(6分)计算:(1)(﹣2)2﹣20200+3﹣2;(2)2x3y2•(﹣9x2)÷(6x4y).18.(6分)18.(6分)如图所示,已知AD∥BC,BE平分∠ABC,∠A=110°.求∠ADB的度数.19.(6分)19.(6分)如图,点M是△ABC外的一点,请你在网格内完成作图:(1)作过点M且平行于BC的直线.(2)画出△ABC先向左平移2个单位,再向上平移1个单位后的△A'B'C'.20.(6分)20.(6分)解方程:(1)(2)21.(6分)21.(6分)先化简再求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.22.(6分)22.(6分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A 型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.23.(6分)23.(6分)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m + 4=.(2)分解因式:x2+6x﹣7=.(3)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.24.(10分)24.(10分)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.答案一、单选题(本题共计10小题,总分30分)1.(3分)1.【解答】解:将0.000 043用科学记数法表示为4.3×10﹣5.故选:C.2.(3分)2.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.3.(3分)3.【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b4,正确;D.(a3)2=a6,故本选项不合题意;故选:C.4.(3分)4.【解答】解:由平方差公式判断:A答案:(2x+y)(y﹣2x)=y2﹣(2x)2=y2﹣4x2,满足条件;B答案:(x+2)(2+x)不满足条件;C答案:(x﹣y)(﹣x+y)=﹣(x﹣y)(x﹣y)不满足条件;D答案:(x﹣2)(x+1)不满足条件;故选:A.5.(3分)5.【解答】解:A、3m2﹣6m=3m(m﹣2),故此选项错误;B、a2b+ab+a=a(ab+b+1),故此选项错误;C、x2+y2,无法分解因式,不合题意;D、﹣x2+2xy﹣y2=﹣(x﹣y)2,正确.故选:D.6.(3分)6.【解答】解:是方程5x﹣y=2的一个解,故选:D.7.(3分)7.【解答】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC﹣∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选:B.8.(3分)8.【解答】解:∵9b=5,∴32b=5,又∵3a=10,∴3a﹣2b=3a÷32b=10÷5=2.故选:D.9.(3分)9.【解答】解:依题意,得:.故选:D.10.(3分)10.【解答】解:如图所示:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.故选:A.二、填空题(本题共计6小题,总分18分)11.(3分)11.【解答】解:x(x﹣2y)=x2﹣2xy.故答案为:x2﹣2xy.12.(3分)12.【解答】解:∵直线a∥b,∴∠2+∠3=180°,而∠3=∠1=135°,∴∠2=180°﹣135°=45°.故答案为45°.13.(3分)13.【解答】解:把代入方程7x+2y=10,得,28+2m=10,解得m=﹣9,故答案为:﹣9.14.(3分)14.【解答】解:,①+②,得3x+3y=6,∴3(x+y)=6,∴x+y=2,故答案为:2.15.(3分)15.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=4,∴BE=2,∴CF=2.故答案为:2.16.(3分)16.【解答】解:(x﹣a)(x2+ x +b)=x3+ x2+bx- ax2﹣ax-ab =x3+(1+a) x2 -(a-b)x﹣ab,∵(结果中不含x的一次项,∴a﹣b=0,故答案为:0.三、解答题(本题共计8小题,总分52分)17.(6分)17.【解答】解:(1)(﹣2)2﹣20200+3﹣2=4﹣1+=3;(2)2x3y2•(﹣9x2)÷(6x4y)=﹣18x5y2÷6x4y=﹣3xy.18.(6分)18.【解答】解:如图所示:∵AD∥BC,∴∠A+∠ABC=180°,∠ADB=∠CBD,又∵∠A=110°,∴∠ABC=180°﹣110°=70°,又∵BE平分∠ABC,∴∠CBD=∴∠CBD=×70°=35°∴∠ADB=35°.19.(6分)19.【解答】解:(1)如图,直线l即为所求;(2)如图,△A'B'C'即为所求.20.(6分)20.【解答】解:方程组的解为{x=2y=1;(2)方程组的解为{x=32y=−1.21.(6分)21.【解答】解:原式=(4x2﹣y2﹣4x2+12xy﹣9y2)÷(﹣2y)=(12xy﹣10y2)÷(﹣2y)=﹣6x+5y,当x=1,y=﹣2时,原式=﹣6﹣10=﹣16.22.(6分)22.【解答】解:(1)设1辆A型车载满脐橙一次可运送x吨,1辆B型车载满脐橙一次可运送y吨,依题意,得:,解得:.答:1辆A型车载满脐橙一次可运送3吨,1辆B型车载满脐橙一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.23.(6分)23.【解答】解:(1)m2﹣4m+4=(m﹣2)2故答案为(m﹣2)2(2)分解因式:x2+6x﹣7=(x+7) ( x—1) .(3)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;24.(10分)24.【解答】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.。
七年级数学下册期中考试试题含复习资料
七年级第二学期期中测试卷(100分 90分钟)一、选择题:(每题3分,共33分) 1.如图,AB ∥ED,∠B+∠C+∠D=( )A.180°B.360°C.540°D.270°5.若点A(m,n)在第二象限,那么点B(-m,│n │)在( )A.第一象限B.第二象限;C.第三象限D.第四象限6.已知点P 在第三象限,且到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为( • ) A.(3,5) B.(-5,3) C.(3,-5) D.(-5,-3)20.如图,AD ∥EF ∥BC ,且EG ∥AC .那么图中与∠1相等的角(不包括∠1)的个数是( )(A )2 (B )4 (C )5 (D )616.如图,CD ⊥AB ,垂足为D ,AC ⊥BC ,垂足为C .图中线段的长能表示点到直线(或线段)距离的线段有…( )(A )1条 (B )3条 (C )5条 (D )7条5. 在实数范围内,下列判断正确的是 ( ) A 、若b a b a ==则, B 、若()b a b a ==则,2C 、若22,b a b a 〉〉则 D 、若b a b a ==则,33DA ECB二、填空题:(每题3分,共21分)12.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________度.15、若33x y =-,则x +y= ,2(310)-= ;17、若a =3, b =2,且0ab <,则a -b= ;12、16的平方根是 ,如果a 的平方根是±3,则a=10、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 .14.若A(a,b)在第二、四象限的角平分线上,a 与b 的关系是_________. 8.如图,O 是△ABC 内一点,OD ∥AB ,OE ∥BC ,OF ∥AC ,∠B =45°,∠C =75°,则∠DOE = ,∠EOF = ,∠FOD = .18.如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50•°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β 为_________度的方向动工. 三、解答题:(19-22每题9分,23题10分,共46分)19.如图,△ABC 中,AD ∥BC,AE 平分∠BAC,∠B=20°,∠C=30°,求∠DAE 的度数.21F EDCBA G北βα北乙甲BCDEF1E DCBA20.某个图形上各点的横坐标不变,纵坐标变为原来的相反数,•此时图形却未发生任何改变,你认为可能吗?举例说明若横、纵坐标都变为原来的相反数呢?21.平面直角坐标系中,顺次连结(-2,1),(-2,-1),(2,-2),(2,3)各点,你会得到一个什么图形?试求出该图形的面积.22.如图,AB ∥CD,分别探讨下面四个图形中∠APC 与∠PAB,∠PCD 的关系,请你从所得的关系中任意选取一个加以说明.(1)PDC BA (2)PD C BA(3)P C BA(4)PDC BA23.已知:如图,△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,•∠A=100°,求∠DEC的度数.EDCBA 29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.24、(8分)如果A=323+-+ba ba为3a b+的算数平方根,B=1221---ba a为21a-的立方根,求A+B的平方根。
七年级下册期中数学试题及答案
七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.四个数﹣3.14,0,1,2,最大的数是()A.﹣3.14 B.0 C.1 D.22.下列说法正确的是()A.a3•a2=a6B.a5+a5=a10C.a6÷a2=a4D.(﹣3a3)2=6a23.用科学记数法表示0.0000907的结果正确的是()A.9.1×10﹣4B.9.1×10﹣5C.9.0×10﹣5D.9.07×10﹣54.如果一个角的补角是150°,那么这个角的度数是()A.30°B.60°C.90°D.120°5.下列说法正确的是()A.对顶角相等B.同位角相等 C.内错角相等 D.同旁内角互补6.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a7.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而()A.增大B.减小C.不变D.以上答案都不对8.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±69.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE10.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲在中途停留了0.5小时.③乙比甲晚出发了0.5小时.④甲、乙两人同时到达目的地.⑤乙追上甲后甲的速度<乙的速度.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共24分)11.﹣2的相反数是.12.化简:6a6÷3a3= .13.如图,∠1=118°,∠2=62°,则a与b的位置关系是.14.如图,AB⊥l1,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段的长度.15.如上图,把矩形ABCD沿EF对折,若∠1=36°,则∠AEF等于.16.用“※”定义新运算:对于任意实数a,b,都有a※b=b2+1.例如,7※4=42+1=17,那么5※3=.17.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是.三、解答题(本大题共3小题,每小题6分,共18分)18.5x(2x2﹣3x+4)19.计算:(﹣1)2+|﹣4|+(3.14﹣π)0﹣()﹣2.20.已知:∠α,∠β.请你用直尺和圆规作一个∠BAC,使∠BAC=∠α+∠β.(要求:要保留作图痕迹)四、解答题(本大题共3小题,每小题7分,共21分)21.先化简,再求值:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab,其中a=2,b=1.22.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.23.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t (单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是,因变量是.(2)9时所走的路程是多少?他休息了多长时间?(3)他从休息后直至到达目的地这段时间的平均速度是多少?五、解答题(本大题共3小题,每小题9分,共27分)24.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:∵∠1=∠2,∴∥,()∴∠EAC=∠ACG,()∵AB平分∠EAC,CD平分∠ACG,∴=∠EAC,=∠ACG,∴= ,∴AB∥CD().25.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.26.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.四个数﹣3.14,0,1,2,最大的数是()A.﹣3.14 B.0 C.1 D.2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,即可解答.【解答】解:∵﹣3.14<0<1<2,∴最大的数是2,故选:D.2.下列说法正确的是()A.a3•a2=a6B.a5+a5=a10C.a6÷a2=a4D.(﹣3a3)2=6a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式=2a5,不符合题意;C、原式=a4,符合题意;D、原式=9a6,不符合题意,故选C3.用科学记数法表示0.0000907的结果正确的是()A.9.1×10﹣4B.9.1×10﹣5C.9.0×10﹣5D.9.07×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000907=9.07×10﹣5.故选:D.4.如果一个角的补角是150°,那么这个角的度数是()A.30°B.60°C.90°D.120°【考点】余角和补角.【分析】根据和为180度的两个角互为补角求解即可.【解答】解:根据定义一个角的补角是150°,则这个角是180°﹣150°=30°,故选A.5.下列说法正确的是()A.对顶角相等B.同位角相等 C.内错角相等 D.同旁内角互补【考点】同位角、内错角、同旁内角;余角和补角;对顶角、邻补角.【分析】根据对顶角相等和平行线的性质得出即可.【解答】解:A、对顶角相等,故本选项正确;B、只有在平行线中同位角才相等,故本选项错误;C、只有在平行线中内错角才相等,故本选项错误;D、只有在平行线中同旁内角才互补,故本选项错误;故选A.6.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.7.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而()A.增大B.减小C.不变D.以上答案都不对【考点】一次函数的应用.【分析】题目所给信息:“某个地点y与x的关系可以由公式y=35x+20来表示”,由一次函数的性质,可知:当系数大于零时,y随x的增大而增大,然后根据一次函数的图象性质可知道y,x的关系【解答】解:由题目分析可知:在某个地点岩层温度y随着所处深度x的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y随x的增大而增大.故选A.8.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±6【考点】完全平方公式.【分析】根据题意可知:将(x+3)2展开,再根据对应项系数相等求解.【解答】解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.9.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.10.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲在中途停留了0.5小时.③乙比甲晚出发了0.5小时.④甲、乙两人同时到达目的地.⑤乙追上甲后甲的速度<乙的速度.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【考点】一次函数的应用.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:(1)两个图象纵坐标的最大值都是18,则他们都行驶18千米,正确;(2)甲在途中停留的时间是1﹣0.5=0.5(小时),正确;(3)乙比甲晚出发0.5小时,正确;(4)乙比甲早到0.5小时,错误;(5)乙追上甲后的速度是=12千米/时,相遇时,距离是12×0.5=6(千米),则甲的速度是=8(千米/时),故⑤正确.故选C.二、填空题(本大题共7小题,每小题4分,共24分)11.﹣2的相反数是 2 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.12.化简:6a6÷3a3= 2a3.【考点】整式的除法.【分析】单项式除以单项式就是将系数除以系数作为结果的系数,相同字母除以相同字母作为结果的一个因式即可.【解答】解:6a6÷3a3=(6÷3)(a6÷a3)=2a3.故答案为:2a3.13.如图,∠1=118°,∠2=62°,则a与b的位置关系是a∥b .【考点】平行线的判定;对顶角、邻补角.【分析】先根据邻补角得出∠3=118°,再根据∠1=118°,得出∠1=∠3,进而得到a∥b.【解答】解:如图,∵∠2=62°,∴∠3=118°,又∵∠1=118°,∴∠1=∠3,∴a∥b,故答案为:a∥b.14.如图,AB⊥l1,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段AB 的长度.【考点】点到直线的距离.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离可得点P到直线l的距离是线段AB的长度.【解答】解:∵AB⊥l,1的距离是线段AB的长度,∴则A点到直线l1故答案为:AB.15.如上图,把矩形ABCD沿EF对折,若∠1=36°,则∠AEF等于108°.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据平角的定义求出∠BFH,根据折叠的性质得到∠BFE=∠HFE,根据平行线的性质计算即可.【解答】解:∵∠1=36°,∴∠BFH=180°﹣∠1=144°,由翻转变换的性质可知,∠BFE=∠HFE=∠BFH=72°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=180°﹣∠BFE=108°,故答案为:108°.16.用“※”定义新运算:对于任意实数a,b,都有a※b=b2+1.例如,7※4=42+1=17,那么5※3=10 .【考点】代数式求值.【分析】熟悉新运算的计算规则,运用新规则计算.【解答】解:依规则可知:5※3=32+1=10;故答案为:10.17.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是0 .【考点】代数式求值.【分析】根据运算程序可得,若输入的是x,则输出的是﹣2x+4,把x的值代入可求输出数的值.【解答】解:根据运算程序可知,若输入的是x,则输出的是﹣2x+4,∴当x=2时,输出的数值是﹣2×2+4=0.三、解答题(本大题共3小题,每小题6分,共18分)18.5x(2x2﹣3x+4)【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.19.计算:(﹣1)2+|﹣4|+(3.14﹣π)0﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及正整数指数、零指数幂、负指数幂、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+1﹣4=2.20.已知:∠α,∠β.请你用直尺和圆规作一个∠BAC,使∠BAC=∠α+∠β.(要求:要保留作图痕迹)【考点】作图—复杂作图.【分析】先作一个角等于∠1=∠α,再在∠1的一边作∠2=∠β,则∠1+∠2=∠BAC.【解答】解:(1)作射线AC,(2)以O点为圆心,以任意长为半径,交OM于M、交ON于N;(3)以A点为圆心,以ON长为半径画弧,交AC于C;(4)以C为圆心,以MN长为半径作弧,交前弧于E';即∠EAC=∠1=∠α,同理在∠1的同侧作∠2=∠β;即∠1+∠2=∠BAC.四、解答题(本大题共3小题,每小题7分,共21分)21.先化简,再求值:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab,其中a=2,b=1.【考点】整式的混合运算—化简求值.【分析】先根据平方差公式和多项式除单项式的法则化简,然后再代入计算即可.【解答】解:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab=a2﹣b2+b2﹣2ab,=a2﹣2ab,当a=2,b=1时,原式=22﹣2×2×1,=4﹣4,=0.22.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.【考点】垂线;对顶角、邻补角.【分析】∠1与∠3是对顶角;∠2与∠3互为余角.【解答】解:由题意得:∠3=∠1=30°(对顶角相等)∵AB⊥CD(已知)∴∠BOD=90°(垂直的定义)∴∠3+∠2=90°即30°+∠2=90°∴∠2=60°23.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t (单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是时间,因变量是路程.(2)9时所走的路程是多少?他休息了多长时间?(3)他从休息后直至到达目的地这段时间的平均速度是多少?【考点】函数的图象;常量与变量.【分析】(1)根据数量关系路程=速度×时间,结合函数图象即可得出:自变量为时间,因变量为路程;(2)找出当时间为9时时的路程,再找出休息的起始时间即可得出结论;(3)利用速度=路程÷时间即可求出结论.【解答】解:(1)∵数量关系:路程=速度×时间,∴结合图形即可得出:自变量为时间,因变量为路程.故答案为:时间;路程.(2)∵当时间为9时时,路程为4千米,∴9时所走的路程是4千米.10.5﹣10=0.5小时=30分钟.∴他休息了30分钟.(3)(15﹣9)÷(12﹣10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.五、解答题(本大题共3小题,每小题9分,共27分)24.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:∵∠1=∠2,∴AE ∥CF ,(同位角相等,两直线平行)∴∠EAC=∠ACG,(两直线平行,内错角相等)∵AB平分∠EAC,CD平分∠ACG,∴2∠3 =∠EAC,2∠4 =∠ACG,∴∠3 = ∠4 ,∴AB∥CD(内错角相等,两直线平行).【考点】平行线的判定与性质.【分析】首先证明AE∥CF,进而得到∠EAC=∠ACG,再利用角平分线的性质得到∠3=∠4,于是得到AB∥CD.【解答】证明:∵∠1=∠2,∴AE∥CF,(同位角相等,两直线平行)∴∠EAC=∠ACG,(两直线平行,内错角相等)∵AB平分∠EAC,CD平分∠ACG,∴2∠3=∠EAC,2∠4=∠ACG,∴∠3=∠4,∴AB∥CD(内错角相等,两直线平行).故答案为AE;CF;同位角相等,两直线平行;两直线平行,内错角相等;2∠3;2∠4;∠3;∠4;内错角相等,两直线平行25.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.【考点】一次函数的应用.【分析】(1)因为移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话xmin,两种方式的费用分别为y1元和y2元,则y1=50+0.4x,y2=0.6x;(2)令y1=y2,解方程即可;(3)令x=300,分别求出y1、y2的值,再做比较即可.【解答】解:(1)y1=50+0.4x;y2=0.6x;(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250所以通话250分钟两种费用相同;(3)令x=300则y1=50+0.4×300=170;y2=0.6×300=180所以选择全球通合算.26.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64 ,它是自然数8 的平方,第8行共有15 个数;(2)用含n的代数式表示:第n行的第一个数是n2﹣2n+2 ,最后一个数是n2,第n 行共有2n﹣1 个数;(3)求第n行各数之和.【考点】整式的混合运算;规律型:数字的变化类.【分析】(1)数为自然数,每行数的个数为1,3,5,…的奇数列,很容易得到所求之数;(2)知第n行最后一数为n2,则第一个数为n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)通过以上两步列公式从而解得.【解答】解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得64,其他也随之解得:8,15;(2)由(1)知第n行最后一数为n2,且每行个数为(2n﹣1),则第一个数为n2﹣(2n﹣1)+1=n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)第n行各数之和:×(2n﹣1)=(n2﹣n+1)(2n﹣1).11。
七年级下册数学期中考试卷(含答案)
一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ;2.若直线a//b ,b//c ,则 ,其理由是 ;3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 ,COF ∠的邻补角是 。
图34.如图2,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。
关于原点对称点的坐标是 。
6.把“对顶角相等”写成“如果……那么……”的形式为 。
7.一个等腰三角形的两边长分别是3cm 和6cm,则它的周长是 cm. 8.若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。
9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第 象限 。
10.一个多边形的每一个外角等于30,则这个多边形是 边形,其内角和是 。
11.直角三角形两个锐角的平分线所构成的钝角等于 度。
12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD ,当 时AD//BC(只要写出一个你认为成立的条件)。
二、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填2.以下列各组线段为边,能组成三角形的是( )A 、2cm, 3cm, 5cmB 、5cm, 6cm, 10cmC 、1cm, 1cm, 3cmD 、3cm, 4m, 9cm3.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形 B .长方形 C .正八边形 D .正六边形4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( )A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图4,下列条件中,不能判断直线a//b的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180° 6.下列图形中有稳定性的是( )A .正方形 B.长方形 C.直角三角形 D.平行四边形cba5 4 3 2 1 AB DC 1 2 A BC D 图2 A F C E BD 图1O三.作图题。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。
数学七年级下册期中考试试题(经典)
七年级数学期中复习1一、选择题1. 在, , , , ,2.001这六个数中, 无理数有()A. 1个B. 2个C. 3个D. 4个2.在平面B.(4, 2)C.(4, 4)D.(2, 4)直角坐标系中,已知点A(-4,0)和B(0, 2),现将线段AB沿着直线AB平移, 使点A与点B重合,则平移后点B坐标是()A.(0, -2)A. (0,-2)A.(0,-2)3. 一个数的算术平方根与它的立方根的值相同, 则这个数是( )A. 1B. 0或1C. 0D. 1或0或-14.下列语句正确的是()A . 的平方根是±8 B. -3是9的平方根C. 的立方根是D. (-1)2的立方根是-15.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为()A.(-3,5)B.(3, -5)C.(5, -3)D.(-5, 3)6.如图, l1∥l2 , AB⊥l1, ∠ABC= 130°, 那么∠=().A. 60°B. 50°C. 40°.D. 30°7.如图, ∠1 :∠2 :∠3 = 2 : 3 : 4, EF∥BC, DF∥AB, 则∠A : ∠B : ∠C =().A. 2 : 3 : 4B. 3 : 2 : 4C. 4 : 3 : 2D.4 : 2 : 38.已知, 四边形ABCD中, AD∥BC, ∠A=∠BCD=∠ABD,DE平分∠ADB, 下列说法: ①AB∥CD;② ED⊥CD;③S△EDF=S△BCF.其中错误的说法有()A. 0个B. 1个C. 2个D. 3个二、填空题9. 的相反数........, 绝对值........。
10.如果一个数的平方根是a+6和2a﹣15, 则这个数为.11. 已知, 则 . (不用计算器)12.已知点P的坐标(2 -a, 3a + 6), 且点P到两坐标轴的距离相等, 则点P 的坐标是13. 把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式:___________________14.若______________.15.已知, 则点在第象限.16.图1中是一个正方形, 将图1中的正方形剪开得到图2, 则图2中共有4个正方形;将图2中的一个正方形剪开得到图3, 则图3中共有7个正方形;…, 如此剪下去, 则第10个图形中正方形的个数是三、解答题17.计算(1) - + . (2)18.求 的值: (1) ; (2)19.完成下面推理过程:如图, 已知DE ‖BC, DF 、BE 分别平分∠ADE 、∠ABC, 可推得∠FDE =∠DEB 的理由: ∵DE‖BC(已知)∴∠ADE =.( )……∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12∠ADE ∠ABE=12.∴∠ADF=∠ABE...........................)∴∠FDE=∠DEB................. .20.如图, 写出三角形ABC三个顶点的坐标, 并求出三角形ABC的面积21.如图, 已知, 与、分别相交于点、, ∠与∠的平分线相交于点.求证: ⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B AC DO3题图初中七年级数学下册期中考试试题时间:120分钟 满分:150分一、精心选一选,慧眼识金!(每题4分,共40分)1.三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.锐角三角形 B.钝角三角形; C.直角三角形 D.无法确定2、在平面直角坐标系中,线段A ′B ′是由线段AB 经过平移得到的,已知点A(-2,1)的对应点为A ′(3,1),点B 的对应点为B ′(4,0),则点B 的坐标为:( ) A .(9,0) B .(-1,0) C .(3,-1) D .(-3,-1)3、如图:已知AB ∥CD ,∠B=1200,∠D=1500,则∠O 等于( ).(A )500 (B )600 (C )800 (D )9004.△ABC 中,∠A=13∠B=14∠C,则△ABC 是( )A.锐角三角形B.直角三角形;C.钝角三角形D.都有可能5、如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A 、9015x y x y +=⎧⎨=-⎩B 、90215x y x y +=⎧⎨=-⎩C 、90152x y x y +=⎧⎨=-⎩D 、290215x x y =⎧⎨=-⎩6.有两边相等的三角形的两边长为3cm,5cm,则它的周长为 ( )A.8cmB.11cmC.13cmD.11cm 或13cm7、一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为: ( ) A .7 B .8 C .9 D .108、在下列点中,与点A (2-,4-)的连线平行于y 轴的是 ( ) A 、(2,4-) B 、(4,)2- C 、(-2,4) D 、(-4,2)9、甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x 千元,乙分得y 千元,由题意得( )5题图ACB21FEDCBAG1A B FD C E2A、x y y x 3212=-= B 、 y x y x 2332=+=C 、 x y y x 2332=-=D 、 yx y x 3232=+=10、给出下列说法:(1) 两条直线被第三条直线所截,同位角相等;(2) 平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3) 相等的两个角是对顶角;(4) 从直线外一点到这条直线的垂线段,叫做这点到直线的距离; 其中正确的有( )A 0个B 1个C 2个D 3个 11.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠112、a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是 ( )A 、0B 、c b a 222++C 、a 4D 、c b 22- 二、耐心填一填,你能行!(每题3分,共30分)13.在349x y +=中,如果2y = 6,那么x = 。
14、P (m-4,1-m )在x 轴上,则m = 。
15、如图,AC ⊥BC ,AC=3,BC=4,AB=5,则点B 到AC 的距离为16.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________度.17、方程032233=+--+-n m n y x ;北βα北乙甲11题图15题图16题图19题图A C BF D E18、已知12==y x 是方程组 513=+=-by x y ax 的解,则b a -= ; 19、如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50•°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β为_________度的方向动工。
20.有以下图形:①正三角形;②正方形;③正六边形;④正八边形。
现在要选其中的两种图形进行平面镶嵌,请你写出你所有的选择(填序号) 。
21、如图,△ABC 中,∠C=90°,∠BAD=31 ∠BAE ,∠ABD=31∠ABF ,则∠D 的大小是 .22.一个多边形除了一个内角外,其余各内角之和为1680°,•那么这个多边形的边数为________.初一数学答题卷一、精心选一选,慧眼识金!(每题4分,共48分)此题做在机读答题卡上 二、耐心填一填,你能行!(每题3分,共30分)13、 ;14、 ;15、 , 16、 ; 17、 , ; 18、 ; 19、 ; 20、 ;21、 ;22、 . 三、用心做一做,马到成功!yx1234-1-2-4-3-2-10432123、解下列方程组(每题5分,共10分): (1)14833=-=-y x y x (2) 33651643=-=+y x y x24.如图,根据下列条件,可以判定哪两条直线平行?并说明判定的根据是什么。
(6分) ①∠2=∠B ;②∠1=∠D ;③∠3+∠F=180°。
25.如图,△ABC 中,AD ⊥BC,AE 平分∠BAC,∠B=40°,∠C=60°,求∠DAE 的度数.(8分)26.在平面直角坐标系中,顺次连结A(-2,1),B(-2,-1),C(2,-2),D(2,3)各点,你会得到一个什么图形?试求出该图形的面积.(6分)27、已知方程组 my x m y x =++=+35253的解x 、y 互为相反数,求m 的值。
(8分)28、如图:直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F ,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数。
(8分)29、甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==45y x 。
试计算20072006101⎪⎭⎫ ⎝⎛-+b a 的值.(8分)28题图30、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表所示第一次 第二次 甲种货车辆数(单位:辆) 2 5 乙种货车辆数(单位:辆) 3 6 累计运货物吨数(单位:吨)15.535现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?(8分)31、(10分)如图,已知直线 1l ∥2l ,且3l 和1l 、2l 分别交于A 、B 两点,点P 在AB上。
(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P 在A 、B 两点之间运动时,问 ∠1、∠2、∠3 之间的关系是否发生变化? (3)如果点P 在A 、B 两点外侧运动时,试探究 ∠1、∠2、∠3 之间的关系(点P 和A 、B 不重合)A PB 1l 2l 3l 1 23相信自己 一定会成功!初一数学参考答案及评分标准一、选择题(每题4分,共48分)1——5 BBDBB ; 6——10 DACCB ; 11、12 DA. 二、填空题;(每题3分,共30分)13、1-; 14、1; 15、4; 16、54; 17、31-,4; 18、1-; 19、130; 20、①②,①③,②④; 21、90°; 22、12. 三、解答题:(共72分)23、(1) 12-==y x (2) 216-==y x(每小题5分,每小题中前一个未知数对后一个未知数错得3分) 24、略(每小题2分,平行线1分,根据1分)25、略解:∠BAC=100° (3分) ∠BAE =40° (5分)∠BAD=50° (7分) ∠DAE=10° . (8分) 26、画图2分 梯形 3分 面积=14 6分27、略解:两式相加:2288+=+m y x (4分) 又0=+y x (5分) 022=+m (6分) 1-=m (8分)28、略解:∠A=39° ( 4分 ) 利用外角∠BDF=87° (8分)29、略解:10=b (3分) 1-=a (6分) 计算得:0 (8分)30、解;设甲种货车每辆一次运x 吨货物,设乙种货车每辆一次运y 吨货物。
由题意得:35655.1532=+=+y x y x (4分) 解得: 5.24==y x (6分)运费:)5.2534(30⨯+⨯⨯=735元 (8分)31、(1)∠3=∠1+∠2 (2分)证明:略 (5分)(2)不发生变化,仍然是 ∠3=∠1+∠2 (6分)(3)当点P 在线段AB 的延长线上时,∠1=∠2+∠3 (8分) 当点P 在线段BA 的延长线上时,∠2=∠1+∠3 (10分)。