初中数学圆专题复习教学内容
薛城四中褚召祥圆和圆的位置关系复习

教学过程一、明确考试要求师:同学们,圆和圆的位置关系是初中数学的重要内容,在中考中经常和平行四边形、三角形、函数等内容相联系,今天这节课我们就来复习考点三:圆和圆的位置关系(板书课题).首先请同学们了解一下中考对这部分内容的要求:(可以让学生齐读一下此部分的中考要求)1. 探索并了解圆和圆的位置关系.2. 探索并掌握两圆的圆心距d与两圆的半径R,r之间的关系.设计意图:让学生明白圆和圆的位置关系的重要性,以及中考对这一部分的要求,使学生做到心中有数,有的放矢,在这里起到一个总领作用.二、回顾基础知识师:下面请同学们用五分钟的时间完成以下问题.(注:教案中出现的知识点及后面题组中的题目都以答题纸的形式出现)1.请说出圆与圆的五种位置关系:2.圆与圆的位置关系的性质和判定:设两个圆的半径为R和r(R>r),圆心距为d,则:1、两圆内切.两圆相切 2、两圆外切.3、两圆相交.4、两圆外离两圆相离 .5、两圆内含.3.如果两圆相切,连心线;如果两圆相交,连心线 .设计意图:第1个题目考查圆和圆的五种位置关系,第2个题目考查的是两圆的圆心距d与两圆的半径R,r之间的关系,第3小题是让学生掌握两圆相切相交时连心线的重要性质,让学生在解决这些问题的过程中,回顾本考点的基础知识.通过小组合作及时纠错、讲解、补充,让学生加深对本考点知识的理解,体会小组合作的必要性.在学生充分思考、交流及查找相应课本的基础上,让学生在课前梳理本章的知识框架,为后面的题组训练打好基础,以帮助学生更好的掌握本部分知识.三、组织题组训练考点一.圆与圆的位置关系1.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A.内含 B.相交 C.相切 D.外离分析:从图形可以看出,图中两轮所在圆的位置关系是外离,故,选择D.点评:以北京奥运会自行车比赛项目标志为载体,设计题目,内容新颖,寓教于乐,能够使同学们在玩中学,学中玩,从而增长知识,2.右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是( )A .外离B .相交C .外切D .内切分析:由图可以发现,图标中两圆的位置关系是外切,故选择C. 点评:以社会热点问题为载体,考查了同学们关注社会,关注生活的能力。
九上语文《圆》单元教学设计

3、圆是到定点的距离等于定长的点的集合8. 作业与拓展学习设计 A 基础知识必做题:1.到定点O 的距离为2cm 的点的集合是以_____为圆心,_______为半径的圆.2.正方形ABCD 的边长为1cm ,对角线AC 与BD 相交于点O ,以点A 为圆心,1 cm 长为半径画圆,则点B 、C 、D 、O 与⊙A 的位置关系为:点B 在⊙A ___,点C 在⊙A ___,点D 在⊙A ___,点O 在⊙A___. 3.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为3,最小距离为1,则此圆的半径为______. 4.已知⊙O 的直径为10cm ,(1)若OP =3cm ,那么点P 与⊙O 的位置关系是:点P 在⊙O __________; (2)若OQ =5cm ,那么点Q 与⊙O 的位置关系是:点Q 在⊙O __________; (3)若OR =7cm ,那么点R 与⊙O 的位置关系是:点R 在⊙O__________.5.在直角坐标系中,以坐标原点为圆心的⊙O 的半径为5cm ,则点P (3,-4)与⊙O 的位置关系是:点P 在⊙O _______.6.以矩形ABCD 的顶点A 为圆心画⊙A ,使得B 、C 、D 中至少有一点在⊙A 内,且至少有一点在⊙A 外,若BC =12,CD =5.则⊙A 的半径r 的取值范围是________________.7.下列语句正确的个数是 ( )(1)矩形的四边中点在同一个圆上 (2)菱形的四边中点在同一个圆上 (3)等腰梯形的四边中点在同一个圆上 (4)平行四边形的四边中点在同一个圆上 A.1个 B.2个 C.3个 D.4个8.如图,已知在△ABC 中,∠BAC =90°,AC =12cm ,BC =13cm ,AD ⊥BC 于D , (1)以A 为圆心,5cm 为半径作⊙A ,试判断B 、C 、D 三点与⊙A 位置关系. (2)以D 为圆心,AD 为半径作圆,则A 、B 、C 三个顶点与⊙D 的位置关系是什么?9.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.点E 、F 、G 、H 在以点O 为圆心的同一个圆上吗?为什么?B 知识与技能演练题:10. 如图所示,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,问这样的点共有多少个?坐标分别是什么?-5-55 5 xy oG H FE O DCB A11. 8月22日,A市接到台风警报时,台风中心位于A市正南方向125km的B处,正以15km/h的速度沿BC方向移动。
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
初中数学复习专题 —几何隐圆模型之定边对定角

初中数学复习专题—几何隐圆模型之定边对定角班级姓名有些数学问题,将圆隐藏在已知条件里,隐晦地考查点和圆、直线和圆的位置关系.解题时,需要我们通过分析探索,发现这些隐藏的圆(简称隐圆),再利用和圆有关的一些知识进行求解. 常见的隐圆模型有以下三种:①定弦对定角;②动点到定点的距离为定长;③四点共圆等. 我们今天要讲的是定弦对定角问题,如右图:∠P 保持不变,∠P 所对的边长为d 保持不变,则∠P 的顶点P 的轨迹为圆弧.(简称:定边对定角)例1.在正方形ABCD 中,AD=2,E,F 分别为边DC,CB 上的点,且始终保持DE=CF,连接AE 和DF 交于点P,则线段CP 的最小值为.例 2.如图,在边长为2 的等边△ABC中,点 E 为AC 上一点,AE=CD,连接 BE、AD 相交于点 P,则CP 的最小值为。
例3.如图,△ABC 中,AC=3,BC=4 ,∠ACB=45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE=CP,则AD 的最小值为()A.1 B.2 C.D. 4322 【巩固训练】1. 如图 1,O 的半径为 2,弦 AB =2,点 P 为优弧 AB 上一动点,AC ⊥AP 交直线 PB 于点 C ,则△ABC的最大面积是.图1图2图32. 如图 2,半径为 2cm ,圆心角为 90°的扇形 OAB 的弧 AB 上有一运动的点 P 从点 P 向半径 OA 引垂线 PH 交 OA 于点 H ,设△OPH 的内心为 I ,当点 P 在弧 AB 上从点 A 运动到点 B 时,内心 I 所经过的路径长为.3. 如图 3,以 G (0,1)为圆心,半径为 2 的圆与 x 轴交于 A 、B 两点,与 y 轴交于 C 、D 两点,点 E 为 OG 上一动点,CF ⊥AE 于 F ,当点 E 从点 B 出发顺时针运动到点 D 时,点 F 所经过的路径长为 .4. 如图 4,以正方形 ABCD 的边 BC 为一边向内部做一等腰△BCE ,CE =CB ,过 E 做 EH ⊥BC ,点 P是△BEC 的内心,连接 AP ,若 AB =2,则 AP 的最小值为.图 4 图 5 图 6 5. 如图 5,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC ,则线段 CP 长的最小值为 .6. 如图 6,在 Rt △ABC 中,∠C =90°,AC =10,BC =12,点 D 为线段 BC 上一动点.以 CD 为⊙O 直径,作 AD 交⊙O 于点 E ,连 BE ,则 BE 的最小值为 .7. 如图 7,在等腰 Rt △ABC 中,∠BAC =90°,AB =AC ,BC = 4 ,点 D 是 AC 边上一动点,连接 BD ,以 AD为直径的圆交 BD 于点 E ,则线段 CE 长度的最小值为 .图 78.等腰直角△ABC 中,∠C=90°,AC=BC=4,D 为线段AC 上一动点,连接BD,过点C 作CH⊥BD 于H,连接AH,则AH 的最小值为.图8 图9 图109.如图9,直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O,在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是.10.如图10,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(7,3),点E在边AB 上,且AE=1,已知点P 为y 轴上一动点,连接EP,过点O 作直线EP 的垂线段,垂足为点H,在点P 从点F(0, 25)运动到原点O 的过程中,点H 的运动路径长为. 411.如图11,AB 是⊙O 的直径,AB=2,∠ABC=60°,P 是上一动点,D 是AP 的中点,连接CD,则CD 的最小值为图11 图 1212.如图12,已知△ABC是边长为4 的等边三角形,取AC 的中点E,△ABC绕E 点旋转任意角度得到△GMN,直线BN、GC 相交于点H.求△GMN绕点E 旋转时过程中,线段AH 的最大值是.13.如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个.(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标.(3)当点P在y轴上移动时,∠APB何时有最大值?请说明理由.14.[2019衢州]如图F10-10,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F,G.(1)求CD的长.的值.(2)若点M是线段AD的中点,求EFDF(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?15.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D出发向点C运动,点E,F 运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF,BE相交于点P,则线段DP的最小值为.8.如图,矩形ABCD中,AB=2,AD=3,点E,F分别为ADDC边上的点,且EF=2,点G为EF的中点,点P为BC边上一动点,则PA+PG的最小值为.5 ⎨ ⎩参考答案例 1【解析】解:如图,在△ADE 和△DCF 中,⎧ AD = DC ⎪∠ADE = ∠DCF ⎪DE = CF ∴△ADE 2△DCF (SAS ) ∴∠DAE =∠CDF∵∠DAE +∠AED =90°∴∠CDF +∠AED =90°,∴∠DPE =∠APD =90° .∠APD =90°保持不变∴点 P 的轨迹为以 AD 为直径的一段弧上∴取 AD 中点 Q ,连接 CQ ,与该圆弧交点即为点 P ,此时 CP 值最小在 Rt △CQD 中,CQ =∴CP =CQ -PQ = -1例 2.解析:可证△AEB ≅△CDA ∴∠ABE=∠CAD ∵∠CAD+∠BAD=60° ∴∠ABE+∠BAD=60°即∠BPB=60° ∵ AB 为定边,∠APB=120°为定角∴P 在以 AB 为弦且圆心角为 120°的圆弧上运动。
巧用圆中的“一题多解”,培养学生发散性思维

巧用圆中的“一题多解”,培养学生发散性思维摘要:在初中数学教学中,习题解答是重要的组成部分,这不仅是由数学学科能用于解决现实问题的特征决定的,更是为了培养学生的逻辑思维、解题能力。
一题多解指的就是学生在解决数学问题的时候,不再局限一道题目一个解题思路和方法的限制,而是学会从不同的角度寻找切入点,使用多种方法解决问题。
本文从初中数学教学“圆”的一题多解教学入手展开研究,进行有效的一题多解训练,带出多种数学知识与方法,培养学生的发散性思维。
关键词:发散性思维;一题多解;初中数学;圆数学本身具有着一定的抽象性和逻辑性,而且解决问题的方式也是多样的。
教师注重转变教学理念和教学方法,引导学生从多角度和多层面进行问题的分析,学会使用一题多解来找到解决问题的多种方式,对发散学生的思维,培养学生的数学能力至关重要。
一、数学课程中的一题多解数学学科教学本身具有一定的抽象性与综合性内涵,它旨在培养学生的灵活逻辑思维能力。
在新课改背景下,为了实现数学教学实效性的有效提升,教师也希望从多个方面思考,实现多角度数学教学,引入一题多解训练模式,在提炼数学知识内容过程中也希望培养学生良好的变式思维,更多结合数学问题、条件、结论之间的相互转换来彰显学生对于教学内容、方法的不同理解,培养学生思维的广阔性和慎密性。
在该过程中,教师的教学过程不再固定于某一局限性定式思维上思考问题,要鼓励学生充分的发挥出想象力,能针对一个题目从多角度和多方向进行观察和分析,多角度和多变并且多层次的应用学习过的知识,得出不同类型解决问题的方式方法,同时也养成任何问题都去多方面思考的习惯。
二、圆的一题多解问题探析在学完圆的有关知识后,很多学生会发现有些习题常出现一题多解的特点.这是由于图形的位置及圆的对称性等特性而出现的情况。
本文将课本中的例、习题的改编题及近几年来全国各地的中考题有关圆中一题多解的问题归纳起来,作为培养学生发散思维的有效路径并展开分析。
初中数学专题复习(圆周角定理)

初中数学专题复习(圆周角定理)1.(2020•陕西)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°解:∵BC∥OA,∴∠ACB=∠A=25°,∠B=∠AOB=2∠ACB=50°,∵BD是⊙O的直径,∴∠BCD=90°,∴∠D=90°﹣∠B=90°﹣50°=40°,故选:C.2.(2020•兰州)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A.40°B.60°C.70°D.80°解:∵AB是直径,∴∠ACB=90°,∵∠BAC=20°,∴∠ABC=90°﹣20°=70°,∴∠ADC=∠ABC=70°,故选:C.3.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A.57°B.52°C.38°D.26°解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°﹣∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.4.(2020•眉山)如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为()A.55°B.60°C.65°D.70°解:∵BC=CD,∴=,∵∠ABD和∠ACD所对的弧都是,∴∠BAC=∠DAC=35°,∵∠ABD=∠ACD=45°,∴∠ADB=180°﹣∠BAD﹣∠ABD=180°﹣70°﹣45°=65°.故选:C.5.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.6.(2020•黄石)如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为()A.140°B.70°C.110°D.80°解:如图,在优弧AB上取一点P,连接AP,BP,∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90°,∵∠DCE=40°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,∴∠P=∠AOB=70°,∵A、C、B、P四点共圆,∴∠P+∠ACB=180°,∴∠ACB=180°﹣70°=110°,故选:C.7.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°解:∵在⊙O中,OC⊥AB,∴=,∵∠APC=28°,∴∠BOC=2∠APC=56°,故选:D.8.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.9.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=35°.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.10.(2020•聊城)如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是60°.解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.11.(2020•宜宾)如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A=.解:∵△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°,∴cos∠A=cos30°=.故答案为:.12.(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为30°.21教育网解:∵∠BAC=∠BOC=×120°=60°,而AD是∠BAC的角平分线,∴∠CAD=∠BAC=30°.故答案为:30°.13.(2020•宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)方法一、过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,=×OA×AC=×OC×AE,∵S△OAC∴AE==,∴OE===,∴BE=BO+OE=,∴AB===.方法二、∵∠CAD=∠ABC,∠C=∠C,∴△ACD∽△BCA,∴=,∴,∴BC=8,AB=2AD,∴BD=6,∵AB2+AD2=BD2,∴5AD2=36,∴AD=,∴AB=2AD=.14.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.15.(2020•温州)如图,C,D为⊙O上两点,且在直径AB两侧,连接CD交AB于点E,G是上一点,∠ADC =∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连接CF.当点F落在直径AB上时,CF=10,tan∠1=,求⊙O的半径.解:(1)∵∠ADC=∠G,∴=,∵AB为⊙O的直径,∴=,∴∠1=∠2;(2)如图,连接DF,∵=,AB是⊙O的直径,∴AB⊥CD,CE=DE,∴FD=FC=10,∵点C,F关于DG对称,∴DC=DF=10,∴DE=5,∵tan∠1=,∴EB=DE•tan∠1=2,∵∠1=∠2,∴tan∠2=,∴AE==,∴AB=AE+EB=,∴⊙O的半径为.16.(2020•泰州)如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.。
备考2021年中考数学复习专题:图形的性质_圆_圆心角、弧、弦的关系,单选题专训及答案

A. B. C. D. 28、 (2020长春.中考真卷) 如图,
是⊙O的直径,点C、D在⊙O上,
,则
的大小为( )
A. B.
C.
D.
29、
(2020茂名.中考模拟) 如图,在⊙O中,AB是⊙O的直径,AB=10,
,点E是点D关于AB的对称点,M
是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结
A . 40° B . 60° C . 80° D . 100° 18、 (2014贵港.中考真卷) 如图,AB是⊙O的直径, = = ,∠COD=34°,则∠AEO的度数是( )
A . 51° B . 56° C . 68° D . 78° 19、 (2017资中.中考模拟) 如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线 于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为( )
A . 8 B . 10 C . 11 D . 12 11、 (2018青岛.中考真卷) 如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是
的中点,则∠D的度数是( )
A . 70° B . 55° C . 35.5° D . 35° 12、
(2018咸宁.中考真卷) 如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD 互补,弦CD=6,则弦AB的长为( )
1.答 案 : A 2.答 案 : D 3.答 案 : B 4.答 案 : B 5.答 案 : C 6.答 案 : A 7.答 案 : C 8.答 案 : D 9.答 案 : A 10.答 案 : A 11.答 案 : D 12.答 案 : B 13.答 案 : D 14.答 案 : A 15.答 案 : C 16.答 案 : D 17.答 案 : A 18.答 案 : A 19.答 案 : C 20.答 案 : A 21.答 案 : C 22.答案:
2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(一)

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(一)一.选择题1.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•PA2.如图,在⊙O中,弦AC,BD交于点E,连结AB、CD,在图中的“蝴蝶”形中,若AE=,AC=5,BE=3,则BD的长为()A.B.C.5 D.3.如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16 B.24 C.12 D.不能确定4.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.5.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5 C.+1 D.6.如图,⊙O的弦AB、CD相交于点P,若AP=3,BP=4,CP=2,则CD长为()A.6 B.12 C.8 D.不能确定7.如图,⊙O的直径AB与弦CD交于点E,AE=6,BE=2,CD=2,则∠AED的度数是()A.30°B.60°C.45°D.36°8.如图,点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O于C,且⊙O的半径为3.若AP=4,PB=1,则OP的长是()A.2 B.2C.D.9.在⊙O中,弦AB和CD相交于P,且AB⊥CD,如果AP=4,PB=4,CP=2,那么⊙O的直径为()A.4 B.5 C.8 D.1010.如图,圆中两条弦AC,BD相交于点P.点D是的中点,连结AB,BC,CD,若BP=,AP=1,PC=3.则线段CD的长为()A.B.2 C.D.二.填空题11.如图,⊙O中,弦AB、CD相交于点P,若AP=5,BP=4,CP=3,则DP为.12.如图,已知⊙O的两条弦AB、CD相交于点E,且E分AB所得线段比为1:3,若AB=4,DE﹣CE=2,则CD的长为.13.如图,⊙O的弦AB、CD相交于点E,若AE:DE=3:5,则AC:BD=.14.如图,在⊙O中,弦BC,DE交于点P,延长BD,EC交于点A,BC=10,BP=2CP,若=,则DP的长为.15.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=.三.解答题16.如图,弦AB与CD相交于⊙O内一点P,PC>PD.(1)试说明:△PAC∽△PDB;(2)设PA=4,PB=3,CD=8,求PC、PD的长.17.如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的直径为10,DE=1,求AE的长.18.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.19.如图,(1)已知:P为半径为5的⊙O内一点,过P点最短的弦长为8,则OP=(2)在(1)的条件下,若⊙O内有一异于P点的Q点,过Q点的最短弦长为6,且这两条弦平行,求PQ的长.(3)在(1)的条件下,过P点任作弦MN、AB,试比较PM•PN与PA•PB的大小关系,且写出比较过程.你能用一句话归纳你的发现吗?(4)在(1)的条件下,过P点的弦CD=,求PC、PD的长.20.请阅读下列材料:圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作﹣弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.参考答案一.选择题1.解:∵∠P=∠P,∠A=∠D,∴△PAB∽△PDC,∴=,∴PB•PD=PC•PA,故选:D.2.解:EC=AC﹣AE=,由相交弦定理得,AE•EC=DE•BE,则DE==,∴BD=DE+BE=,故选:B.3.解:∵AP•BP=CP•DP,∴PD=,∵AP=6,BP=8,CP=4,∴PD=12,∴CD=PC+PD=12+4=16.故选:A.4.解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.5.解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.6.解:∵AP•BP=CP•DP,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,∴CD=PC+PD=2+6=8.故选:C.7.解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH=CD(垂径定理);∵CD=2,∴DH=.又∵AE=6,BE=2,∴AB=8,∴OA=OD=4(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH===(勾股定理);在Rt△OEH中,sin∠OEH==,∴∠OEH=45°,即∠AED=45°.8.解:延长CP交圆于一点D,连接OC,∵PC⊥OP,∴PC=PD,∴PC2=PA•PB,∵AP=4,PB=1,∴PC2=4×1,∴PC=2,∴OP===.故选:C.9.解:∵AB⊥CD,AP=PB=4,∴CD为⊙O的直径,由相交弦定理得,PA•PB=PC•PD,即2PD=16,解得,PD=8,故选:D.10.解:连接OD交AC于H,如图,∵点D是的中点,∴OD⊥AC,AH=CH=2,∴PH=1,∵AP•PC=BP•PD,∴PD==,在Rt△PDH中,DH==,在Rt△DCH中,CD==.故选:A.二.填空题(共5小题)11.解:由相交弦定理得,PA•PB=PC•PD,∴5×4=3×DP,解得,DP=,故答案为:.12.解:∵E分AB所得线段比为1:3,AB=4,∴AE=1,EB=3,由相交弦定理得,AE•EB=CE•ED,∴1×3=CE×(CE+2),解得,CE1=1,CE2=﹣3(舍去),则CE=1,DE=2,∴CD=1+3=4,故答案为:4.13.解:∵弦AB、CD相交于点E,∴∴∠C=∠B,∠A=∠D,∴△ACE∽△DBE,∴==,故答案为:3:5.14.解:如图,作CH∥DE交AB于H.设DP=2a.∵PD∥CH,∴===,∴CH=3a,∵BD:AD=2:3,∴BD:AD=BD:BH,∴AD=BH,∴BD=AH,∴AH:AD=2:3,∴CH∥DE,∴==,∴DE=a,∴PE=a﹣2a=a,∵BC=10,BP:PC=2:1,∴PB=,PC=,∵PB•PC=PD•PE,∴5a2=,∴a=(负根已经舍弃),∴PD=2a=.故答案为.15.解:∵⊙O的弦AB、CD相交于点E,∴AE•BE=CE•DE,∴AE:DE=CE:BE=2:3,故答案为:2:3.三.解答题(共5小题)16.(1)证明:由圆周角定理得,∠A=∠D,∠C=∠B,∴△PAC∽△PDB;(2)解:由相交弦定理得到,PA•PB=PC•PD,即3×4=PC×(8﹣PC),解得,PC=2或6,则PD=6或2,∵PC>PD,∴PC=6,PD=2.17.(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=5.则AF=3+1=4,即AE=AF+3=7.18.解:(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,⊙O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∵∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∵AB=10,PA=4,OP=5,∴PB=10﹣4=6,PC=OC+OP=R+5,PD=OD﹣OP=R﹣5,由(1)中结论得,PA•PB=PC•PD,∴4×6=(R+5)×(R﹣5),解得R=7(R=﹣7舍去).所以⊙O的半径R=7cm.19.解:(1)连接OP,过点P作CD⊥OP于点P,连接OD.根据题意,得CD=8,OD=5.根据垂径定理,得PD=4,根据勾股定理,得OP=3;(2)根据平行线的性质和垂线的性质,知O、P、Q三点共线.根据(1)的求解方法,得OQ=4,则PQ=1或7;(3)连接AM、BN.∵∠A=∠N,∠M=∠B,∴△APM∽△NPB,∴,即PM•PN=PA•PB;(4)作直径AB,根据相交弦定理,得PC•PD=PA•PB=(5﹣3)(5+3)=16,又CD=,设PC=x,则PD=﹣x,则有x(﹣x)=16,解得x=3或x=.即PC=3或,PD=或3.20.解:(1)AC过圆心O,且m,n分别切⊙O于点A,C,∴AC⊥m于点A,AC⊥n于点C.∵PQ⊥m于点Q,PR⊥n于点R,∴Q与A重合,R与C重合.∵OP=1,AC=4,∴PQ=1,PR=3,∴+=1+=.(2)连接OA,∵OP⊥AC于点P,且OP=1,OA=2,∴∠OAP=30°.∴AP=.∵OA⊥直线m,PQ⊥直线m,∴OA∥PQ,∠PQA=90°.∴∠APQ=∠OAP=30°.在Rt△AQP中,PQ=,同理,PR=,∴.(3)猜想.证明:过点A作直径交⊙O于点E,连接EC,∴∠ECA=90°.∵AE⊥直线m,PQ⊥直线m,∴AE∥PQ且∠PQA=90°.∴∠EAC=∠APQ.∴△AEC∽△PAQ.∴①同理可得:②①+②,得:+=+∴=()=•=.过P作直径交⊙O于M,N,根据阅读材料可知:AP•PC=PM•PN=3,∴=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于 .2. 圆是 对称图形,任何一条直径所在的直线都是它的 ; 圆又是 对称图形, 是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .3. 直径所对的圆周角是 ,90°所对的弦是 .例1 P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.例2 如图,在Rt △ABC 中,∠ACB=90度.点P 是半圆弧AC 的中点,连接BP 交AC 于点D ,若半圆弧的圆心为O ,点D 、点E 关于圆心O 对称.则图中的两个阴影部分的面积S 1,S 2之间的关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .不确定例3 如图,正方形的边长为a ,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为( )A .πa 2-a 2B .2πa 2-a 2C .21πa 2-a 2 D .a 2-41πa 2例4 车轮半径为0.3m 的自行车沿着一条直路行驶,车轮绕着轴心转动的转速为100转/分,则自行车的行驶速度( )A .3.6π千米/时B .1.8π千米/时C .30千米/时D .15千米/时例5 如图,⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一条直线上,图中弦的条数有( )A .2条B .3条C .4条D .5条 知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .知识点4:垂径定理垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .例1、如图(1)和图(2),MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.例2 在圆柱形油槽内装有一些油.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )A .6分米B .8分米C .10分米D .12分米例3 小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .3例4如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB 的长,就计算出了圆环的面积,若测量得AB 的长为20米,则圆环的面积为( )A .10平方米B .10π平方米C .100平方米D .100π平方米例5 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm ),则该铁球的直径为( )A .8.8cmB .8cmC .9cmD .10cm例6 如图,BE ⌒是半径为6的圆D 的41圆周,C 点是弧BE 上的任意一点,△ABD 是等边三角形,则四边形ABCD 的周长P 的取值范围是( ) A .12<P ≤18 B .18<P ≤24 C .18<P ≤18+62 D .12<P ≤12+62知识点5:确定圆的条件及内切圆三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的 、这个三角形是圆的 .切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有 的直线是圆的切线。
②到圆心的距离等于 的直线是圆的切线。
③经过半径的外端点并且 于这条半径的直线是圆的切线。
切线的五个性质:①切线与圆只有 公共点;②切线到圆心的距离等于圆的 ;③切线垂直于经过切点的 ;④经过圆心垂直于切线的直线必过 ;⑤经过切点垂直于切线的直线必过 。
三角形内切圆和三角形各边都相切的圆叫做三角形的 ,三角形内切圆的圆心叫三角形的 . 切线长定理经过圆外一点作圆的切线,这点与 之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的 相等,这一点和圆心的连线平分两条切线的 .例1 如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=42,则⊙O 的直径等于( )A .225 B .32 C .52 D .7例2 如图,在坐标平面上,Rt △ABC 为直角三角形,∠ABC=90°,AB 垂直x 轴,M 为Rt △ABC 的外心.若A 点坐标为(3,4),M 点坐标为(-1,1),则B 点坐标为何( )A .(3,-1)B .(3,-2)C .(3,-3)D .(3,-4)例3 如图所示,已知⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若AD=3,AC=2,则cosD 的值为( )A .23B .35C .25D .32知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外. 其中r 为圆的半径,d 为点到圆心的距离, 位置关系 点在圆内 点在圆上 点在圆外 数量(d 与r)的大小关系 d rd r d r例1 如图,在Rt ABC △中,直角边3AB =,4BC =,点E ,F 分别是BC ,AC 的中点,以点A 为圆心,AB 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________.例2 在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系.例3 如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°,公路PQ 上A 处距离O 点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为( )A .12秒B .16秒C .20秒D .24秒例4 矩形ABCD 中,AB=8,BC=35,点P 在边AB 上,且BP=3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B 、C 均在圆P 外 B .点B 在圆P 外、点C 在圆P 内C .点B 在圆P 内、点C 在圆P 外D .点B 、C 均在圆P 内例5 一个点到圆的最大距离为11cm ,最小距离为5cm ,则圆的半径为( )A .16cm 或6cmB .3cm 或8cmC .3cmD .8cm知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交 、相切、相离.设r 为圆的半径,d 为圆心到直线的距离,直线与圆的位置关系如下表:位置关系相离 相切 相交 公共点个数0 1 2 数量关系 d r d r d r例1、 在中,BC=6cm ,∠B=30°,∠C=45°,以A 为圆心,当半径r 多长时所作的⊙A 与直线BC 相切?相交?相离?例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=•∠A.(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.例3 如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x-2与⊙O的位置关系是()A.相离 B.相切 C.相交 D.以上三种情况都有可能例4 如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30° B.45° C.60° D.90°知识点8:圆和圆的位置关系设两圆半径分别为R和r。
圆心距为d。
(R>r)1. 两圆外离 _____________;2. 两圆外切_____________;3. 两圆相交______________;4. 两圆内切_____________;5. 两圆内含______________.例1.如图所示,点A坐标为(0,3),OA半径为1,点B在x轴上.(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.例2已知两圆半径r 1、r 2分别是方程x 2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是( )A .相交B .内切C .外切D .外离 例3如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为( )A .12cm 2B .24cm 2C .36cm 2D .48cm 2例4定圆O 的半径是4cm ,动圆P 的半径是2cm ,动圆在直线l 上移动,当两圆相切时,OP 的值是( )A .2cm 或6cmB .2cmC .4cmD .6cm课堂小结:一、这章有三条常用辅助线:一是圆心距,第二是直径圆周角,第三条是切线径,就是连接圆心和切点的,或者是连接圆周角的距离。
二、有几个分析题目的思路,在圆中有一个非常重要,就是弧、弦与圆周角互相转换,那么怎么去应用,就根据题目条件而定。
作业 一、选择题1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ()(A )ο15 (B )ο30 (C )ο45 (D )ο602.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的41,那么这个圆柱的侧面积是 ()(A )100π平方厘米 (B )200π平方厘米(C )500π平方厘米 (D )200平方厘米3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”.依题意,CD 长为 ( )(A )225寸 (B )13寸 (C )25寸 (D )26寸4.(北京市朝阳)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( )(A )6 (B )25 C )210 (D )2145.(北京市朝阳)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于( )(A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米二、填空题1.(北京市东城区)如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C , D 是优弧上的一点,已知∠BAC =ο80,那么∠BDC =__________度.2.(北京市东城区)在Rt △ABC 中,∠C =ο90,A B=3,BC =1,以AC 所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.3.(北京市海淀区)如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米4.(北京市海淀区)一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径1ϕ、外径2ϕ的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米(π取3.14,结果保留两位有效数字).三、解答题:1.(苏州市)已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C .①求证:AB =AC ;②若tan ∠ABE =21,(ⅰ)求BC AB 的值;(ⅱ)求当AC =2时,AE 的长.2.(广州市)如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.3.(河北省)已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB =2︰3,AC =10,求sin B 的值.4.(北京市海淀区)如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于点D ,若tan B =21,PC =10cm ,求三角形BCD 的面积.5.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.6.(四川省)已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积.7.(贵阳市)如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10,PB =5,求:(1)⊙O 的面积(注:用含π的式子表示);(2)cos ∠BAP 的值.。