初中数学13《有理数的加减法》教案
有理数的加减法教案
《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。
3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。
4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
《有理数的加减法》教学设计五篇
《有理数的加减法》教学设计五篇第一篇:《有理数的加减法》教学设计有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面给大家分享《有理数的加减法》教学设计,一起来看看吧!《有理数的加减法》教学设计1教学目标:1、会将有理数的减法运算转化为有理数的加法运算。
2、会将有理数的加减混合运算转化为有理数的加法运算。
教学重点、难点:会进行有理数的减法运算,会进行有理数的加减混合运算。
课前复习:1、有理数加法法则是什么?2、有理数加法运算律是什么?教学过程:一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法。
例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。
显然,这天的温差是5―(―2)。
这里就用到了有理数的减法。
我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。
(1)另一方面,我们知道5+(+2)=7(2)由(1),(2)有5―(―2)=5+(+2)(3)从(3)式能看出减―2相当于加哪个数吗?用上面的方法考虑:0―(―2)=___,0+(+2)=___;1―(―2)=___,1+(+2)=____;―5―(―2)=___,―5+(+2)=___。
这些数减3的结果与它们加+2的结果相同吗?从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?计算:10-8=___,10+(-8)=____;13-7=___,13+(-7)=____。
上述式子表明:减去一个数,等于加上这个数的相反数。
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。
用式子可以表示成ab=a+(b)例题解析:计算:(1)(-4)―(―5);(2)0-6;(3)7.1―(―4.9);解:(1)(-4)―(―5)=(-4)+5=1;(2))0-6=0+(-6)=-6;(3)7.1―(―4.9)=7.1+4.9=12;二、有理数加减混合运算有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。
初一数学教案有理数的加减运算
初一数学教案有理数的加减运算【教学设计】
一、教学目标
1.掌握有理数的基本概念。
2.掌握有理数的加减运算。
3.了解有理数的应用。
二、教学重难点
1.加减运算的掌握。
2.有理数的应用。
三、教学步骤
1.导入(5分钟)
本节课内容为有理数的加减运算。
前面的课程中,我们学习了有理
数的基本概念,你们掌握了有理数的表示法和比较大小的方法。
今天,我们将讲解有理数的加减运算。
2.讲解与演示(15分钟)
首先,我们来回忆一下有理数的加减法规则:
【图片插入】
通过画数轴的方式,我们可以更加清晰地理解这个规则。
比如:
【图片插入】
其次,我们来看一下一些例题,如下:
【图片插入】
3.练习与检查(20分钟)
同学们,请打开书本第XX页,完成练习X。
时间20分钟,完成后请提交答卷。
(教师巡视,及时解答同学们的问题)
4.巩固与拓展(10分钟)
我们已经掌握了有理数的加减运算,那么有理数有什么实际应用呢?请同学们先自己思考一下。
(留一分钟的时间思考)
同学们,有理数在我们的生活和学习中有很多应用,比如我们可以
通过有理数进行温度计算、分数运算、甚至是电路分析等等。
在这里,我带领大家简单了解一下有理数在分数运算中的应用。
【图片插入】
这里不再深入探讨,希望同学们可以自己进一步了解。
5.课堂总结(5分钟)
今天我们学习了有理数的加减运算,重点掌握了加减运算的规则和
应用。
希望同学们能够在今后的学习和日常生活中运用所学知识。
《有理数的加减法》教学设计
有理数的加减法》教学设计有理数的加减法》教学设计范文《有理数的加减法》教学设计1教学目标1、理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2、能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3、三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4、通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5、本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议(一)重点、难点分析本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。
难点是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。
如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。
一个数与0相加,仍得这个数。
二)知识结构三)教法建议1、对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2、有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3、应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4、计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。
不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5、可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
有理数加减教案初中数学
有理数加减教案初中数学教学目标:1. 理解有理数的加减法的概念和规则。
2. 能够熟练地进行有理数的加减法运算。
3. 能够解决实际问题,运用有理数的加减法进行计算和分析。
教学重点:1. 有理数的加减法的概念和规则。
2. 有理数的加减法运算的技巧和方法。
教学准备:1. 教学课件或黑板。
2. 练习题和答案。
教学过程:一、导入(5分钟)1. 引入有理数的加减法,解释有理数的加减法的概念和意义。
2. 通过举例说明有理数的加减法的实际应用。
二、讲解(20分钟)1. 讲解有理数的加法规则,包括同号相加、异号相加和零的加法。
2. 讲解有理数的减法规则,包括减去一个数等于加上它的相反数。
3. 通过示例和练习,让学生理解和掌握有理数的加减法的规则。
三、练习(15分钟)1. 分组练习题,让学生进行有理数的加减法运算。
2. 提供一些实际问题,让学生运用有理数的加减法进行计算和分析。
四、总结(5分钟)1. 对本节课的内容进行总结,强调有理数的加减法的概念和规则。
2. 提醒学生注意运算的符号和顺序。
五、作业布置(5分钟)1. 布置一些有关有理数的加减法的练习题,让学生巩固所学知识。
2. 鼓励学生进行自主学习,查找有关有理数的加减法的更多信息。
教学反思:本节课通过引入实际问题和示例,让学生理解和掌握有理数的加减法的概念和规则。
通过练习和总结,让学生巩固所学知识,并能够运用有理数的加减法进行计算和分析。
在教学过程中,要注意引导学生掌握运算的符号和顺序,避免出现错误。
同时,也要鼓励学生进行自主学习,提高他们的学习兴趣和能力。
有理数的加减法教学设计教案
有理数的加减法教学设计教案教学设计:有理数的加减法一、教学目标:1.知识目标:了解有理数的加减法的定义和性质,能够准确地进行有理数的加减运算。
2.能力目标:能够运用有理数的加减法解决实际问题,培养学生的逻辑思维和分析能力。
3.情感目标:培养学生良好的学习态度和团队合作意识,增强学生对数学的兴趣和自信心。
二、教学重点:1.有理数的加法和减法的运算方法。
2.运用有理数的加减法解决实际问题。
三、教学难点:运用有理数的加减法解决实际问题。
四、教学步骤:1.导入新知识(10分钟)通过简单的问题引入有理数的加减法概念,如:小华手中有十几个苹果,小明偷走了他的7个苹果,那么小华手中还剩下多少苹果?引导学生思考和探讨。
2.基础知识的讲解(20分钟)在较为简单的数值计算上,讲解有理数的加法和减法的定义和性质。
通过简单的数轴上的图示和实例进行解释。
3.例题引导和探究(30分钟)通过一些简单的例题引导学生进行操作,培养学生的计算能力和分析问题能力。
例题1:计算:(-3)+5,(-7)-4例题2:计算:(-4)+(-6),(-8)-(-5)4.拓展知识讲解(10分钟)在基础知识讲解的基础上,进一步引入拓展知识,如有理数的乘法和除法,学习有理数的四则运算规则。
5.解决实际问题(20分钟)通过一些实际的问题来引导学生解决问题,培养学生的应用能力和实际运用能力。
如:问题1:小明从北京骑自行车到天津,用了2小时30分钟,骑车速度为每小时16公里。
问:小明从北京到天津的距离是多少公里?问题2:小华去超市买牛奶,超市原价是每瓶9元,今天正在打折,每瓶打7折。
小华买了5瓶,他用了多少元?6.总结与讲评(10分钟)总结本节课的知识要点和核心内容,帮助学生理清思路。
7.作业布置(5分钟)布置一些相关的课后作业和练习题,要求学生按时完成并及时订正。
五、教学反思:通过本节课的教学设计和实施,学生能够全面了解和掌握有理数的加减法的基本知识和运算方法。
有理数加减法教案
有理数加减法教案一、教学目标1. 让学生掌握有理数的加法法则,能够正确进行有理数的加法运算。
2. 让学生掌握有理数的减法法则,能够正确进行有理数的减法运算。
3. 培养学生运用有理数加减法解决实际问题的能力。
二、教学重点与难点1. 教学重点:掌握有理数的加法法则和减法法则,能够熟练进行有理数的加减运算。
2. 教学难点:理解有理数加减法的运算规律,解决实际问题。
三、教学方法1. 采用情境教学法,通过生活实例引入有理数加减法运算。
2. 采用小组合作学习法,让学生在小组内讨论、交流,共同解决问题。
3. 采用启发式教学法,引导学生思考、探索,发现有理数加减法的运算规律。
四、教学准备1. 教师准备PPT课件,内容包括有理数加减法的运算规则、例题及练习题。
2. 准备相关的生活实例,用于引入有理数加减法运算。
3. 准备小黑板、粉笔等教学工具。
五、教学过程1. 导入新课:教师通过生活实例引入有理数加减法运算,如温度变化、购物等情境,激发学生的学习兴趣。
2. 讲解与示范:教师利用PPT课件讲解有理数加减法的运算规则,并结合例题进行示范。
例1:解释加法运算:(-3) + 4 = 1例2:解释减法运算:7 (-2) = 93. 练习与讨论:学生独立完成练习题,教师巡回指导,解答学生疑问。
练习1:计算下列各题:a. 5 + (-6) =b. 8 3 =c. (-2) + 7 =d. 4 (-5) =练习2:讨论下列问题:a. 有理数加减法运算的规律是什么?b. 如何快速判断两个有理数相加的结果符号?4. 解决问题:教师提出实际问题,引导学生运用有理数加减法进行解决。
问题1:小华买了3本书,又卖掉了2本,现在有多少本书?问题2:气温从-5℃上升了3℃,现在气温是多少?5. 总结与拓展:教师引导学生总结有理数加减法的运算规律,并进行拓展训练。
拓展1:解释有理数加减法的运算律。
拓展2:探讨有理数加减法在实际生活中的应用。
6. 布置作业:教师布置练习题,让学生巩固所学知识。
初一数学《有理数的加减法》教学设计
初一数学《有理数的加减法》教学设计一、教学目标1.知识目标:了解有理数的概念,掌握有理数之间的加减法运算方法;2.能力目标:能够熟练进行有理数的加减法运算,并能应用到实际生活中;3.情感目标:培养学生对数学的兴趣,提高学生合作能力及自主学习能力。
二、教学重难点1.教学重点:有理数的加减法;2.教学难点:理解有理数的概念。
三、教学内容及教学过程1. 教学内容1.有理数的概念;2.有理数加减法的运算法则。
2. 教学过程2.1 学生自学教师先讲解有理数的概念,在讲解时要通过图形和实例来让学生理解。
学生可以先通过课本上的内容来自学和理解,然后在同伴间进行学习小组讨论。
讨论后,学生可以写下自己的体会和收获,以便于在课堂上进行分享。
2.2 学生交流学生在小组内分享自己的学习体会,交流自己的想法。
让学生在交流中学习,既锤炼口头表达能力,又加深自己对有理数的理解,互相之间还可以互相学习和比较。
2.3 教师解析加减法运算法则在学生彻底理解有理数的概念后,教师可以进一步为他们讲解有理数加减法的方法。
在授课时,教师可以先通过白板黑板来画图解释,以便于学生理解和记忆。
具体方法可以这样:首先,教师可以在黑板上画出两个数轴,横轴表示负数,纵轴表示正数,在这个坐标系内,画出两个有理数,并以箭头表示,表示大小和方向。
接着,实行加减法的运算法则。
例如,要求学生计算-5 + 3,每个过程都要在黑板上进行演示,引导学生进行观察,看出规律,再尝试自己进行运算。
最后,再给学生提供一些加减法的练习题,并要求学生在课下完成。
2.4 学生练习在学生已初步掌握有理数的加减法运算方法后,教师可以给学生出一些相关的练习题,既巩固学生已掌握的知识和技能,又让学生能更好地应用所学到的有理数加减法运算方法到实际的生活中。
同时还可以鼓励学生自己寻找一些实际问题,让他们来进行加减法的运算。
四、教学评估和反思1. 教学评估教师可以采用多种方式对学生的学习效果进行评估,例如,抽查学生的听课笔记以及上课过程中的思考质量和问题提出的质量,还可以利用小测验对学生掌握的知识和技能进行检测。
有理数加减法教案
有理数加减法教案第一篇:有理数加减法教案教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议(一)重点、难点分析本节重点是运用有理数的减法法则熟练进行减法运算。
解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.(二)知识结构(三)教法建议1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
教学设计示例有理数的减法一、素质教育目标(一)知识教学点1.理解掌握有理数的减法法则.2.会进行有理数的减法运算.(二)能力训练点1.通过把减法运算转化为加法运算,向学生渗透转化思想.2.通过有理数减法法则的推导,发展学生的逻辑思维能力.3.通过有理数的减法运算,培养学生的运算能力.(三)德育渗透点通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.(四)美育渗透点在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.二、学法引导1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探索新知→归纳结论→练习巩固.三、重点、难点、疑点及解决办法1.重点:有理数减法法则和运算.2.难点:有理数减法法则的推导.四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.七、教学步骤(一)创设情境,引入新课1.计算(口答)(1);(2)-3+(-7);(3)-10+(+3);(4)+10+(-3).2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?教师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-(-5).师:如何计算呢?教师总结:这就是我们今天要学的内容.(引入新课,板书课题)【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.(二)探索新知,讲授新课1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?生:(+10)-(+3)=+7.师:计算:(+10)+(-3)得多少呢?生:(+10)+(-3)=+7.师:让学生观察两式结果,由此得到(+10)-(+3)=+10)+(-3).(1)师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.师:是如何转化的呢?生:减去一个正数(+3),等于加上它的相反数(-3).【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.2.再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+3).(2)教师进一步引导学生观察(2)式;你能得到什么结论呢?生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.4.例题讲解:[出示投影1(例题1、2)]例1 计算(1)(-3)-(-5);(2)0-7;例2 计算(1)7.2-(-4.8);(2)()-.例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师:组织学生自己编题,学生回答.【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.(三)尝试反馈,巩固练习师:下面大家一起看一组题.[出示投影2(计算题1、2)]1.计算(口答)(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)(-4)-9(5)0-(-5);(6)0-5.2.计算(1)(-2.5)-5.9;(2)1.9-(-0.6);第二篇:有理数加减法教案有理数的减法一、素质教育目标(一)知识教学点1.理解掌握有理数的减法法则.2.会进行有理数的减法运算.(二)能力训练点1.通过把减法运算转化为加法运算,向学生渗透转化思想.2.通过有理数减法法则的推导,发展学生的逻辑思维能力.3.通过有理数的减法运算,培养学生的运算能力.(三)德育渗透点通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.(四)美育渗透点在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.二、学法引导1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探索新知→归纳结论→练习巩固.三、重点、难点、疑点及解决办法1.重点:有理数减法法则和运算.2.难点:有理数减法法则的推导.四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.七、教学步骤(一)创设情境,引入新课1.计算(口答)(1);(2)-3+(-7);(3)-10+(+3);(4)+10+(-3).2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?教师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-(-5).师:如何计算呢?教师总结:这就是我们今天要学的内容.(引入新课,板书课题)【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.(二)探索新知,讲授新课1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?生:(+10)-(+3)=+7.师:计算:(+10)+(-3)得多少呢?生:(+10)+(-3)=+7.师:让学生观察两式结果,由此得到(+10)-(+3)=+10)+(-3).(1)师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.师:是如何转化的呢?生:减去一个正数(+3),等于加上它的相反数(-3).【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.2.再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+3).(2)教师进一步引导学生观察(2)式;你能得到什么结论呢?生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.4.例题讲解:[出示投影1(例题1、2)]例1 计算(1)(-3)-(-5);(2)0-7;例2 计算(1)7.2-(-4.8);(2)()-.例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师:组织学生自己编题,学生回答.【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.(三)尝试反馈,巩固练习师:下面大家一起看一组题.[出示投影2(计算题1、2)]1.计算(口答)(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)(-4)-9(5)0-(-5);(6)0-5.2.计算(1)(-2.5)-5.9;(2)1.9-(-0.6);(3)()-;(4)-().学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.用实物投影显示课本第45页的画面.3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?生答:8848-(-392)=8848+392=9240.所以两地高度相差9240米.【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.(四)课堂小结提问:通过本节课学习你学到了什么?生答:略.师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.八、随堂练习1.填空题(1)3-(-3)=____________;(2)(-11)-2=______________;(3)0-(-6)=____________;(4)(-7)-(+8)=____________;(5)-12-(-5)=____________;(6)3比5大____________;(7)-8比-2小___________;(8)-4-()=10;(9)如果,则的符号是___________;(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.2.判断题(1)两数相减,差一定小于被减数.()(2)(-2)-(+3)=2+(-3).()(3)零减去一个数等于这个数的相反数.()(4)方程在有理数范围内无解.()(5)若,,.()九、布置作业(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.(二)选做题:课本第84页中5、8.第三篇:有理数加减法教案教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议(一)重点、难点分析本节重点是运用有理数的减法法则熟练进行减法运算。
有理数的加减混合运算教案(优秀4篇)
有理数的加减混合运算教案(优秀4篇)有理数的加减混合运算教案篇一教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程一、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法。
二、讲授新课1.计算下列各题:2.计算:(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=一三,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:(4)-16+25+16-壹五+4-10.三、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两→←数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。
有理数加减法教案
有理数加减法教案一、教学目标:1. 知识与技能:(1)理解有理数加法的法则;(2)掌握有理数减法的运算方法;(3)能够运用加减法解决实际问题。
2. 过程与方法:(1)通过实例演示,引导学生发现有理数加法的规律;(2)利用数轴帮助学生直观地理解有理数加减法;(3)培养学生的运算能力和解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、共同进步的良好习惯。
二、教学重点与难点:1. 教学重点:(1)有理数加法的法则;(2)有理数减法的运算方法;(3)运用加减法解决实际问题。
2. 教学难点:(1)有理数减法中的借位现象;(2)加减法在实际问题中的应用。
三、教学过程:1. 导入新课:(1)复习相关知识:数轴、相反数、绝对值;(2)提问:我们已经学习了正数和负数,它们之间是如何进行加减运算的呢?2. 自主探究:(1)引导学生发现有理数加法的规律,总结加法法则;(2)利用数轴帮助学生直观地理解有理数加减法;(3)引导学生探索有理数减法的运算方法,总结减法法则。
3. 课堂讲解:(1)讲解有理数加法的法则,举例说明;(2)讲解有理数减法的运算方法,注意借位现象的处理;(3)运用加减法解决实际问题,如购物、长度测量等。
4. 练习巩固:(1)布置课堂练习题,让学生独立完成;(2)挑选学生上台展示解题过程,并给予评价;(3)针对学生的错误,进行讲解和纠正。
5. 课堂小结:(1)总结本节课所学内容,强调加减法法则和运算方法;(2)强调学生在实际问题中运用加减法的重要性;(3)鼓励学生积极参与课堂讨论,提出疑问。
四、课后作业:1. 完成课后练习题,巩固所学知识;2. 举一反三,自主寻找生活中的加减法实例,并进行解答;3. 预习下一节课内容,为学习有理数乘除法做好准备。
五、教学反思:1. 反思本节课的教学效果,是否达到预期目标;2. 针对学生的掌握情况,调整教学策略,提高教学效果;3. 关注学生的学习兴趣和积极性,激发学生的学习潜能。
专题1.3有理数的加减法(教案)
-同号相加和异号相加的运算规则:学生容易混淆两种情况下的运算方法。
-减法的运算:将减法转化为加法的过程中,学生容易出错。
-符号与绝对值的应用:在运算过程中,正确处理符号与绝对值的关系。
举例说明:
(1)同号相加和异号相加:如3+5和3+(-5),需要强调同号相加保留原符号,异号相加取绝对值较大的数的符号。
3.重点难点解析:在讲授过程中,我会特别强调同号相加和异号相加的规则,以及减法的转换方法。对于难点部分,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数加减法相关的实际问题,如购物找零、温度变化等。
2.实验操作:为了加深理解,我们将进行一个简单的数轴操作实验。通过在数轴上移动点来演示有理数加减法的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数之比的数,包括正数、负数和零。它是我们进行加减运算的基础,也是解决实际问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。比如,小明的储蓄账户原本有10元,他先存入5元,然后取出3元,我们可以通过有理数的加减法来计算他最终的账户余额。
专题1.3有理数的加减法(教案)
一、教学内容
本节课选自七年级数学上册教材《专题1.3有理数的加减法》。教学内容主要包括以下两个方面:
1.掌握有理数的概念,了解有理数的分类(正数、负数、零)。
2.学会有理数的加减法运算规则,并能熟练运用规则进行计算。
具体内容包括:
-加法运算规则:同号相加,保留原符号,得到的结果符号与原来的符号相同;异号相加,绝对值较大的数的符号为结果的符号,并用较大的绝对值减去较小的绝对值。
有理数的加减混合运算教案
有理数的加减混合运算教案有理数的加减混合运算教案「篇一」教学目标:1、使学生正确掌握用竖式计算连加、连减两步式题的方法。
2、通过计算连加、连减两步式题,提高学生的计算能力。
3、培养学生观察、分析的能力及书写工整、规范的良好习惯。
渗透教学:一、要善于欣赏他人;二、要及时地反思,找到自己与他人的差距,学人之长,补己之短。
教学重点:掌握用竖式计算连加、连减两步式题的方法。
教学难点:正确计算连减式题。
教学手段:投影片、有条件的可采用多媒体设备教学过程:一、情境式引入1、(出示图片1)教师叙述例1的已知条件。
2、提问(1)听完老师的叙述,你都知道了些什么?(2)根据这些已知条件,可以提出一个什么问题呢?(3)待学生回答后,完整的出示例1同学们到西瓜园里摘西瓜,第一组摘了28个西瓜,第二组摘了34个,第三组摘了23个。
三个组一共摘了多少个西瓜?(4)要求三个组一共摘了多少个西瓜,你准备怎么列式?二、新授(一)教学例1(1)提问引导①观察,这道题有什么特点?②这道题的运算顺序是什么?③这道题的数比较大,口算起来比较慢,你们有什么好办法?(2)分组讨论试做要求①先分小组讨论这道题的计算方法(你们组准备怎么做)。
②把本组讨论出的方法做在练习本上。
③如果一个组讨论后得到了几种不同的方法,可以把这几种不同的方法都记录下来。
交流三种方法[讨论过程中,重点提示学生:①首先,在别的同学发言时,要认真地倾听同学的发言,找出其他同学的优缺点。
②其次,在听完别人的发言后,要善于给同学提出有价值的问题。
③要善于在交流的过程中学习。
学习别人的好方法、好思路、好习惯等。
]方法一对比三种方法,选择最优方法问:谁来说说,这三种方法各有什么优缺点?学生回答:优点1、同学们比较熟悉这种竖式的书写方法。
2、在计算过程中,难度较小,不易出错。
缺点1、费时间。
2、这两个竖式不太好安排格式,如果写不好,容易显得很乱。
优点1、写起来会比第一种方法省点时间,少写了一个62,竖式由两个减少到了一个。
《有理数的加减法》教案
《有理数的加减法》教案一、教学目标理解有理数加法和减法的意义,掌握有理数加法和减法法则。
能熟练进行有理数的加法和减法运算。
培养学生的观察、分析、归纳和运算能力。
二、教学重难点教学重点有理数加法和减法法则的理解与运用。
有理数加法和减法运算的准确性。
教学难点异号两数相加和减法转化为加法的理解。
多个有理数相加和减法的运算。
三、教学方法讲授法:讲解有理数加法和减法的法则及运算方法。
演示法:通过实例演示有理数加法和减法的运算过程。
练习法:让学生进行大量的有理数加法和减法运算练习。
讨论法:组织学生讨论有理数加法和减法运算中的问题和解决方法。
四、教学过程导入新课回顾有理数的概念和分类,引出有理数的运算问题。
提出问题:如何进行有理数的加法和减法运算呢?激发学生的学习兴趣。
有理数加法法则结合实例讲解有理数加法的几种情况:同号两数相加:取相同的符号,并把绝对值相加。
例如:(+3)+(+4)=+7,(-3)+(-4)=-7。
异号两数相加:绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
例如:(+5)+(-3)=+2,(-5)+(+3)=-2。
当互为相反数的两个数相加时,和为 0。
例如:(-2)+2=0。
一个数同 0 相加,仍得这个数。
引导学生总结有理数加法法则,强调法则的要点。
有理数加法运算练习出示一些有理数加法的练习题,让学生进行运算。
请学生到黑板上进行演示,教师点评并纠正错误。
有理数减法法则讲解有理数减法法则:减去一个数,等于加上这个数的相反数。
例如:5 - 3 = 5 + (-3) = 2。
分析减法转化为加法的原理和方法,让学生理解减法的本质。
有理数减法运算练习给出一些有理数减法的练习题,让学生进行运算。
强调运算过程中的注意事项,如符号的变化等。
多个有理数的加法和减法运算举例讲解多个有理数相加和减法的运算方法,如按顺序依次进行运算、结合运算律简化运算等。
让学生进行一些多个有理数的运算练习,培养学生的综合运算能力。
七年级数学上册13《有理数的加减法》教案(新版)新人教版
有理数的加减法(一)[本节课内容]1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作−5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(−5)+(−3) = −8如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.分析:解此题要利用有理数的加法法则.解:(1) (-3)+(-9)=-(3+9)=-12(2) (-4.7)+3·9=-(4.7-3.9)=-0.8.例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.再计算总计超过多少千克905.4-90×10 = 5.4.答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4ºC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:ºC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___, 0+(+3) =___;1―(―3) =___, 1+(+3) =____;―5―(―3) =___,―5+(+3) =___.这些数减−3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____;15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)例题计算:(1) (-3)―(―5); (2)0-7;(3) 7.2―(―4.8); (4)-3.解:(1) (-3)―(―5)= (-3)+5=2;(2) )0-7 = 0+(-7) =-7;(3) 7.2―(―4.8) = 7.2+4.8 = 12;(4)-3=-3+(-5)=-8.二、有理数加减混合运算有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式.例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5) = 2+3-4-5对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”例1.计算(-20)+(+3)-(-5)-(+7)解:(-20)+(+3)-(-5)-(+7)= (-20)+(+3)+(+5)+(-7)=-20+3+5-7=-20-7+3+5=-27+8=-19说明:计算时,可以按照运算顺序,从左到右逐一加以计算三、加法运算律在加减混合运算中的作用与方法加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等例2.用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4解法1:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4+(-2)+(-2)+12.4=(-4.4+12.4)+4+[(-2)+(-2)]= 8+[4+(-5)]= 8+(-1)= 7此解法是将和为整数、便于通分的加数在一起解法2:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4-2-2+12.4=(8+4-2-2)+(--)= 8+(-1) = 7此种方法是将整数部分与小数部分分别相加使计算简化四、小结:①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)②有理数加减混合运算可以统一为加法运算,即:a+b−c = a+b+(−c)。
有理数的加减法教案
有理数的加减法教案一、教学目标1. 理解有理数的概念,掌握有理数的加减法运算规则;2. 能够熟练进行有理数的加减法运算;3. 培养学生的逻辑思维能力和数学运算能力。
二、教学重点和难点1. 教学重点:有理数的加减法运算规则;2. 教学难点:有理数的加减法运算中负数的处理。
三、教学内容1. 有理数的概念有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。
有理数的表示方法为分数形式,如 12,−34 等。
2. 有理数的加法有理数的加法运算规则如下:• 同号相加,取相同的符号,绝对值相加;• 异号相加,取绝对值较大的符号,绝对值相减。
例如:2+3=5(−2)+(−3)=−52+(−3)=−1(−2)+3=13. 有理数的减法有理数的减法运算规则如下:• 减去一个数,等于加上它的相反数;• 减去一个数,等于加上它的相反数。
例如:2−3=−1(−2)−(−3)=12−(−3)=5(−2)−3=−54. 有理数的加减混合运算有理数的加减混合运算需要按照运算优先级进行计算,先计算括号内的运算,再进行加减运算。
例如:2+3−(−4)=9(−2)−3+(−4)=−92−3+(−4)=−5(−2)+3−(−4)=5四、教学方法1.讲解法:通过讲解有理数的概念和加减法运算规则,让学生理解有理数的加减法运算方法;2.案例法:通过实例演示,让学生掌握有理数的加减法运算技巧;3.练习法:通过大量的练习,让学生熟练掌握有理数的加减法运算方法。
五、教学步骤1. 引入通过讲解有理数的概念,让学生了解有理数的定义和表示方法。
2. 讲解有理数的加减法运算规则讲解有理数的加减法运算规则,包括同号相加、异号相加、减法运算等。
3. 案例演示通过实例演示,让学生掌握有理数的加减法运算技巧。
4. 练习通过大量的练习,让学生熟练掌握有理数的加减法运算方法。
5. 总结总结有理数的加减法运算规则和技巧,让学生对有理数的加减法运算有更深入的理解。
人教版七年级上数学《有理数的加减法》教案
《有理数的加减法》教案
一、教学目标
(一)知识与技能
1.掌握有理数加减法法则,会进行有理数的加减法运算。
2.初步培养学生数学转化思想。
(二)过程与方法
通过观察、比较、分析、归纳等方法,理解并掌握有理数的加减法法则。
(三)情感态度和价值观
1.积极参与数学活动,体验数学活动中的乐趣。
2.增强学生学好数学的信心和决心。
二、教学重点与难点
(一)教学重点
掌握有理数加减法法则,会进行有理数的加减法运算。
(二)教学难点
理解有理数加减法法则的意义,正确进行运算。
三、教学方法与手段
(一)教学方法
1.实例引入,调动学生学习兴趣。
2.小组合作,探究规律。
3.练习巩固,及时反馈。
4.归纳小结,形成知识系统。
(二)教学手段
1.利用实物、图片等直观方式展示教学内容。
2.设计多样化的练习题目,巩固所学知识。
3.采用多媒体教学设备,提高教学效果。
四、教学步骤
(一)导入新课:通过实例引入,调动学生学习兴趣。
(二)探究新知:小组合作,探究规律。
通过观察、比较、分析、归纳等方法,理解并掌握有理数的加减法法则。
(三)实践应用:练习巩固,及时反馈。
通过多样化的练习题目,检验学生对知识的掌握程度,巩固所学知识。
同时进行小组讨论和交流,提高解题能力和合作意
识。
(四)归纳小结:总结本节课所学内容,强调重点和难点。
通过归纳小结,形成知识系统,帮助学生记忆和理解所学知识。
《有理数的加减法》公开课教案
《有理数的加减法》公开课教案XX中学王老师一、教学目标理解并掌握有理数的加减法运算法则。
能正确进行有理数的加减运算,尤其是涉及符号的运算。
通过实际例子和互动,培养学生对数学的兴趣和解决问题的能力。
二、教学重点与难点重点:有理数加减法的运算规则和符号问题。
难点:处理负数和正数相加减时的符号变化。
三、教学过程导入部分(5分钟)故事引入:讲一个小故事,关于两个人的银行账户存取款,分别代表正负数的加减法。
让学生思考存款(正数)和取款(负数)之间的关系。
提问:同学们,有没有碰到过存钱和取钱的情况?我们来想象一下,如果你今天存了50元,明天取了20元,你账户里还有多少钱?新课讲解(20分钟)正数加正数:拿两个正数相加,比如5 + 3,问学生结果是多少。
解释说,正数相加结果更大。
负数加负数:例如-5 + (-3),用欠债的例子解释:如果你欠了5元,又欠了3元,总共欠了多少?正数加负数:例如5 + (-3),通过温度升高和降低的例子讲解:如果现在是5度,温度降低3度,现在是多少度?负数加正数:例如-5 + 3,通过负债和还钱的例子解释:欠5元,还了3元,还欠多少?符号总结:正正得正,负负得负,同号相加,符号不变;正负相加,符号取决于绝对值大的数。
练习互动(15分钟)课堂互动:出几道题让学生回答,比如7 + (-4),-8 + 5,-6 + (-2)等。
小组讨论:让学生两两分组,每组设计一个问题,然后交换解答。
实际应用:举几个生活中的例子,比如购物退货、温度变化等,让学生进一步理解有理数的加减法。
课堂小结(5分钟)总结今天的内容:我们学习了有理数的加减法,包括正数和负数相加减的规则。
鼓励学生:今天的内容看起来有点复杂,但通过多练习和理解实际例子,我们一定可以掌握。
回顾反思让学生回顾今天的学习内容,思考自己哪里还不太明白,或者觉得哪个部分最有趣。
鼓励学生写下自己的疑问和感受,课后讨论。
布置作业完成课本上的相关练习题。
有理数的加减法教案
有理数的加减法教案教案标题:有理数的加减法教案教学目标:1. 理解有理数的概念及其在实际生活中的应用。
2. 掌握有理数的加减法运算规则。
3. 能够运用有理数的加减法解决实际问题。
教学重点:1. 有理数的加法运算规则。
2. 有理数的减法运算规则。
3. 运用有理数的加减法解决实际问题。
教学准备:1. 教学课件或黑板、白板。
2. 教学辅助材料,如练习题、实际问题等。
3. 计算器。
教学过程:一、导入(5分钟)1. 引入有理数的概念,与学生一起回顾正数、负数的概念及其表示方法。
2. 提出一个实际问题,如温度的正负表示等,引导学生思考有理数在实际生活中的应用。
二、知识讲解与示范(15分钟)1. 介绍有理数的加法运算规则,包括同号相加、异号相减。
2. 通过示例演示有理数的加法运算步骤和计算方法。
3. 强调有理数加法运算的结果仍然是有理数。
三、练习与巩固(20分钟)1. 学生个别或小组完成练习题,巩固有理数的加法运算规则。
2. 教师巡回指导,解答学生的疑问。
四、知识讲解与示范(15分钟)1. 介绍有理数的减法运算规则,包括减去一个数等于加上它的相反数。
2. 通过示例演示有理数的减法运算步骤和计算方法。
3. 强调有理数减法运算的结果仍然是有理数。
五、练习与巩固(20分钟)1. 学生个别或小组完成练习题,巩固有理数的减法运算规则。
2. 教师巡回指导,解答学生的疑问。
六、拓展与应用(15分钟)1. 提供一些实际问题,要求学生运用有理数的加减法解决。
2. 学生个别或小组讨论解决问题的方法,并展示解题过程和答案。
七、总结与反思(5分钟)1. 教师与学生一起总结有理数的加减法运算规则及其应用。
2. 学生反思本节课的学习收获和困难。
教学延伸:1. 鼓励学生自主学习,通过阅读教材、做题巩固所学知识。
2. 提供更多的实际问题,让学生运用有理数的加减法解决。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、理解程度和解题能力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;
蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作−5m;
如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(−5) + (−3) = −8
如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2
探究
这三种情况运动结果的算式如下:
3+(—5)=—2;
5+(—5)= 0;
(—5)+5= 0.
如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式
就是5+0=5 或(—5)+0=—5.
你能从以上7个算式中发现有理数加法的运算法则吗?
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为
相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
例题
例1、计算
(-3)+(-9); (2)(-4.7)+3.9.
分析:解此题要利用有理数的加法法则.
解:(1) (-3)+(-9)=-(3+9)=-12
(2) (-4.7)+3·9=-(4.7-3.9)=-0.8.
例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );
蓝队共进( )球,失( )球,净胜球数为( )=( ).
二、有理数加法的运算律
通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加
数的位置,和不变.用式子表示为:
再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].
通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,
先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:
上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计
算简化.
例题
例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.
解: 16 +(-25)+ 24 +(-35)
= (16 + 24)+ [(-25)+(-35)]
= 40 +(-60)
=-20.
例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.
再计算总计超过多少千克
905.4-90×10 = 5.4.
答:总计超过 5千克,10袋水泥的总质量是 505千克.
三、小结:
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互
为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
有理数加法运算律:
①加法交换律:a+ b = b + a
②加法结合律:(a+ b)+ c = a+( b +c)
有理数的加减法(二)
学习目标
1、会将有理数的减法运算转化为有理数的加法运算.
2、会将有理数的加减混合运算转化为有理数的加法运算.
重点、难点
会进行有理数的减法运算,会进行有理数的加减混合运算.
教学过程
一、有理数的减法法则
实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4ºC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:ºC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.
我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相
加得4,所以这个数应该是7,即
4―(―3) = 7. (1)
另一方面,我们知道
4+(+3) = 7 (2)
由(1),(2)有
4―(―3) = 4+(+3) (3)
从(3)式能看出减―3相当于加哪个数吗?
用上面的方法考虑:
0―(―3) =___, 0+(+3) =___;
1―(―3) =___, 1+(+3) =____;
―5―(―3) =___,―5+(+3) =___.
这些数减−3的结果与它们加+3的结果相同吗?
计算: 9-8=___, 9+(- 8)=____;
15-7=___, 15+(-7)=____.
上述式子表明:减去一个数,等于加上这个数的相反数.
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.
用式子可以表示成a−b = a+(−b)
例题
计算:
(1) (-3)―(―5); (2)0-7;
(3) 7.2―(―4.8); (4)-3.
解:(1) (-3)―(―5)= (-3)+5=2;
(2) )0-7 = 0+(-7) =-7;
(3) 7.2―(―4.8) = 7.2+4.8 = 12;
(4)-3=-3+(-5)=-8.
二、有理数加减混合运算
有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把
它写成只有加法运算的和的形式.
例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)
将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5) = 2+3-4-5
对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”
例1.计算(-20)+(+3)-(-5)-(+7)
解:(-20)+(+3)-(-5)-(+7)
= (-20)+(+3)+(+5)+(-7)
=-20+3+5-7
=-20-7+3+5
=-27+8
=-19
说明:计算时,可以按照运算顺序,从左到右逐一加以计算
三、加法运算律在加减混合运算中的作用与方法
加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,
或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等
例2.用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4
解法1:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4+(-2)+(-2)+12.4
=(-4.4+12.4)+4+[(-2)+(-2)]
= 8+[4+(-5)]
= 8+(-1)= 7
此解法是将和为整数、便于通分的加数在一起
解法2:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4-2-2+12.4
=(8+4-2-2)+(--)
= 8+(-1) = 7
此种方法是将整数部分与小数部分分别相加使计算简化
四、小结:
①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)
②有理数加减混合运算可以统一为加法运算,即:a+b−c = a+b+(−c)。